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Abstract

We consider a sequence of vectors that are solutions to a discretized neutron transport problem:

∂ψ

∂t
= Aψ(t),

where ψ is a vector of length N containing the spatial, energy, and angle degrees of freedom, and A is the
transport operator:

A = v(E)(−Ω · ∇+−σt + S + F),

with S andF the scattering and fission operators. In our notation, the α eigenvalues and eigenvectors satisfy
this equation:

Aψ̂ = αψ̂.

The vectors are the solutions at particular times separated by time steps of size ∆t. We define ψk ≡ ψ(k∆t)
and the vectors are related by the matrix exponential:

ψk+1 = eA∆tψk.

We take K + 1 of these vectors to form the N ×K data matrices Y+ and Y−,

Y+ =

 | | |
ψ1 ψ2 . . . ψK
| | |

 Y− =

 | | |
ψ0 ψ1 . . . ψK−1

| | |

 .

These matrices are related as
Y+ = eA∆tY−. (1)
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the thin singular value decomposition (SVD) of Y− to write

Y− = UΣV T,

where U is a N × K orthogonal matrix, Σ is a diagonal K × K matrix with non-negative entries on the
diagonal, and V is a K ×K orthogonal matrix. Using properties of orthogonal matrices we can substitute
the SVD into Eq. (1) to approximate the matrix exponential:

UTeA∆tU = UTY+V Σ−1.

The estimation of an approximate operator using the SVD of data is called the dynamic mode decomposition
(DMD) in the computational fluid dynamics literature [1].

One can show the following: (1) The eigenvalues of UTeA∆tU are also eigenvalues of eA∆t. (2) If α is an
eigenvalue of A, then eα∆t is an eigenvalue of eA∆t. (3) The eigenvectors of A are the same as those from
eA∆t.

Therefore, if we estimate the eigenvalues λ of the K × K matrix UTeA∆tU , we can compute the alpha
eigenvalues of the system as

α =
log λ

∆t
.

This requires no specialized α-eigenvalue solver: we only need to evolve the system in time from an initial
condition and use the time-dependent solution to estimate eigenvalues/vectors.

If the time discretization used in the time dependent transport solve is backward Euler (as is common), then
a better approximation is

α =
λ− 1

∆tλ
,

because this method makes the approximation eA∆t ≈ (I −A∆t)−1.

As an example calculation we consider a 12-group calculation of an infinite medium of Pu-239 with a
buckling approximation to simulate a finite sphere. We set the radius in the buckling approximation to
make keff = 0.95. The eigenvalues we get from the full transport operator for this system are in the first
column of Table I.

Using an initial condition of only neutrons in the group containing 14.1 MeV, we run a time dependent
problem to a specified final time. We then use the last 10 time steps to estimate the α eigenvalues. The
values of α estimated are shown in Table I and the eigenvectors are show in Fig. 1. Early in time the modes
corresponding to the spike at 14.1 MeV are found by the DMD calculation, late in time we relax to the
fundamental, slowly decaying mode. The α = −29.1318 µs−1 eigenmode is not present because it has a
larger number of thermal neutrons than our system does and was not excited by our initial condition.

Our observation using this method is that it finds the eigenvalues/vectors that have the most neutrons in
them over the course of the time steps used. This can be useful for calculating what eigenvalues one should
expect to observe in an experiment.
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Table I: Eigenvalues of the 12-group subcritical sphere as estimated by a direct calculation and from
a DMD calculation using 10 times steps before tfinal.

Exact (µs−1) tfinal = 0.0001 µs 0.002 µs 0.02 µs 0.2 µs
-17.9734 -18.2064 -17.9802
-29.1318
-34.6882 -34.6326 -34.6946

-48.783
-75.6007 -73.261
-133.304 -140.235 -150.13
-264.032 -259.257
-552.353 -531.228
-900.368 -765.929 -760.506
-1379.38
-1746.03
-1972.14 -1972.12 -1971.39

We also present results from a slab-geometry system comprised of 239Pu and high-density polyethylene
(HDPE) where the material layout is given by

material(x) =



HDPE x ∈ (0 cm, 1.42 cm)
239Pu x ∈ (1.42 cm, 2.334 cm)

HDPE x ∈ (2.334 cm, 22.696 cm)
239Pu x ∈ (22.696 cm, 23.8 cm)

HDPE x ∈ (23.8 cm, 25.25 cm)

.

The initial condition for the system has 14.1 MeV neutrons incident at x = 0 and 25.25 cm. We solve
this problem with 70 groups, diamond difference in space, S8 in angle, and a time step of 0.0001 µs. The
estimated keff for the system is 0.97004. The neutron density as a function of space and the spectrum at two
points are shown in Fig. 2.

Early in time, at 0.0005 µs, the rightmost eigenvalue estimated by DMD is -660.87 µs−1. Later, at 0.1
µs, the rightmost eigenvalue estimated is -9.306495 µs−1. Near 1 µs the rightmost eigenvalue estimated is
-0.448908 µs−1.
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Figure 1: Comparison of scalar flux for the fundamental k eigenmode with 4 α eigenmodes for the
subcritical sphere.

Figure 2: Spatial profile for neutron density and spectrum the center of the fuel and at the midpoint
of the problem at 0.01 µs.
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