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a b s t r a c t

We present a method for calibrating the uncertain inputs to a computer model using available experi-
mental data. The goal of the procedure is to estimate the posterior distribution of the uncertain inputs
such that when samples from the posterior are used as inputs to future model runs, the model is more
likely to replicate (or predict) the experimental response. The calibration is performed by sampling the
space of the uncertain inputs, using the computer model (or, more likely, an emulator for the computer
model) to assign weights to the samples, and applying the weights to produce the posterior distributions
and generate predictions of new experiments with confidence bounds. The method is similar to Metrop-
olis–Hastings calibration methods with independently sampled updates, except that we generate sam-
ples beforehand and replace the candidate acceptance routine with a weighting scheme.

We apply our method to the calibration of a Hyades 2D model of laser energy deposition in beryllium.
We employ a Bayesian Multivariate Adaptive Regression Splines (BMARS) emulator as a surrogate for
Hyades 2D. We treat a range of uncertainties in our application, including uncertainties in the experimen-
tal inputs, experimental measurement error, and systematic experimental timing errors. The resulting
posterior distributions agree with our existing intuition, and we validate the results by performing a ser-
ies of leave-one-out predictions. We find that the calibrated predictions are considerably more accurate
and less uncertain than blind sampling of the forward model alone.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction and Motivation

1.1. Calibration of Uncertain Model Inputs

Calibration is the task of using field data to improve the predic-
tive capability of a simulation model. Field data typically takes the
form of experimental measurements and its associated uncertainty
and/or variability. The simulation model, which may be used to
replicate experimental results or predict the outcome of untried
experiments, may be a function of a large vector of inputs. These
inputs can generally be classified into two categories: those that
correspond to measurable experimental inputs; and those that
are empirical, numerical, or otherwise unmeasurable parameters
required to close the mathematical model. We denote the former
category with ~x and the latter with ~h; we also make a distinction
between ~xðexpÞ and ~xðsimÞ, the measurable experimental variables
and corresponding simulation inputs, respectively.

The correct or most appropriate values for model inputs ~xðsimÞ

and~h are rarely known with full certainty. As an example, consider
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the task of using the simulation model to replicate field data result-
ing from experimental inputs~xðexpÞ

0 . The choice of~xðsimÞ may be hin-
dered by imperfect or uncertain measurements of ~xðexpÞ

0 ; more
importantly, once a choice for~xðsimÞ

0 is made, the simulation output
may be highly sensitive to the choice of~h. The contribution of this
work is a method for ‘‘tuning’’ the ~h inputs with full regard for
experimental, measurement, simulation, and regression uncer-
tainty. The goal is to identify the components of ~h to which the
simulation output is sensitive and to infer the values of these com-
ponents that maximize the predictive capability of the model while
reducing predictive uncertainty.

Our calibration method is based on the following model equa-
tion, which relates a measured quantity of interest (QOI) Y to a
simulation f(�)(Higdon et al., 2004)

Ymeas ~x
ðexpÞ
i

� �
¼ F ~xðexpÞ

i

� �
þ � � f ð~xðsimÞ

i ;~hÞ: ð1Þ

In Eq. (1), ~xi 2 Rd;~h 2 Rp; Fð�Þ ¼ Y trueð~xiÞ, the true experimental
response for input settings i, and � is an error term accounting
for stochastic behavior of nature, unknown unknowns, and/or
experimental measurement error.

Our model equation does not include a model discrepancy term,
a statistical function which compensates for systematic model er-
ror in the simulation (Kennedy and O’Hagan, 2001). Calibration in
the presence of a non-zero model discrepancy is possible. In this
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case, however,~h has only been ‘‘tuned’’ (in tandem with the model
discrepancy) to improve the predictive accuracy of f(�) plus the dis-
crepancy, not calibrated to improve the accuracy of f(�) alone. Our
application calls for the use of the full forward model to predict
experimental QOIs; therefore we do not allow for a model discrep-
ancy term and seek calibrated ~hs which improve our predictions
and provide some insight into our model.

In order to generate reliable statistics, the calibration routine
will require a large number of samples from the Rdþp input space
and propagation of those samples through f(�). The cost and high-
dimensionality of today’s advanced simulations often limits the
number of full model runs, leaving much of the input space unex-
plored and preventing the use of exhaustive sampling for sensitiv-
ity analysis. To generate estimates of the simulator response at
untried inputs, we employ an emulator, or response surface,
gð~x;~hÞ to interpolate between these available results. We write this
relationship as (dropping the superscript (sim)/(exp) notation)

f ð~x;~hÞ ¼ gð~x;~hÞ þ f;

where f is an estimated regression error. Inserting this result into
Eq. (1) and rearranging terms, our model equation may also be writ-
ten as

Fð~xiÞ � gð~xi;~hiÞ þ f� �: ð2Þ

The error terms f and � are typically well characterized. For our
emulator, the regression error f is estimated during the construc-
tion of the emulator, and � can be calculated or estimated heuristi-
cally based on knowledge of the physical system and measurement
equipment or instrumentation.

The application of Eqs. (1) and/or (2) becomes more interesting
if we treat each term as a distribution instead of a single realization.
The emulator term becomes a distribution if it is evaluated at a dis-
tribution of~h values, and the result is a distribution of predictions
for the true experimental response Fð~xÞ. Calibration algorithms
which search for the most likely distribution of ~h have been the
subject of extensive research for some time (see a thorough review
in Chib and Greenberg, 1995). For example, the so-called random
walk calibration algorithm searches the ~h space one candidate
point at a time, accepting or rejecting each candidate based on a
likelihood calculation, and ‘‘jumping’’ between candidates in a pre-
scribed manner. In the end, the distribution of accepted candidates
approximates the posterior distribution. Numerous software pack-
ages and applications are available for review Higdon et al. (2004).

The work presented here is similar to existing search algorithms
with the exception that each sampled candidate in ~h space is as-
signed a weight which reflects its likelihood. This weight is a func-
tion of available field data, forward model results, and the
uncertainty information that characterizes f and �. The goal is to
produce a predictive distribution for Ytrue that is more accurate
and less uncertain than blind sampling of the forward model alone.
1.2. Motivating Application: Initialization of Radiative-Shock
Simulations

Our motivating application is related to the mission of the Cen-
ter for Radiative Shock Hydrodynamics (CRASH) at the University
of Michigan, one of five centers funded by the DOE Predictive Sci-
ence Academic Alliance Program (PSAAP). The challenge for each
PSAAP center is to use results and data from 4 years of increasingly
complex simulations and experiments to predict the results of a
‘‘significantly different’’ or extrapolated 5th year experiment. Most
importantly, each center must also develop methods to assess its
own predictive capability and report defendable confidence
bounds to support its year-5 prediction.
At CRASH, our goal is to simulate the development of a laser-
driven shockwave traveling at high Mach number in a gas-filled
plastic tube. The shock is formed after a laser strikes and ablates
a beryllium disk at one end of the shock tube. The radiation energy
traveling down the tube and ahead of the shock affects the shock
evolution, resulting in highly non-linear physics. The CRASH code,
a massively parallel Eulerian radiation hydrodynamics code with
mesh adaptivity, is used to predict experimentally measurable
quantities, such as the shock shape and location at specific times
after the laser fires.

The CRASH experiments progress as follows: the years 1, 2, and
3 experiments involve only cylindrical tube geometries. The year 4
experiment complicates the tube geometry by ‘‘necking’’ the tube
from a cylinder with a larger radius to one with a smaller radius.
The year 5 experiment extrapolates the year 4 experiment by neck-
ing from a larger cylinder to a smaller but elliptical tube (requiring
a fully-3D physics model). Crucial to our ability to extrapolate pre-
dictive capability to the year 5 experiment is a thorough under-
standing of the propagation of input uncertainties through the
full physics to the output QOIs. The development of this under-
standing requires that we calibrate our year 1–4 predictive models
and justify the use of that calibration to predict the year 5
experiment.

An interesting calibration question arises in the initialization of
the CRASH code. For some time during the CRASH campaign, the
CRASH code did not handle the laser energy deposition in the
beryllium disk. Instead, we used a 1D (and later a 2D) Lagrangian
radiation hydrodynamics code Hyades (Larsen and Lane, 1994) to
simulate the energy deposition and initialize the CRASH code. Hya-
des takes a large number of parameter inputs and computes an
even larger number of responses which are used to form the initial
conditions for the CRASH code.

A previous study by McClarren et al. (2011) used physics-based
arguments and a sensitivity study to filter the large number of
Hyades 1D (H1D) inputs down to a manageable dimension. Fur-
ther, this study found that the predictions made by the CRASH code
were highly sensitive to its initialization and therefore highly sen-
sitive to the H1D initialization. The center later moved from H1D to
Hyades 2D (H2D) for CRASH initialization, and the need to reduce
uncertainty arising from variability in H2D inputs became an
imperative for improving the center’s predictive capability.

The center designed an experimental campaign to generate field
data for calibrating the inputs to H2D. Specifically, the experimen-
tal QOI was the shock breakout time (BOT), or the time required for
the laser energy to propagate through the beryllium disk. We also
generated a run-set of H2D predictions of the shock BOT by sam-
pling from a five-dimensional H2D input space. Two of these in-
puts directly correspond to experimental variables:

~x ¼ ½laser energy;disk thickness�:

Based on the previous sensitivity study by McClarren et al. (2011),
heuristics, and computational limitations, three additional uncer-
tain inputs were allowed to vary to generate the run-set:

~h ¼ ½beryllium EOS gamma;plastic wall opacity;
electron flux limiter�:

The task was to use the shock BOT data and predictions to infer pos-
terior distributions for~h. The calibration is successful if H2D predic-
tions of shock BOT become more accurate and less uncertain when
the uncertain inputs are sampled from their posterior distribution.
The task is complicated, however, by relatively large field data
uncertainty and the interpretation thereof. This paper describes
the calibration method, our approach for handling these challenges,
and gives results which agree with physical intuition and have led
to stronger predictive capability.
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The outline of this paper is as follows. In Section 2, we describe
the BMARS emulator, define and outline our calibration method,
and specify the experimental data and simulation results available
for our H2D calibration. In Section 3, we exercise our calibration
method on first a simplified problem and then with the full uncer-
tainty treatment. We conclude with a discussion of the method’s
advantages and potential challenges in future work.
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Fig. 1. An Example 1D BMARS fit to piecewise-linear data perturbed by a noise
term.
2. Description of BMARS, the calibration method, and the
application of interest

2.1. The Emulator: Bayesian Multivariate Adaptive Regression Splines
(BMARS)

As mentioned in the introduction, an emulator is necessary to
interpolate between available simulation samples when the for-
ward model is difficult or expensive to evaluate at untried inputs.
For this paper, we choose the BMARS response surface, described
as follows.

The original multivariate adaptive regression splines (MARS)
algorithm proposed by Friedman (1991) is a partition-based
curve-fitting technique which attempts to emulate the mapping
between a function’s inputs and outputs as a summation of so-
called ‘‘spline’’ functions. Multivariate spline functions are simply
products of one-dimensional spline functions; these 1D spline
functions are continuous and defined to be zero on part of the do-
main and a polynomial of some order on the remainder of the do-
main. The knot of the spline is the coordinate at which this
definition changes, and the direction of the spline describes
whether the non-zero portion of the spline is in the positive or neg-
ative direction from the knot.

Given a set of input or training data, the original formulation
uses a semi-stochastic method to generate a basis function of the
form

BðxÞ ¼ b0 þ
XK

k¼1

bk

YI

l¼0

ðxl � tk;lÞok
þ ; ð3Þ

where ~x is a vector of inputs (in our case, x 2 Rpþd), tk,l is the knot
point in the lth dimension of the kth component, the function (y)+

evaluates to y if y > 0, else it is 0, o is the polynomial degree of
the kth component, bk is the coefficient of the kth component, K
is the number of components of the basis function, and I is the max-
imum allowed number of interactions between the p + d dimen-
sions of the input space. Note that the formulation does not
require that each of the k components have a term in each dimen-
sion of~x and that the optimization does penalize as the size of mod-
el, K becomes larger.

Denison et al. (1998) introduced a Bayesian extension of MARS
(hereby named BMARS) which attempts to converge on a posterior
distribution of predictive MARS functions. Then, each sample of the
emulator results in a predictive distribution of the response in-
stead of a single prediction. Step zero of the algorithm generates
a classical basis function of the form (3). A Markovian process pro-
poses a change to the current model in the form of an addition,
deletion, or modification of a spline. When a new spline is created,
the algorithm randomly chooses its order, knot point, direction,
and level of interaction. The algorithm iterates this random selec-
tion process and accepts/rejects proposal basis functions based on
a likelihood calculation. This likelihood is a function of the candi-
date’s fit to the training data and the number of splines in its basis
function. The coefficients, b, are found using a Bayesian least-
squares inversion. Similarly, the error in the regression (f in Eq.
(2)) is estimated at each iteration based on the current model’s
approximation of the training data.
In many respects, BMARS is different from other popular emu-
lation techniques. First, the function is not an interpolator, mean-
ing that it does not reproduce the training data exactly, and it
does not have a closed form for the variance in its predictions;
Guassian processes (Rasmussen and Williams, 2006) and polyno-
mial chaos (Ghanem and Spanos, 1991) each have both of these
features. We argue, however, that interpolation in an environment
of large uncertainties is not essential so long as the regression error
can be shown to be small or can be accounted for correctly. In this
work, we show that the regression error is small compared to
experimental uncertainties and that the Bayesian variance approx-
imation is accurate.

BMARS has a number of advantageous features. The computa-
tional work to form the emulator (that is, solve for the b coeffi-
cients) at each iteration grows as K3, the cube of the number of
splines in the model. This is generally much smaller than the com-
putational work required to form interpolating emulators, which
grows as n3, the cube of the size of the training set. We generally
find that K is an increasingly smaller fraction of n as n grows large.
Because of the discontinuous nature of the spline functions, BMARS
does not require an assumption of smoothness of the response in
parameter space; regression over sharp discontinuities is still diffi-
cult, but BMARS is more apt to fit such features than globally con-
tinuous functions. In terms of accuracy, Denison et al. (1998)
report that BMARS is competitive across a standard suite of both
low and high dimensional regression tests.

We illustrate the utility of this emulator in Fig. 1, where we
show a one-dimensional BMARS fit to piecewise-linear training
data perturbed by a N(0,1.52) error term. The classical MARS algo-
rithm would find just one of these predictive functions, while the
Bayesian extension produces a number of candidate predictive
functions. The distribution (mean and variance) of these predictive
functions provides the modeler with an estimate for the regression
uncertainty and unexplained variance in the forward model.

2.2. The calibration method: A sampling and filtering algorithm

The goal of calibration is to find values or distributions of an
approximate model’s inputs such that the approximate model be-
comes a more accurate predictor of reality. As we outlined in the
introduction, an experiment and its approximate model typically
share a set of inputs, ~x. The simulation will also have a number
of other inputs,~h, which can take the form of non-physical tuning
parameters or other physical inputs which are not experimentally



Fig. 2. Schematic of H2D/CRASH interaction.
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varied. We seek distributions of these uncertain parameters such
that the simulation produces a more accurate prediction when
~xðsimÞ ¼~xðexpÞ.

We propose a two-step calibration procedure. Step one is to
generate a BMARS model for the simulator, f(�) = B(�) + f. The mod-
el will be a function of d + p variables; that is, we make no dis-
tinction between independent and uncertain inputs in step one.
Determining the adequacy of the emulator is an independent sub-
ject (see studies by Currin et al. (1991) and Sacks et al. (1989));
we note that the following analysis operates under the assump-
tion that the emulator is an adequate representation of the sim-
ulator, or at least that it appropriately estimates the regression
error f.

Step two relates the BMARS emulator to the available experi-
mental measurements resulting from inputs fxigI

i¼1. We outline
step 2 here and discuss the procedure in more detail in the next
section of this paper.

1. Generate N samples of the uncertain input space. Samples
should be contained within the convex hull of the available sim-
ulation runs to avoid extrapolating with the emulator and
should be as dense as possible.

2. For each available experimental data point and each sample of
the uncertain input space (i.e. for i = 1 � � � I and n = 1 � � � N):
(a) Randomly choose M indices from the posterior distribution

of the BMARS model.
(b) Generate and normalize a discrete probability distribution

function, gðgð~xi;~hnÞÞ by evaluating gmð~xi;~hnÞ ¼ Bmð~xi;~hnÞþ
fm;m ¼ 1 . . . M.

(c) Compute a local weight, xi,n = L(Ymeas(xi)jg,�). L(�) is a likeli-
hood function which should return a measure of the accu-
racy of the simulator in predicting experiment i when
using uncertain input~hn given the uncertainty in the regres-
sion model and field data.

3. Compute the global weight, wn ¼
QI

i¼1xi;n.

The result of the algorithm is a global weight assigned to each
~hn 2 Rp; n ¼ 1 � � �N sample of the uncertain input space. The
weight wn should be proportional to the likelihood that the simu-
lator will replicate experimental results if it is run using ~hn as its
inputs. The global weight is a product over the likelihoods com-
puted using each of the I experimental data points. Therefore,
those ~h’s with the largest global weight will be those that most
consistently approximate the experimental data when pushed
through the simulator.

The weights may also be used to generate posterior distribu-
tions in each dimension of ~h. We choose to discretize the range
of each uncertain input into ‘‘bins’’ containing an equal number
of samples. Then, for each bin, we simply sum the global
weights assigned to the samples in that bin. This distribution
can be normalized to represent the posterior distribution. An
uncertain input is said to be strongly calibrated if this posterior
distribution is markedly different from the assumed prior
distribution.

Finally, the modeler may apply the weights to generate predic-
tions (with uncertainty) of new experiments using either the full
simulation model or its emulator. If a few runs of the simulator
are possible, the modeler will sample appropriately from the cali-
brated distributions to initialize the code. The type and quality of
QOI statistics will be limited by the number of runs that can be
afforded.

Alternatively, the modeler may choose to use the response sur-
face to generate a large number of predictions, but will pay the
price of regression uncertainty resulting from the use of the emu-
lator. In this case, the expected value of an experiment is a
weighted average:
YpredðxiÞ ¼
1
M

XM

m¼1

XN

n¼1

gmð~xi;~hnÞwn:

Each posterior BMARS realization includes a Gaussian estimate for
its regression error, fm � Nð0;v2

mÞ. Therefore, the variance of the
uncertain distribution about the globally weighted prediction for
YpredðxiÞ can be estimated as a weighted average of the v2

ms.
Step 2(c) of the algorithm above will require interpretation of

the specific application; that is, the modeler must choose which
uncertainties to include in the analysis and how to properly ac-
count for them in the likelihood distribution L(�). At a minimum
the system will have uncertainty from emulator regression and
experimental measurement. As mentioned above, the BMARS
regression error is estimated as a normal distribution, f � N(0,v2).
If the measurement error is also estimated as normal (� � N(0,s2)),
then the function L is equivalent to evaluating the normal pdf:

Lð~hi;nÞ / N YmeasðxiÞ l ¼
1
M

XM

m¼1

Bmð~xi;~hnÞ þ Nð0;v2
mÞ;r2 ¼ v2 þ s2

�����
 !

ð4Þ

Other sources of uncertainty or distributions of those uncertainties
will require the modeler to generate a tailored likelihood function.
For example, the field data in our application is subject to a system-
atic, uniform timing error that is both large in magnitude and diffi-
cult to interpret. We outline our approach to handling this
uncertainty in the following sections. In general, the form of L(�) will
require careful consideration of the specific uncertainties and/or er-
ror present in the application.

2.3. The Application: Calibrating Hyades 2D to Experimentally
Measured Shock Breakout Times

As described in Section 1.2 and summarized in Fig. 2, we seek to
calibrate three uncertain inputs to the Hyades 2D laser deposition
model. The results of this model are used to initialize the CRASH
code, which is then used to generate predictions of late-time shock
location and structure. Because these predictions are sensitive to
the early-time energy deposition, an accurate and consistent ini-
tialization from H2D is required for accurate predictions.

A series of eight experiments were carried out on the OMEGA
laser in the Laboratory for Laser Energetics at the University of
Rochester. For each experiment, we took three measurements
(using three different diagnostics: asbo1, asbo2, and sop) of the
time required for the laser energy to propagate through a beryl-
lium disk (this is the shock breakout time). Only the laser energy
and disk thickness were experimentally varied. Table 1 summa-
rizes the results of the eight shots.



Table 1
Experimental inputs and resulting shock breakout time measurements.

Experiment Be disk thickness
(lm)

Laser
energy (J)

asbo1
(ps)

asbo2
(ps)

sop
(ps)

1 21 3837.6 504 486 462
2 20 3925.2 467 475 430
3 20 3937.6 437 450 Nonea

4 19 3887.8 419 410 436
5 20 3914.6 425 467 456
6 20 3912.8 442 476 470
7 19 3923.3 447 456 470
8 19 3945.8 410 417 418

a No sop data recorded for this shot.

Table 2
Hyades 2D simulation input ranges and distributions.

Input Distribution

Laser energy (J) U[3610,3990]
Disk thickness (lm) U[18,22]
Be gamma U[1.4,1.75]
Wall opacity U[0.7,1.3]
Flux limiter U[0.05,0.075]
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Each column of Table 1 has an associated uncertainty, which we
describe as follows:

1. Disk thickness: the micrometer that measured the disk thickness
reports only to the nearest micron; therefore we assume a
U[±0.5 lm] distribution about the reported value.

2. Laser energy: The total laser energy delivered to the beryllium
disk is known very well after the shot; before the shot, however,
the energy can only be estimated to within some range of the
energy requested by the experimenter. Therefore, when pre-
dicting a response to a future experiment, this uncertainty must
be included. During calibration, however, we can take the laser
energy as a known parameter, which should help us reduce
uncertainties on other parameters.

3. Diagnostic uncertainties: the asbo1, asbo2, and sop diagnostics
have an intrinsic precision uncertainty reported as 10 ps,
20 ps, and 30 ps respectively. The best documentation indicates
that these should be interpreted as standard deviations of a nor-
mal distribution. Also, since each is nominally a measurement
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Fig. 3. We evaluated the accuracy of the BMARS emulator by performing a series of cros
line.
of the same quantity, there is certainly some correlation
between the errors in each diagnostics’ reading of a given
experiment.

4. Systematic timing error: we are also told that the facility has a
systematic firing error of 50 ps which is to be interpreted as a
top-hat distribution about any given reported value. In other
words, the true breakout time is equally likely to be any value
within 50 ps of the reported value of any diagnostic. This is a
large uncertainty: on the order of 10% of the QOI!

For simulation data, we have 104 successful runs of H2D result-
ing from 104 samples from the 5 dimensional hypercube in ½~x;~h�
space. Table 2 gives the input variables and the ranges in which
they were varied to generate this run set. The independent vari-
ables, laser energy and disk thickness, again correspond to the
experimentally varied variables to generate the field data. The
uncertain variables are the beryllium equation-of-state parameter,
opacity of the plastic in the shock-tube wall, and electron flux lim-
iter regulating electron diffusion within the H2D code. These are
the variables for which we seek a calibrated distribution.

Step one of the calibration procedure is to generate a response
surface which can be cheaply sampled to provide estimates for
the simulator response at untried inputs. One method for deter-
mining the adequacy of a chosen response surface is cross-valida-
tion, or training on a subset of the available data and predicting the
rest. For example, we performed a series of emulator constructions
wherein we trained the BMARS model on a random subset of 84 of
the 104 available data points. We then used the resulting response
surface to predict the ‘‘left out’’ 20 data points. After some tuning,
we consistently found that the root-mean-square error in the 20
predictions was consistently on the order of 1%, which is much less
than the experimental uncertainty in this particular problem. A fi-
nal step is to formulate (and self-validate) a final BMARS model
using all 104 data points. Figs. 3a and b illustrate an example
cross-validation fit and the final fit, respectively.

In the following section, we give results of two calibration exer-
cises: one with only measurement uncertainty and one with the
full uncertainty treatment. We first show the posterior distribu-
tions resulting from the calibration using all eight experiments.
We then give the results of 8 ‘‘leave-one-out’’ (L1O) tests/predic-
tions. For a given L1O prediction, we will use the field data from
7 of the 8 experiments and all 104 H2D simulation runs to perform
the calibration method. We then use the resulting calibrated~hs to
predict the result of the 8th experiment. We will perform this 8
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s-validation tests. Note that in each plot, a perfect prediction would fall on the 45�
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times, each repetition leaving out a different experiment’s field
data. In the end, we will have generated predictions for each of
the 8 experiments. If successful, the L1O tests will provide some
sense of validation of the method and confidence in subsequent
predictions derived from its results.

3. Results of the Calibration of Hyades 2D

3.1. Calibration of a Simplified Problem

As an initial proof-of-concept of the calibration method, we first
consider the case of zero regression error and a normally distrib-
uted measurement uncertainty model. We will only consider the
asbo1 measurements, which have an associated measurement er-
ror term � � N(0,10 ps2).

Following the calibration steps, we generated a latin hypercube
sample of 50,000 points in the three-dimensional ~h space. As we
are only considering one diagnostic and its normally-distributed
measurement error, our local likelihood distribution is as written
in Eq. (4) with v2 = 0. Fig. 4 shows the posterior distributions of
the three components of ~h when they are calibrated to all of the
asbo1 measurements.

The immediate observation is that all three components cali-
brated to the lower end of their prior distributions and that the
beryllium gamma input did so quite strongly. The interpretation
of these plots is that the H2D simulations are more likely to
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Fig. 4. The calibrated or posterior distri
replicate the experimental measurements when the uncertain in-
puts are sampled from the lower end of their priors. In other
words, the calibration procedure is indicating that the true distri-
bution of these parameters is not uniform (as were our prior
guesses), but instead have more weight near the lower values of
the inputs.

We may also seek to interpret the results and develop some
intuition about our physical model. For example, the posterior
distribution of the electron flux limiter may be indicating that
H2D is over-driving the heat flux at the shock front. Similarly,
the strong calibration of the Be-gamma input indicates a
preferred bias of the equation-of-state by H2D. In some cases,
however, physical intuition may disagree with the calibration re-
sults. For example, it is not clear that the wall-opacity should be a
driving input for the shock BOT because the physics resulting
from wall interactions are mostly downstream from the laser
ablation.

As mentioned, we provide some validation of our calibration
method via leave-one-out experiments: we calibrate on seven of
the experiments and attempt to use the resulting posteriors to pre-
dict the ‘‘left out’’ experiment. One manner by which to measure
success is to compare these predictions to predictions that result
from blind sampling of the ~h space. If the method is successful,
we will improve the prediction of each experiment and reduce
the confidence interval about that prediction. Fig. 5 compares the
calibrated and uncalibrated predictions.
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First we note that the predictive accuracy was greatly improved
when we use calibrated~hs to generate predictions. The figure also
indicates that the a priori input ranges result in a general under-
prediction of the experimental response by H2D. Recall that our
model assumes that a discrepancy function (to account for system-
atic differences between the simulation and reality) is not neces-
sary – in this case, we are very close to needing a discrepancy
function to predict the asbo1 measurements. Indeed, one asbo1
measurements (�500 ps) is not encapsulated by the simulation
runs. In the following section, we’ll show that the added informa-
tion from the inclusion of all three diagnostics aides in the predic-
tive accuracy and moves us away from nearly needing a
discrepancy function.

3.2. Leave-one-out Experiments with Full Treatment of Uncertainty

We now perform the same procedure of leave-one-out experi-
ments but include the regression error f and the full treatment of
the uncertainties described in Section 2.3. These uncertainties
combine to form the likelihood function L(�) for each combination
of experiment number and ~h sample. The manner in which they
combine depends on the modelers understanding and interpreta-
tion of the uncertainties.

Previous and related studies from the CRASH center (Holloway
et al., 2011; McClarren et al., 2011) have characterized the experi-
mental uncertainties and their relative significance for predictive
capability. These authors report that the largest source of error is
the 50 ps systematic timing bias of the entire experimental appara-
tus, followed by the specific biases of the three individual diagnos-
tics. We reflect these findings by taking conservative estimates
(that is, erring on the side of more uncertainty) in constructing
the likelihood function, L(�). Our final interpretations of the uncer-
tainties are as follows:

1. Regression error, f: This is estimated to be normally distributed,
f � N(0,v2), where v2 is the average of the v2

m estimates from
the posterior BMARS realizations. For our application, we find
these estimates to be accurate using cross-validation studies
as described in Section 2.3. The regression variance acts to
widen the likelihood distribution.

2. Disk thickness error: The true disk thickness corresponding to
any experiment is estimated to be within ±0.5 lm of the value
reported in Table 1. We include this uncertainty by randomly
sampling a value (uniformly) about the nominal value at each
evaluation of the BMARS emulator. This results in a widening
of the emulator’s prediction of the simulation response (a net
addition to f).

3. Laser energy: When calibrating, we take the laser energy to be
known exactly (which is the case post-shock). In a later section,
when we use the calibration to make predictions, the laser
energy uncertainty must be included.

4. Diagnostic uncertainties: Each measurement diagnostic has an
associated uncertainty, which we interpret as standard devia-
tions of a normal distribution about the reported measurement.
There are a number of ways by which we could combine the
information provided by the three measurements of each
experiment. Due to the overwhelmingly large systematic timing
error (described next), we decided that the most conservative
approach was to take the true experimental response as the
mean of the diagnostics and to assume the worst-case standard
deviation of 30ps for the nominal measurement error. This 30ps
is reflected in the s2 term in L(�).

5. Systematic timing error: The entire experimental apparatus is
estimated to have a ± 50 ps systematic timing error. We inter-
pret this as follows: if the mean prediction of Ysimðxi;~hnÞ falls
outside a 50 ps bound about any credible estimate of Ytrue

(accounting for uncertainties), then the weight wn = 0. For
experiment i, the bound of credible estimates of Ytrue,i is
max
k
fYmeas;i;kþ3rkg�50ps6Ytrue;i6min

k
fYmeas;i;k�3rkgþ50ps
where k indexes the diagnostics, {k = asbo1, asbo2, sop}. To imple-
ment this constraint, we multiply the existing likelihood distribu-
tion by a top-hat distribution valued at 1 in the acceptable range
and 0 elsewhere.

The result of this interpretation is a truncated normal likelihood
distribution for each combination of Ymeas(xi) and~hn candidate. The
mode of this distribution is the mean BMARS prediction of the sim-
ulator response, and the variance is a function of the regression er-
ror, disk thickness uncertainty, and diagnostic measurement error.
An example likelihood distribution is given in Fig. 6. The weight as-
signed to~hn will be the value of the solid line at Ymeas(xi). This solid
line follows a normal distribution but is truncated to value zero
outside the acceptable predictive range.

We again use a 50,000 sample latin hypercube design to gener-
ate the~h candidates. The posterior distribution estimates resulting
from a calibration on all 8 experimental measurements are given in
a bi-variate distribution plot in Fig. 7. Plots on the diagonal give the
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univariate posterior histograms and the value of the uniform prior
distributions. The off-diagonal plots give the bivariate distribu-
tions, and the darkness of the data points is proportional to the
magnitude of that point’s global weight. We plot only a subset of
the data for clarity in the figure.

The full uncertainty treatment resulted in weaker calibration
for both the wall opacity and the electron flux limiter. As previ-
ously mentioned, we do not expect the wall opacity to be a driving
input for BOT calculations because the wall is ‘‘downstream’’ from
the laser energy deposition. The wall opacity posterior given in
Fig. 7 is not statistically different than the prior distribution. The
posterior distribution for the electron flux limiter indicates that
smaller values of this parameter result in more accurate experi-
mental predictions. This also agreed with our existing intuition,
as we believe that Hyades is over-driving heat transfer at the shock
front.

It is interesting that moving to the full treatment of uncertainty
did not have a large effect on the estimated posterior of the beryl-
lium gamma constant. We certainly expected this to be a driving
input because the laser energy is ablating the beryllium, and we
generate material properties using a c-law equation of state. Thus,
it seems intuitive that the value of the gamma constant would play
a strong role in the calculation of shock breakout time. The fact
that it remained strongly calibrated to the lower part of the prior
indicates that the shock breakout time is highly sensitive to its va-
lue. This result is inconclusive about the true posterior distribution
of this input; instead we only learned that our prior distribution
was mostly too high and that future samples of this parameter
should extend below the lower bound of 1.4 considered in this
study.

The results of the leave-one-out predictions under the full
uncertainty treatment are illustrated in Fig. 8. The plot shows 8
pairs of horizontal and vertical error bars. The intersection of each
pair of error bars is at {x = nominal experimental measurement,
y = mean experimental prediction}. The vertical error bars repre-
sent the 90% predictive confidence interval, and the horizontal er-
ror bars represent the bounds of possible values of Ytrue,
determined by the ±50 ps systematic timing uncertainty. To give
an idea for the spread in the diagnostic measurements, each set
of horizontal error bars contains the three (in one case two) diag-
nostic results.
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Fig. 9. Predictions of breakout time at new disk thicknesses for three different laser
energies.
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Several differences between these predictions and those in
Fig. 5 are noteworthy. First, as expected, the 90% predictive confi-
dence intervals are larger, as expected, because the predictions are
less certain under the full uncertainty treatment. Second, despite
the inclusion of multiple sources of uncertainty, the root-mean-
square predictive accuracy improved from 22.3 ps to 16.2 ps. As
we alluded to above, we believe this is a result of using the mean
of all three diagnostics as the target calibration value. Because
the systematic timing error of ±50 ps is dominating this study,
the measurements of an individual diagnostic are highly variable.
In using an average of all three diagnostics, we were better able
to characterize the true experimental response, and the Hyades
emulator was able to more consistently predict those values. Final-
ly, we assert that the predictions are fairly accurate and a large
improvement over blind sampling of ~h to predict Ymeas. The ‘‘box’’
of uncertainty about each prediction contains the true experimen-
tal measurement.

3.3. Predictions of New Shock Breakout Time Experiments

The accurate prediction of the response of new experiments is
the goal of any calibration method, and it is natural to extend
the methods used to generate our leave-one-out predictions to
predictions of the shock breakout time at new laser energies
and/or disk thicknesses. In input space, the domain of valid predic-
tions is at most the R5 space contained by the original 104 H2D in-
put samples. Prediction outside this range would be an
extrapolation of the emulator. We also must note that extrapola-
tion outside the range of the experimental data requires an
assumption that ~h would calibrate similarly at such an ~x and that
H2D remains a valid model outside the range of the experimental
data. The degree to which such assumptions are valid are usually a
matter of expert judgement.

We generate predictions using the BMARS emulator, the 50,000
samples in ~h space, and the global weights computed by the cali-
bration routine. As we are now predicting, we must include the la-
ser energy uncertainty. Before a shot, the facility estimates
Eactual � N(Erequested,19.4J2). Therefore, as with the disk thicknesses,
each time we evaluate a BMARS model, we randomly sample a
number from this distribution as the true experimental input. This
should add considerable width to our predictive confidence
bounds. Figs. 9 and 10 show predictions of shock breakout time
as a function of disk thickness and laser energy, respectively.

The figures indicate that in the range of inputs tested here,
breakout time is a stronger function of disk thickness than of laser
energy. The predictions are consistent with the experimental data
(and intuition) in that breakout time increases with increasing disk
thickness and decreasing laser energy. Our predictions mostly con-
tain the experimental data points (recall that we calibrated on the
mean of three measurements per experiment, so our predictions
really trace the mean of each experiment). At new experiments,
we see that our predictions are fairly smooth and extrapolate the
general behavior of the experimental data points.

It is interesting to consider the use of the calibration results to
inform both computer and physical experiment design. For exam-
ple, in Fig. 9 we see evidence (increasing confidence bounds) of loss
of predictive reliability at the larger disk thicknesses. This is an
indication that either (a) the emulator is not achieving a good fit
at these values and additional simulator runs may be required, or
(b) the calibration results are not informed by the experimental
data (indeed, these predictions are an extrapolation of the experi-
mental data) and additional experiments should be planned at
these inputs. The literature contains extensive studies of the design
and analysis of computer experiments (e.g., Higdon et al., 2004;
McKay et al., 1979; Santer et al., 2003). Literature regarding the im-
pact of calibration on physical experiment design is less complete.
Authors generally agree that more experimental data is better and
that calibration results are only valid in the vicinity of the design
space near the existing experimental results. They often further as-
sume that experimental data is a limited resource, due to histori-
cal, cost, or availability issues. As we have defined ~h as a set of
uncertain inputs that cannot be experimentally varied, we do not
believe that this method provides additional insight into the design
of physical experiments.
4. Conclusions

We have outlined a method for calibrating the uncertain inputs
to a computer model using experimentally measured data. The
method requires sampling of the uncertain parameter space, and
each of these samples is evaluated using a likelihood function
which may be tailored to represent measurement and/or model er-
ror, physical input uncertainties, and other sources of uncertainty
in the particular application. Most problems will require an emula-
tor to generate estimates of the simulator response at untried
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inputs and will also need to account for regression error. The
weights that are generated by the algorithm are used to generate
posterior distributions and weighted predictions (with confidence
intervals) of new experiments.

We applied the method to a calibration of the Hyades 2D laser
deposition model using experimentally measured shock breakout
times. We employed the use of the BMARS emulator and tailored
our weighting computation to include the realistic uncertainties
involved with our experimental data. The results of leave-one-
out type predictions indicated that the method greatly improved
predictive accuracy and tightened the confidence intervals about
those predictions. We used the successful leave-one-out predic-
tions as justification to extend the method to produce predictions
(and confidence bounds) of new experiments.

This method has a number of benefits. First, it is relatively
straightforward to implement and could be useful for preliminary
input-sensitivity and dimension reduction studies. Second, the
method is analogous to existing calibration routines, but includes
a measurement of the importance of the sampled uncertain inputs.
This importance has a physical meaning which can be interpreted
in the context of the application. The method is also flexible in the
choice of emulator, the construction of the likelihood function, and
to some extent the number of input variables which are being
calibrated.

The method also has a number of areas for exploration and
extension. For example, we only considered uniform priors in ~h
space under the assumption that we had no prior information
about our uncertain inputs. If some prior information can be esti-
mated, then the modeler may consider alternate sampling strate-
gies or a modification of the computed weights to reflect the
likelihood of the sample given the prior distributions. We also hope
to explore the calibration framework using other emulators, such
as Gaussian processes. It is likely true that the nature of the physics
model (in our case, laser energy deposition) will determine the
most effective choice of emulator and ultimately the accuracy of
the calibration.

This method may suffer heavily from the curse of dimensional-
ity: the exponential decrease in sample density as the dimension of
the uncertain inputs increases. For this application, we used a pre-
vious study to reduce the uncertain dimension to a manageable
number (p = 3), which allowed for extremely dense sampling of
the~h space and a very large number of BMARS evaluations at each
sample. The computational cost would obviously increase with the
dimensionality of the ~h space; the evaluation of each ~h sample,
however, is independent of all others, providing avenues for the
use of parallel computing. The modeler may also use physics-based
arguments to sample less frequently in non-driving input
dimensions.
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