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a b s t r a c t

We show that explicit radiation-material coupling, which is essentially always stable

for infrared radiative transfer is conditionally stable in the high energy density regime.

A linearized stability analysis is first performed for a simple infinite-medium problem

that yields both a criterion for unconditional stability, a time-step restriction that

applies for conditional stability, and a time-step criterion that always applies for non-

oscillatory solutions. This analysis is then extended to include space dependence with

the result that the system is always conditionally stable, but with a time step restriction

somewhat different from the infinite-medium case. Nonetheless, the time step restric-

tion for non-oscillatory solutions remains the same. Computations are presented that

confirm the predictions of our analysis, and conclusions are given.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The purpose of this paper is to present a linearized
stability analysis that is relevant to nonlinear radiative
transfer calculations in the high energy density regime,
i.e., with material temperatures on the order of one
million degrees Kelvin. There are two primary ways to
couple the radiation intensity to the material temperature
in such calculations. We refer to one as explicit and the
other as implicit. Explicit coupling requires less computa-
tional effort than implicit coupling, and in many instances
it is the simplest and most efficient manner to couple the
two fields. This is particularly so in the infrared transfer
regime [1,2]. It is well-known from experience with
Monte Carlo methods for radiative transfer in the stellar
regime that implicit discretizations are needed to avoid
instabilities when using time steps chosen on the basis of
accuracy. Indeed, this was the motivation for the original
development of the implicit Monte Carlo (IMC) method by
Fleck and Cummings [3]. We were motivated to perform
ll rights reserved.
this study by a desire to quantify the stability properties of
explicit coupling so as to demonstrate that it may or may
not be a practical method in high energy density laboratory
physics (HEDLP) simulations, depending upon the specific
properties of the problem under consideration. Our analysis
is related to stability analyses for the implicit Monte Carlo
(IMC) method [4,5]. However, there is always one signifi-
cant difference between our analysis and any IMC stability
analysis: an exact treatment for the transport time and
space derivatives is assumed for IMC whereas we assume a
discrete treatment. An exact treatment is appropriate for
IMC, but any practical deterministic method will require a
discrete treatment. Thus we consider a form of radiation-
material coupling that is related but distinct from that of
IMC. Our analysis is first presented for the infinite-medium
case. After considering the results of this case, we extend
the analysis to the space-dependent case. Our overall
analysis yields various time step restrictions that are a
function of the material properties. In general, the restric-
tions become increasingly severe with decreasing heat
capacity, increasing material temperature, and increasing
cross sections (opacities). The restrictions related to cross
sections cause explicit coupling to become impractical in
the equilibrium-diffusion limit. Implicit coupling is always
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stable and is based upon a linearization of the temperature
dependence of the Planckian. One can either iterate to
achieve a truly implicit solution or terminate the iteration
process after one solution of the linearized system. While
one iteration is sufficient to achieve stability, solutions that
are not nonlinearly converged have sometimes been
observed to violate the thermodynamic maximum principle
[6], and correcting this shortcoming is the subject of recent
work [4,5,7]. The maximum principle is discussed in [8].

The remainder of the paper is organized as follows.
First we give the equations of multifrequency radiative
transfer. Then we describe the explicit and implicit
coupling schemes. Next we perform a linearized stability
analysis for a grey infinite-medium problem and discuss
the implications of that analysis. We then extend that
analysis to include spatial dependence and discuss its
implications. Computational results are given next to
validate our theoretical predictions. Finally, conclusions
are given.

The equations of radiative transfer consist of an equa-
tion for the radiation intensity,
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and an equation for the material temperature,
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,TÞ is the material heat capacity (energy/
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h is Planck’s constant and k is Boltzmann’s constant. The
photon equation can include scattering, and other types of
physics such as heat conduction can be included in the
temperature equation. These complications do not sig-
nificantly affect our analysis. At high-energy densities, the
radiation equation is generally coupled to the Euler or
Navier–Stokes equations to account for material accelera-
tion due to radiation energy and/or momentum deposi-
tion. In this case, the material temperature appears in
either the material internal energy equation or the total
energy equation.

2. Radiation-material coupling

In this section we describe the two temporal discreti-
zation techniques used to treat the radiation-material
coupling. We use first-order accurate discretizations for
simplicity. It is straightforward to develop higher-order
versions of these techniques.
2.1. Explicit coupling

The discretized equations with explicit radiation-
material coupling are given by
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where n is the time index and the time step advances the
unknowns from tn to tnþ1. Note that the radiation inten-
sity is treated implicitly while the temperature depen-
dencies of the material properties, s and Cv, as well as the
Planckian are treated explicitly. The great advantage of
this type of coupling is that one can apply standard
implicit transport solution techniques to first solve the
transport equation and then apply standard explicit
techniques to solve the temperature equation. One can
easily include additional physics such as conduction or
full fluid dynamics via an operator split approach. As we
shall see, this coupling scheme can be unstable.

2.2. Implicit coupling

The discretized equations with implicit radiation-
material coupling are given by
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where the Planck function has been linearized. The
temperature-dependent properties can also be linearized
if desired. However, it has long been observed in the
radiative transfer community that only the linearization
of the Planck function is critical to stability. If these
equations are iterated to nonlinear convergence, the main
property gained (other than increased accuracy) is the
preservation of the thermodynamic maximum principle.
To our knowledge, the preservation of this property has
not been formally proved, but it has been observed in
practice. We will present some numerical results that
support this conjecture. Larsen has performed an analysis
for the partially linearized implicit Monte Carlo radiative
transfer method which indicates a lack of the maximum
principle for those equations [6].

3. An infinite-medium stability analysis

In this section we perform an infinite-medium linear-
ized stability analysis for explicit coupling assuming a
grey rather than multifrequency radiation approximation.
The relevant equations are

@E

@t
¼ sacðaT4

�EÞ, ð8Þ
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where E (energy/vol) is the radiation energy density, i.e.,

E¼
1

c

Z 1
0

f dn, ð10Þ

and all other variables are as previously defined except that
the cross section no longer depends upon photon frequency.

3.1. Linearization

Our first step is to linearize the equations about an
arbitrary equilibrium solution, E0¼aT0

4
. We begin by

assuming that

E¼ E0þdE, ð11Þ

and

T ¼ T0þdT : ð12Þ

Substituting from Eqs. (11) and (12) into Eqs. (8) and (9)
and linearizing the temperature dependence of Cv, sa, and
T4, we get the following linearized system:

@dE
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¼ sa,0c 4aT3

0dT�dE
� 	

, ð13Þ

Cv,0
@dT

@t
¼ sa,0c dE�4aT3

0dT
� 	

, ð14Þ

where

4p
Z 1

0
B dn¼ acT4,

and Cv,0 and sa,0 are evaluated at T0. Note that the
temperature derivatives of Cv and sa do not appear in
the linearized system because they generate second-order
terms. This result is consistent with the fact that the
transport community has long observed that lagging the
temperature dependence of the cross sections does not
affect stability. The experience of the community with
this type of analysis for nonlinear transfer systems is that
it yields surprisingly accurate results. Nevertheless,
knowledge of the rigorous implications of this type of
analysis is apparently lacking.

3.2. Discretization

We next apply a temporal discretization to our linear-
ized system that corresponds to explicit coupling:

1

Dt
dEnþ1�dEn
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¼ sa,0c 4aT3
0dTn�dEnþ1

� 	
, ð15Þ

Cv,0
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dTnþ1�dTn
� �

¼ sa,0c dEnþ1�4aT3
0dTn

� 	
, ð16Þ

where n is the time index, and Dt¼ tnþ1�tn is the time step.
This system generates the following amplification matrix, A:

dEnþ1

dTnþ1

" #
¼

a1,1 a1,2

a2,1 a2,2

 !
dEn

dTn

� �
, ð17Þ

where

a1,1 ¼
1

1þsa,0cDt
, ð18aÞ
a1,2 ¼
sa,0cDt 4aT3

0

1þsa,0cDt
, ð18bÞ

a2,1 ¼
sa,0cDt

Cv,0 1þsa,0cDt
� � , ð18cÞ

a2,2 ¼ 1�
sa,0cDt 4aT3

0

Cv,0 1þsa,0cDt
� � : ð18dÞ

4. Stability

The eigenvalues of A determine the stability of the
system. In particular, the system is stable if the magni-
tudes of the eigenvalues are less than or equal to unity.
The eigenvalues are given as follows:

o¼ 1
2 ða1,1þa2,2Þ71

2
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Evaluating these eigenvalues we get

o¼ 1,
Cv,0�sa,0cDtð4aT3

0Þ

Cv,0ð1þsa,0cDtÞ

( )
: ð20Þ

It can be easily shown that the maximum value of joj
occurs at either Dt¼ 0 or Dt¼1 because the derivative of
o with respect to Dt is not zero for any positive, finite
value of Dt. At Dt¼ 0 both eigenvalues are unity, and at
Dt¼1 we get

lim
Dt-1

o¼ 1,�
4aT3

0

Cv,0

( )
:

Thus, when

Cv,0Z4aT3
0 ,

explicit coupling is unconditionally stable. We note that
we can relate this condition to the parameter b¼ 4aT3=Cv

[3]; specifically, explicit coupling is stable when bo1.
Explicit coupling is not, however, L stable [9] because
neither eigenvalue goes to zero as Dt-1. Furthermore,
one of the eigenvalues in Eq. (20) is negative unless

Dtr
Cv,0

4sa,0acT3
0

: ð21Þ

As a result we expect that numerical solutions using
explicit coupling will oscillate around the true solution
when the condition in Eq. (21) is not satisfied. We stress
that this non-oscillatory condition applies independently
of the unconditional stability of the method. It is impor-
tant to note the non-oscillatory condition becomes
increasingly restrictive as the opacity is increased. Thus
as the optical thickness of a problem increases, the time
step required to avoid oscillations approaches zero. This
implies that explicit coupling has serious deficiencies in
the diffusion limit.

In the case where the method is not unconditionally
stable we can derive a condition on Dt for stability by
solving for the value of the time step that yields eigenva-
lues of 1 and �1. This procedure gives the stability



Table 1
Constraints for the explicit coupling scheme.

Property Constraint

Unconditional stability Cv,0 Z4aT3
0

Conditional stability
Dtr

2Cv,0

sa,0cð4aT3
0�Cv,0Þ

Non-oscillatory solutions
Dtr

Cv,0

4sa,0acT3
0
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condition

Dtr
2Cv,0

sa,0cð4aT3
0�Cv,0Þ

:

Here we see that if the method is conditionally stable, the
time step required for stability (like the time step
required for non-oscillatory solutions) becomes increas-
ingly restrictive as the opacity increases.

The results for our infinite-medium stability analysis
are summarized in Table 1.
4.1. Infrared versus X-ray regimes

Substituting values for T0 and Cv,0 from real problems
we see that the stability constraints affect radiative
transfer problems in the X-ray regime, as often encoun-
tered in high energy density physics [10], and not in
infrared radiative transfer. As an example, we look at the
infrared test problem in [2]. For this problem the material
temperature would have to be at least 3.6�106 K or
about 300 eV for the explicit method to be unstable. At
this temperature, the spectrum of the material emission
has its peak near a wavelength of 1 nm, which is well
within the X-ray regime. Indeed, stability problems with
explicit coupling is why implicit coupling schemes were
investigated early in the development of computational
X-ray radiative transfer techniques [3].
4.2. Effect of radiation diffusion

We can easily include the effect of radiation diffusion
in our stability analysis. First, we replace Eq. (8) as
follows:

@E

@t
¼

@

@x
D
@E

@x

� �
þsacðaT4

�EÞ, ð22Þ

where

D¼
c

3st
: ð23Þ

Next we proceed as in the infinite-medium case and
linearize the equations about the equilibrium solution.
This yields the following replacement for Eq. (13):

@dE

@t
¼

@

@x
D0
@dE

@x

� �
þsa,0c 4aT3

0dT�dE
� 	

, ð24Þ
where D0 is evaluated at T0. We next difference the
diffusion term implicitly and replace Eq. (15) with:

1

Dt
dEnþ1�dEn
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¼
@

@x
D0
@dEnþ1

@x

� �
þsa,0c 3aT3

0dTn�dEnþ1
� 	

:

ð25Þ

Next we assume an infinite homogeneous medium and
make the following standard Fourier anzatz:

dEðxÞ ¼ dEðlÞexpilx, ð26Þ

dTðxÞ ¼ dTðlÞexpilx, ð27Þ

where i is the square root of �1 and l 2 ð�1,þ1Þ is the
Fourier spatial frequency. Substituting from Eqs. (26) and
(27) into Eqs. (25) and (16), we obtain the following
amplification matrix, A:

dEnþ1ðlÞ
dTnþ1ðlÞ

" #
¼

a1,1 a1,2

a2,1 a2,2

 !
dEnðlÞ
dTnðlÞ

" #
, ð28Þ

where

a1,1 ¼
1

1þl2D0Dtþsa,0cDt
, ð29aÞ

a1,2 ¼
sa,0cDt4aT3

0

1þl2D0Dtþsa,0cDt
, ð29bÞ

a2,1 ¼
sa,0cDt

Cv,0 1þl2D0Dtþsa,0cDt
� 	 , ð29cÞ

a2,2 ¼ 1�
sa,0cDt 4aT3

0 1þl2D0Dt
� 	

Cv,0 1þl2D0Dtþsa,0cDt
� 	 : ð29dÞ

When spatial diffusion is taken into account, we obtain
two eigenvalues for each value of l and thus for the
corresponding Fourier mode. We first note that the system
obtained for l¼ 0 is the infinite-medium system. Thus our
infinite-medium analysis applies to the space-dependent
case as well, so the presence of diffusion does not mitigate
in any way the time-step restrictions that we have derived.
The question naturally arises as to whether diffusion
results in more stringent requirements. To address this
question we compute the eigenvalues obtained in the limit
as l-1. We have numerically investigated the behavior
of the eigenvalues with l, and it appears that the largest
magnitude eigenvalue occurs in the limit as l-1 if the
system is oscillatory or unstable. We cannot prove that this
is the case, but we present computational results that
support this conjecture. It is easily seen that the radiation
energy density is completely attenuated in this limit:

dEnþ1 ¼ 0, ð30Þ

resulting in the following equation for the temperature:

Cv,0

Dt
dTnþ1�dTn
� �

¼�sa,0c4aT3
0dTn, ð31Þ

Thus the eigenvalue associated with dE is zero and the
eigenvalue associated with dT follows directly from Eq. (31):

o¼ 1�
sa,0cDt4aT3

0

Cv,0
: ð32Þ



Fig. 1. Material temperature for a problem with Tr,0 ¼ 0:5 keV, T0 ¼

0.4 keV, sa ¼ 100 cm�1, and Cv ¼ 0:01 GJ=cm3 using a time step of

Dt¼ 0:01 ns. In this problem Cv44aT3
0 so any sized time step is stable.

Fig. 2. Material temperature for a problem with Tr,0 ¼ 0:5 keV, T0 ¼

0.4 keV, sa ¼ 100 cm�1, and Cv ¼ 0:01 GJ=cm3 using a time step of

Dt¼ 0:1 ns. In this problem Cv 44aT3
0 so any sized time step is stable.
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It can be seen from Eq. (32) that the system is always
conditionally stable. Stability requires that

Dtr
2Cv,0

sa,0c4aT3
0

, ð33Þ

while a non-oscillatory solution requires that

Dtr
Cv,0

sa,0c4aT3
0

: ð34Þ

Comparing Eqs. (33) and (34) with the results given in
Table 1, we find that the stability condition in the high-
frequency limit is more stringent than the stability condi-
tions for the infinite-medium case, but the conditions are
essentially the same when Cv,054aT3

0. Furthermore, and
most importantly, the non-oscillatory conditions are identi-
cal for both cases. Thus if one desires non-oscillatory solu-
tions, the impact of spatial diffusion on the time-step
restriction is null. Finally, we note that the high-frequency
limit is never reached but only approached in practice in the
limit as the spatial mesh is increasingly refined. We show
evidence of this effect in our computational results.

5. Numerical results

The results obtained above can be readily demon-
strated using numerical results on gray, infinite-medium
problems. In such a problem we set an initial material
temperature and radiation energy density, and the two
fields relax to equilibrium. In these infinite medium
problems we will compare explicit coupling, implicit
coupling, and the exact solution as derived by Mosher
[11]. The code to compute the Mosher solutions was
supplied by Gentile [12]. We computed all of our infi-
nite-medium numerical solutions using MATLAB. For
convenience we express the radiation energy density in
terms of a radiation temperature:

Tr ¼

ffiffiffi
E

a

4

r
:

In the gray case the linearized implicit method is written
as [3,13]

Enþ1 ¼
EnþDtfsacaT4

1þDtfsac
,

Tnþ1 ¼ Tnþ
cDtfsa

Cv
ðE�aT4

Þ,

where

f ¼
1

1þbsacDt
:

The first problem we solve was used previously by
Densmore and Larsen [14] in their analysis of coupling
schemes for Monte Carlo methods for radiative transfer. In
this problem the material has a constant heat capacity of
Cv ¼ 0:01 GJ=cm3 and constant opacity of sa ¼ 100 cm�1.
The material temperature is initially 0.4 keV and the
radiation temperature is 0.5 keV. We measure time in
units of nanoseconds and distance in centimeters; this
makes c ¼ 29.98 cm/ns and a ¼ 0.01372 GJ/cm3 keV�1.
This material will have Cv44aT3 as long as To0:567 keV.
In Figs. 1 and 2 we show results for this problem using
different values of Dt. In these figures we see that for large
time step sizes the explicit method does remain stable,
though it does oscillate about the equilibrium solution: to
avoid oscillations Dt must be less than 0.5 ps. Indeed, both
the explicit and implicit methods show some oscillation for
this problem because the time step is coarse compared to
the fast transient seen in the exact solution, but the
implicit oscillations are minimal. It can also be seen from
Figs. 1 and 2 that the minor implicit oscillations are
completely eliminated when the nonlinearities are fully
converged.

Next we will exercise all the stability properties of
explicit coupling using an infinite medium problem with
the same material properties as above, except the mate-
rial and radiation will be near equilibrium initially. We set
Tr ¼ 0:649 keV and T ¼ 0.65 keV initially. Therefore, for
this problem Cvo4aT3 and we can expect unstable
results. In Fig. 3 we show results for this problem. Using
the formulas from Table 1 we compute that a time step
above 1.31�10�3 ns will be unstable, and a time step
below 2.214�10�5 ns will lead to a non-oscillatory solu-
tion. The numerical results confirm these predictions: (1)
the time step just above the stability condition does lead
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to a divergent solution, (2) the time step between the
oscillatory threshold and the stability condition is stable
but (highly) oscillatory, and (3) for a time step below
the oscillatory threshold given in Eq. (21) the solution
approaches equilibrium monotonically. One interesting
feature of the explicit solution is that even though the
time step is small enough to avoid oscillations, the
solution goes to equilibrium faster than the exact solution
Fig. 3. Material temperature for a problem with Tr,0 ¼ 0:649 keV, T0 ¼

0.65 keV, sa ¼ 100 cm�1, and Cv ¼ 0:01 GJ=cm3 using several different

time step sizes. In this problem Cv o4aT3
0, the maximum stable time

step is Dt � 1:31� 10�3 ns, and the maximum non-oscillatory time step

is Dt� 2:214� 10�5 ns.

Fig. 4. Diffusion solutions as a function of number of computational cells, Nx, at

was unstable to the point of its solution being off the scale of the plot.
because the time steps are still too large from the point of
view of accuracy. Thus ensuring a non-oscillatory solution
does not ensure accuracy.

We can extend the infinite medium problems to a one-
dimensional diffusion case. To do this we consider the
spatial domain x¼[0,1] and set the material properties to
be the same as those used in the above problems. The
space-dependent equations were discretized using a
standard cell-centered diffusion discretization [15] and
solved using MATLAB. For initial conditions we set

Trðx,0Þ ¼
0:5 keV, x 2 ½0:3,0:7�,

1 eV otherwise,

(
ð35Þ

and

Tðx,0Þ ¼
0:4 keV, x 2 ½0:3,0:7�,

1 eV otherwise;

(
ð36Þ

we also use vacuum boundary conditions implemented
via the Marshak treatment.

In Fig. 4 we show results for this problem at 0.1 ns
using both the implicit and explicit coupling schemes
with different numbers of computational cells in the
domain and Dt¼ 0:01 ns. We remind the reader that for
the infinite medium version of this problem explicit
coupling is unconditionally stable. At Nx ¼ 20 the explicit
and implicit solutions are coincident on the scale of the
plot. As the number of cells is increased, oscillations
appear in the explicit scheme: at Nx ¼ 40 small
t¼0.1 ns using Dt¼ 0:01 ns. With Nx ¼ 80 the explicit coupling scheme
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Fig. 5. Diffusion solutions with Nx ¼ 80 at t¼0.1 ns using Dt¼ 0:01 ns

for implicit coupling and Dt¼ 4:8077� 10�4 ns for explicit coupling. The

explicit timestep is 0.98 of the maximum time step for non-oscillatory

solutions.
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oscillations appear in the solution and the solution is
highly unstable at Nx ¼ 80. At Nx ¼ 80 the oscillations
grew to be approximately 1069 keV. These results support
the theory which indicates that diffusion is always con-
ditionally stable when using explicit coupling. As we
refine the mesh higher values of l can be supported in
the solution and we approach the stability condition for
l-1 given by Eq. (33).

In Fig. 5 we show results for the previous problem
using Nx ¼ 80 at t¼0.1 ns using Dt¼ 0:01 ns for implicit
coupling and Dt¼ 4:8077� 10�4 ns for explicit coupling.
The explicit timestep is 0.98 of the maximum time step
for non-oscillatory solutions given by Eq. (34). It can be
seen that the explicit solutions show no sign of oscilla-
tions and are in excellent agreement with the implicit
solutions. Thus, as expected, the criterion for non-oscilla-
tory solutions does not appear to be dependent upon the
spatial resolution.

6. Conclusions

Our theoretical and computational results indicate that
explicit radiation-material coupling can yield highly oscil-
latory results even when it is unconditionally stable, and
the criterion for non-oscillatory behavior becomes
increasingly restrictive as the opacity increases. In addi-
tion, if the scheme is conditionally stable, the time-step
for stability also becomes increasingly restrictive as the
opacity increases. These properties lead us to conclude
that explicit coupling is not a viable technique for highly
diffusive problems. Although this scheme is routinely
used in the infrared regime, it is clear that one must be
very cautious when applying this scheme in the high
energy density laboratory physics regime. The material
temperatures are orders of magnitude higher than in the
infrared regime and the maximum time steps for stable
and non-oscillatory solutions vary as T�3, although this
effect can be mitigated to varying degrees by the typical
decrease of opacity with temperature. If one chooses to
use implicit coupling, stability will always be obtained
with physically reasonable time steps, but oscillations are
possible unless the nonlinearities are converged. In the
future it would be useful to derive time step criteria for
avoiding oscillations with implicit coupling when the
nonlinearities are not converged.
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