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We present the first semi-analytic radiation
transport solutions for the three-temperature (3-T)
model: the equations that couple radiation, elec-
tron, and ion energy density in a dense plasma.
The problem we solve is the 3-T version of the
Su-Olson problem considered in a recent radia-
tion diffusion study for verification of a produc-
tion HEDP code. After linearizing the equations,
integral transforms are used to solve the equations,
and the inverse transforms are computed numer-
ically after considerable simplication. The results
are compared to 2-T transport and 3-T diffusion
solutions.

I INTRODUCTION

An indispensible aspect of building confidence in
simulation codes is the demonstration that the
code solves the equations/mathematical model
correctly. This exercise is known as code verifi-
cation. An important part of code verification is
the comparison between numerical results and an-
alytic solutions to demonstrate that the code con-
verges at the appropriate rate. Code verification
for multiphysics simulations is complicated by the
dearth of analytic solutions to the nonlinear, cou-
pled partial differential equations that comprise
these simulations. This work develops verification
solutions for a specific aspect of plasma simula-
tion, the coupling of radiation, electron, and ion
energies, in inertial fusion energy (IFE) and high-
energy-density physics (HEDP) applications. The
model we solve is known as the 3-T equations and
will be detailed in the next section.

The problem that we solve was originally de-
fined by McClarren and Wöhlbier1, in a recent
paper. That work considered a diffusion model
for the transport of radiation; here we extend that
work by dispensing with the diffusion model and
use a full-fidelity, gray, radiation transport model.
The problem solved is also an extension to the lin-
earized problems that assume equilbrium between
electrons and ions solved by Su and Olson under
several regimes of approximation: gray diffusion2,

gray transport3, and multifrequency diffusion and
transport4. This problem linearizes the equations
for radiation-material coupling in order to obtain
analytic solutions. Despite the fact that the lin-
earization uses a nonphysical form for the heat ca-
pacity, the Su-Olson solutions have obtained rou-
tine use in verifying HEDP codes (the three papers
mentioned above have been cited over 80 times).
For the 3-T equations, the previously presented
diffusion solutions have been used to verify pro-
duction codes1,5, and it is our expectation that
the transport solutions will be similarly useful.

II THE 3-T MODEL

The three-temperature (3-T) equations6,7 de-
scribe a plasma system with distinct ion and elec-
tron temperatures where the presence of radiation
can significantly affect the system’s evolution. The
equations that we consider treat the radiation en-
ergy using a transport description under the gray
approximation and model the electron and ion
transport processes using a diffusion process. We
also assume that hydrodynamic effects, as well as
electric and magnetic field effects, are split from
the energy balance equations. The equation for
the radiation intensity in a one-dimensional slab
is8
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Here I(z, μ, τ) is the specific intensity of radia-
tion with units of energy/(area · time), where z is
the distance in the normal direction to the slab,
μ ∈ [−1, 1] is the cosine of the angle between the
slab normal and a direction of radiation propaga-
tion, and τ is time. The radiation interacts with
the material medium through absorption processes
and σ is the absorption opacity with units of in-
verse length, Te(z, τ) is the electron temperature,
c is the speed of light, a = 4σSB/c is the radiation
constant defined in terms of the Stefan-Boltzmann
constant, σSB. The isotropically emitting radia-
tion source is Sr(x, t). The electron energy den-
sity, ee(x, t), is governed by an equation that takes
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into account the exchange of energy between ra-
diation and electrons and between electrons and
ions as well as the diffusion of electron energy by
heat conduction:

∂ee
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=
∂

∂z
κe
∂Te
∂z

+γei(Ti−Te)−σ
(
acT 4

e − ϕ
)
+Se,

(2)
where the scalar intensity is defined as ϕ =∫ 1

−1
I dμ, κe is the electron diffusion coefficient, γei

is the electron-ion coupling coefficient, and Se(x, t)
is the electron energy source. Similarly, the ion in-
ternal energy density, ei(x, t), is governed by

∂ei
∂τ

=
∂

∂z
κi
∂Ti
∂z

− γei(Ti − Te) + Si, (3)

with κi the ion diffusion coefficient, and Si(x, t)
the ion energy source. The heat capacity,

Cvα =
∂eα
∂Tα

, α = e, i, (4)

relates the internal energy density to the species
temperature via an equation of state assuming a
stationary material. This leads to

∂eα
∂τ

= Cvα
∂Tα
∂t

, α = e, i. (5)

II.A Linearization

As initially introduced in1 we prescribe forms for
several material parameters. These forms are not
necessarily physically realistic: they are chosen so
that the equations are soluble. The solutions we
obtain will be used to test computer codes, which
generally have the flexibility to treat general forms
of these parameters. Specifically we set the heat
capacity to be proportional to the species tem-
perature to the third power: Cvα = 4aT 3

α. This
form for the specific heat was first introduced for
the two-temperature case by Pomraning9. This
makes the energy density for each species

eα =

Tα∫
0

Cvα(T ) dT = aT 4
α (6)

For the 3-T equations we must introduce other
linearizations; specifically, we set the heat conduc-
tion coefficients to κα = 4aκ̄αT

3
α, and the electron-

ion coupling coefficient to

γei = aγ̄
T 4
i − T 4

e

Ti − Te
. (7)

Using these forms for material parameters, the
3-T equations become the linear system of equa-
tions

1

c

∂I

∂τ
+ μ

∂I

∂z
+ σI =

cσee
2

+
Sr

2
, (8a)
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where we have also assumed that the κα’s are spa-
tially constant.

II.B Non-dimensionalization

To non-dimensionalize the linearized 3-T equa-
tions we first introduce a reference temperature
TH, called the hohlraum temperature, and then
introduce the following non-dimensional variables
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I

acT 4
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Using these definitions Eqs. (8) become the non-
dimensional equations
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, (9a)

∂Ue

∂t
= De

∂2Ue

∂z2
+γ(Ui−Ue)−(Ue − φ)+Qe, (9b)

and

∂Ui

∂t
= Di

∂2Ui

∂z2
− γ(Ui − Ue) +Qi. (9c)

These are the equations that we will solve.

III PROBLEM

We consider and infinite medium with conditions
such that at x = ±∞ the solutions for ψ, Ue, and
Ui vanish. Additionally, the initial conditions are
such that there is no energy in any species initially:

ψ(x, μ, 0) = 0, Ue(x, 0) = 0, Ui(x, 0) = 0.

(10)

FUSION SCIENCE AND TECHNOLOGY        VOL. 60        AUG. 2011 601

McClarren and Holladay        HEDP/IFE CODE VERIFICATION



The sources in the electron and ion equations are
set to zero everywhere, and there is a finite radia-
tion source: Qe = 0, Qi = 0, and

Qr =

{
1

2x0
(H(x+ x0)−H(x− x0)) 0 ≤ t ≤ t0

0 t > 10
,

(11)
where H(x) is the Heaviside step function.
We now perform Laplace and Fourier transforms

of the linear, nondimensional 3-T equations. The
convention we use for these transforms is

û(k, s) =

∞∫
0

dt

∞∫
−∞

dxu(x, t)e−(ikx+st), (12)

and the inverse transforms are given by

u(x, t) =
−i

(2π)2

ρ+i∞∫
ρ−i∞

ds

∞∫
−∞

dk û(k, s)e(ikx+st),

(13)
where the inverse Laplace transform’s integration
is over the usual Bromwich contour with ρ a real
number chosen so that the contour is to the right
of all singularities in the complex plane. Upon
Laplace and Fourier transforming Eqs. (9) and us-
ing Eqs. (10)-(11) we get

sψ̂ + μikψ̂ + ψ̂ =
Ûe

2
+
Q̂r

2
, (14a)

sÛe = −Dek
2Ûe + γ(Ûi − Ûe)−

(
Ûe − φ̂

)
, (14b)

and
sÛi = −Dik

2Ui − γ(Ûi − Ûe), (14c)

with Q̂r defined by performing the integral trans-
forms onQr Equation (14a) can be rearranged into

the equation φ̂ = b(k, s)
(
Ûe + Q̂r

)
, by defining

the singular integral function

b(k, s) =
1

2

1∫
−1

dμ

1 + s+ μik
. (15)

Solving Eqs. (14b), (14c), and the equation for

φ̂ gives the transformed value of the independent
functions. The solution for φ̂ is

φ̂ = b(k, s)Q̂r−
b(k, s)2Q̂r

(
Dik

2 + s+ γ
)

γ2 − (Dik2 + s+ γ) (−b(k, s) +Dek2 + s+ γ + 1)
.

(16)

The solutions for Ûe and Ûi have similar forms.
To perform the inverse transforms we must de-

termine the poles of the transformed solutions in
order to properly determine the Bromwich con-
tour. Examining the denominators of Eq. (16) we
see that the poles occur where

b(k, s) =
γ
(
k2(De +Di) + 2s+ 1

)
Dik2 + s+ γ

+(
Dek

2 + s+ 1
) (
Dik

2 + s
)

Dik2 + s+ γ
. (17)

We can prove that Eq. (17) is only satisfied if
�(s) < 0. To prove this we first define the RHS of
Eq. (17) to be a function of k that we call L(k). It
is easy to show the real part of L(k) is always pos-
itive because Di, De, and γ are positive. Further-
more, one can show that the minimum of |L(k)|
is greater than one when �(s) > 0. This fact de-
rives from the fact that ∂kL(k) has only real root,
k = 0. This makes it possible to show |L(k)| > 1
when �(s) > 0 as follows. At k = 0

|L(0)| =
∣∣∣∣ (1 + s)s+ (1 + 2s)γ

s+ γ

∣∣∣∣ > 1, (18)

when �(s) > 0. Also, limk→±∞ |L(k)| = ∞
when�(s) > 0. Therefore, the fact that |L(k)| is
greater than one at k = 0 and as k → ±∞ when
�(s) > 0 implies that |L(k)| > 1 for all k when
�(s) > 0. Also, |b(k, s)| ≤ 1 so that it is impossi-
ble for Eq. (17) to be satisfied when �(s) > 0, and
the poles in s are all in the left-half of the complex
plane.
Therefore, we can take the Bromwich contour

to be the imaginary axis (ρ = 0), and change the
inverse transforms to

u(x, t) =
1

(2π)2

∞∫
−∞

dω

∞∫
−∞

dk û(k, ω)ei(kx+ωt),

(19)
using s = iω; we also redefine b(k, s) using this
replacement for s.

Equations (16), can be written as a sum of a real
part and an imaginary part. Additionally, we can
write the exponential in the inverse transforms—
see Eq. (19)—as the sum of a real and imaginary
part. Therefore, after some amount of simplifica-
tion, we can split the inverse transforms into real
and imaginary parts. The imaginary part is identi-
cally zero from physical arguments, and therefore
we only have to solve for the real part. The real
part can be decomposed into even and odd parity
components in ω and k, and, using the fact that
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the odd parity components integrate to zero, we
need to compute integrals of the form

u(x, t) =
1

π2

∞∫
0

dω

∞∫
0

dk U(k, ω), (20)

where U(k, ω) is the real, even parity part of the
integrand in Eq. (19).

IV RESULTS

Given the simplified integrals we are in a position
to compute the solution to 3-T problems. The
problem we will solve is a 3-T analog to the prob-
lem solved by Su and Olson3 by setting x0 = 0.5,
t0 = 10. This will allow direct comparison be-
tween the 2-T results and 3-T for transport. Ad-
ditionally, we set γ = 0.5, De =

1
6 , and Di = 0 to

directly compare with the diffusion solution in1.
To compute our solution, the integrals of the form
in Eq. (20) were computed using Mathematica and
its NIntegrate function. For an integration strat-
egy we use an open Newton-Coates rule of order
2. As a check of our integration strategy we have
solved the 3-T problems with γ = De = Di = 0
to assure that we match the solutions by Su and
Olson3.
In Fig. 1 we compare 3-T solutions to the tab-

ulated 2-T solutions in3. In these figures we see
several phenomena introduced by having separate
ion/electron temperatures, as well as electron heat
conduction. At late times there is much less en-
ergy in the radiation field in the 3-T case than
the 2-T case. This is due to the fact that radia-
tion only directly couples with the electrons in our
model. Therefore, when the electrons give energy
to the ions through equilibration, that energy no
longer couples to the radiation. Also, the pres-
ence of electron heat conduction smooths the re-
gion around the edge of the source at x = 0.5: the
2-T solution for U has a steeper drop off at this
point than that in the 3-T solution. This effect is
much less noticeable in the radiation energy den-
sity. At early time, t = 1, the radiation energy
density is nearly the same in both solutions. This
is due to the fact that at this early time the source
of radiation still dominates the emission term of
radiation because the electron temperature is still
small.
The differences between radiation transport and

radiation diffusion on this problem are shown in
Fig. 2. The main difference between the models is
that the transport solution has more radiation en-
ergy near x = 0 than the diffusion solution. This
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Figure 1: Comparison of 2-T and 3-T radia-
tion transport solutions to the Su-Olson problem
(x0 = 0.5, t0 = 10) on a semilog scale at times
t = 1, 3.16228, 10. The 3-T solutions used De =

1
6 ,

γ = 0.5, Di = 0.

is due to the fact that diffusion models allow ra-
diation to flow faster than physically reasonable.
This can be ameliorated by a flux-limiter; how-
ever, flux-limiting is an inherently nonlinear pro-
cess and previous analytic solutions have not con-
sider this1. Future work should look at how flux-
limited diffusion solutions compare to the trans-
port solutions. Another difference between the so-
lutions is the transition from the source region,
i.e., x < 0.5, to the region outside the source, i.e.,
x > 0.5. In the transport solution there is a no-
ticeable transition in the shape of the solution at
x = 0.5. The diffusion solution smears out this
transition. Finally, note that at t = 1 the solu-
tions for the ion energy densities are very similar
as a result of there being only a small amount of
coupling between the radiation, which is driving
the problem, and the ion energy density at this
early time.
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Figure 2: Comparison of 3-T radiation transport
and radiation diffusion solutions to the Su-Olson
problem (x0 = 0.5, t0 = 10) at times t = 1, 5, 10.
The solutions used De =

1
6 , γ = 0.5, Di = 0.

V SUMMARY AND CONCLUSIONS

Above we presented the first semi-analytic solu-
tions to the 3-T equations with radiation trans-
port, electron/ion coupling, and heat conduction.
These solutions were obtained through integral
transform techniques after linearizing the equa-
tions through particular choices of material prop-

erties and simplifying the transforms. We com-
pared the 3-T transport solutions to both 2-T
transport solutions and 3-T diffusion solutions.
We believe that these solutions will be useful in

testing radiation hydrodynamics codes for HEDP
and IFE. Indeed, we plan on conducting compar-
isons to numerical results from production codes
in a similar manner to1. Additional future work
will extend these slab geometry solutions to spher-
ical geometry.
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