
Theory of radiative shocks in the mixed, optically thick-thin case
Ryan G. McClarren,1,a� R. Paul Drake,2 J. E. Morel,1 and James Paul Holloway3

1Department of Nuclear Engineering, Texas A&M University, College Station, Texas 77843-3133, USA
2Space Physics Research Laboratory, Atmospheric Oceanic and Space Sciences, University of Michigan,
Ann Arbor, Michigan 48109, USA
3Department of Nuclear Engineering and Radiological Science, University of Michigan,
Ann Arbor, Michigan 48109, USA

�Received 13 April 2010; accepted 30 June 2010; published online 2 September 2010�

A theory of radiating shocks that are optically thick in the downstream �postshock� state and
optically thin in the upstream �preshock� state, which are called thick-thin shocks, is presented.
Relations for the final temperature and compression, as well as the postshock temperature and
compression as a function of the shock strength and initial pressure, are derived. The model assumes
that there is no radiation returning to the shock from the upstream state. Also, it is found that the
maximum compression in the shock scales as the shock strength to the 1/4 power. Shock profiles for
the material downstream of the shock are computed by solving the fluid and radiation equations
exactly in the limit of no radiation returning to the shock. These profiles confirm the validity and
usefulness of the model in that limit. © 2010 American Institute of Physics.
�doi:10.1063/1.3466852�

I. INTRODUCTION

Radiative shocks are one of the fundamental types of
behavior that arise within radiation-hydrodynamic systems.
In order to accurately describe radiation-hydrodynamic sys-
tems, one must consider both the dynamic behavior of the
matter and of the radiation. Radiation hydrodynamic behav-
ior in general includes radiation-modified oscillating waves,
nonlinear radiative heat waves and ionization fronts, and ra-
diative shocks. All these systems more often than not arise in
plasmas, as radiation intense enough to carry significant en-
ergy is typically ionizing radiation. Many such systems are
also high-energy-density systems. It is no surprise that the
available monographs that cover radiation hydrodynamics1–4

all treat radiative shocks.
Radiative shocks can be characterized in two fundamen-

tal ways. The first deals with the mechanism through which
radiation influences the system. The so-called flux-
dominated regime has a flux of radiation energy that is non-
negligible when compared with the flux of material energy.
As temperatures in the system increase, the radiation pres-
sure, which is a factor 1 /c smaller than the radiation flux,
can become comparable to or exceed the material pressure in
the pressure-dominated regime. The flux-dominated regime
is more readily accessible in the laboratory and has been the
topic of several previous theoretical studies.1–3,5,6 The rela-
tion between the flux-dominated and pressure dominated re-
gimes has recently been addressed by Michaut et al.7

Within the context of flux-dominated radiative shocks,
the anticipated shock structure depends essentially on the
optical depth of the upstream and downstream media, which
provides the second way to characterize these shocks.8 Op-
tical depth refers to the spectrally weighted mean of the
number of mean-free paths for the thermal radiation. A re-

gion is said to be optically thick when its optical depth is
large and optically thin when the optical depth is small. In
other words, an optically thick region is opaque to radiation,
whereas an optically thin region is transparent to radiation. It
is possible to classify shocks with a two-word designation
with the optical thickness of the downstream medium, fol-
lowed by the optical thickness of the upstream medium. For
example, the case dealt with in this paper has the down-
stream region optically thick and the upstream optically thin,
so one can call this a thick-thin radiative shock.

Previous work on radiative shocks, besides focusing on
the flux-dominated regime, has dealt mainly with the thick-
thick and thin-thin cases. The classic monograph of
Zel’dovich and Raizer1 deals with the thick-thick case as
have several other researchers2–6,9,10 recently, in addition,
there are a number of early papers cited by Mihalas and
Weibel-Mihalas.2 In this case radiation energy from the
downstream state heats the upstream material, forming what
is known as a precursor. This acts as a mechanism to return
radiative energy to the shock. Due to the fact that the shock
cannot lose energy radiatively, the maximum compression of
a thick-thick shock is the same as for a nonradiative shock.
At the other extreme, the theory of the thin-thin case has
been investigated by Chevalier and Imamura11 and is de-
tailed in several books.3,12 The thin-thin case has all of the
energy leave the system and higher compression can be
reached.

On the other hand, the only study of the theory of thick-
thin shocks can be found in Drake’s monograph.3 That de-
scription of thick-thin shocks relied on several, reasonable,
simplifying assumptions. This work dispenses with those
simplifications to produce a detailed theory of thick-thin
shocks that ultimately justifies the previous simplifying as-
sumptions in the correct limits. Besides this theoretical work,
computational results for a thick-thin shock were provided
by Winkler, Norman, and Mihalas.13 With the benefit ofa�Electronic mail: rgm@tamu.edu.
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hindsight, one can observe several of the phenomenon of
thick-thin shocks that are identified in this paper in their well
resolved simulations. In addition, some simulations of recent
laboratory experiments have produced results for thick-thin
shocks.14–16 However, none of these papers have considered
the theory of thick-thin shocks as such and some of them
have failed to carefully consider the fact that the radiation
energy density is much lower in systems that are not opti-
cally thick than in systems that are optically thick. Overall,
the lack of study of the thick-thin case is surprising in that
this sort of radiative shock is accessible in laboratory experi-
ments. This is the case because the upstream medium is finite
in an experiment and the experiment is of limited duration.
The radiation in most experiments either is used up ionizing
the upstream material or in some measure escapes in the
upstream direction. In either event, the corresponding radia-
tive energy does not return to the shock as it would if the
upstream material were optically thick.

To model thick-thin shocks a three layer model that ac-
counts for the upstream region, a cooling layer just behind
the density jump, and a final downstream region is used. This
model is diagrammed in Fig. 1.

The upstream region has constant values for the radia-
tion flux as well as density and temperature. The density
jump is between the cooling layer and the upstream region.
The cooling layer contains the maximum temperature in the
problem and that temperature cools via radiation until the
final downstream state. A salient feature of this cooling layer
is that radiative transfer in this layer cannot in general be
well treated using the Eddington approximation as part of a
diffusive model because there can be places where the flow
of radiation energy is uphill in the sense that the flux of
radiation is in the same direction as the gradient of the en-
ergy density.17 Using a diffusive model for radiative transfer
in the cooling layer leads to a monotonic behavior of the
radiation energy in the cooling layer.2,4,9,10 Also in this
model, the radiation flux in the upstream region is a result of

radiation energy flowing from the downstream state and the
cooling layer into the upstream region. All of the radiation
that flows into the upstream state from the downstream state
does not return to the shock.

In the three-layer model the radiation flux at the final
downstream state is zero. This is consistent with the assump-
tions in the optically thick shock case. The upstream mate-
rial, however, has a finite radiation flux that is equal to the
right-moving radiation flux at the density jump. A finite up-
stream radiation flux differs from the optically thick case
where far upstream the radiation flux is also assumed to be
zero. Moreover, the assumption that radiation does not inter-
act with the thin upstream material eliminates the precursor
found in an optically thick shock.

The three-layer model is valid after the shock has at-
tained a steady profile. In an experiment the transient leading
to the steady profile would have a Marshak-like radiation
wave traveling through the upstream region until a constant
temperature was achieved. It is at this point that the steady
profile would emerge. The three-layer model does not incor-
porate the adaptation zone on the downstream boundary of
the cooling layer. In this adaptation zone the density, tem-
perature, and radiation flux transition from the rapidly vary-
ing profile of the cooling layer to the constant solution in
upstream and downstream regions. By ignoring this adapta-
tion zone, these solutions also ignore their �small� effect.

The effect of the adaptation zone is included in the shock
profiles computed below. These profiles are found by inte-
grating the fluid dynamics equations with a postulated form
of the radiation mean intensity and then iterating on this
mean intensity until convergence. The results of these profile
calculations demonstrate that the three-layer model is a use-
ful description of the energy balance and structure of a thick-
thin shock.

Below relations for the state variables in the downstream
region using an exact treatment of the fluid dynamics and the
radiative transfer are derived. This is followed by a discus-
sion of a threshold shock strength above which the final tem-
perature is below the initial temperature and a simple
scaling law to predict the final compression in the shock is
given. Then radiative transfer in the shocked material in the
three-layer model is discussed. Finally, shock profiles for a
model including the adaptation zone are presented before
concluding.

II. MODEL SPECIFICATION

It is assumed that the plasma is in a regime where it can
be described by fluid equations. Also, this model assumes
that the ion and electron temperatures can be characterized
by a single temperature, T. For the equations that govern the
continuity and momentum of the hydrodynamic variables,
consider the standard Euler equations for planar geometry,

��

�t
+

�

�x
��u� = 0, �1a�

FIG. 1. �Color online� Cartoon of the three-layer model, the shock is mov-
ing left to right with speed us. The density jump is at the boundary between
the upstream state and the cooling layer. Note that in this three-layer model
the radiation flux is constant in the upstream portion of the shock.
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�

�t
��u� +

�

�x
��u2 + p� = 0. �1b�

The conservation of energy is expressed as

�

�t
��E + Er� +

�

�x
�v��E + p� + Fr� = 0, �1c�

where � is the density, u is the material velocity, and p is the
pressure; the radiation energy is denoted by Er and the radia-
tion flux is Fr. The total material energy density is given by
E= 1

2�u2+�e. Furthermore, this model assumes the material
can be treated as a polyatomic gas governed by a � law
equation of state. This gives the internal energy density as
e= p / ��−1�. Equation �1� is valid in the flux-dominated
regime,3 where the radiation pressure is small compared to
the hydrodynamic pressure. If the radiation pressure was not
small, then the governing equations would become much
more complicated.18

The radiation flux is given by taking the first moment of
the spectrally integrated specific intensity I,

Fr�x,t� = 2��
−1

1

d��I�x,�,t� ,

where � is the cosine of the angle between the x-axis and the
direction of radiation propagation. The sign convention will
be such that flux of radiation moving upstream �to the right
in Fig. 1� is positive, and the flux of radiation moving down-
stream �to the left in Fig. 1� is negative. The specific inten-
sity is governed by the steady radiative transfer equation5,12

�
�I

�x
= ��B − I� , �2�

where the Planck-averaged absorption opacity is denoted by
��x�. In this study one finds the integral form of Eq. �2� to be
most useful. This equation can be found by integrating Eq.
�2� along photon trajectories to get the integral radiative
transfer equation

I�x,�� = �I�xR�e�x
xRdx���x��/	�	 + �

x

xR

dx�
��x��B�x��

	�	
e�x

x�dx���x��/	�	, � � 0

I�xL�e�xL

x dx���x��/� + �
xL

x

dx�
��x��B�x��

�
e�

x�
x

dx���x��/�, � � 0
 �3�

for the region x� �xL ,xR�, where xL and xR are the left and
right system boundaries, respectively. The integral radiative
transfer equation will assume a much simpler form later in
this work when written in terms of optical depth of a given
layer

	 = �
a

b

dx��x� , �4�

with a and b as the left and right boundaries of the layer.
Here, the radiative transfer model ignores scattering, a

reasonable approximation in the regime of interest because
the magnitude of energy exchange for absorption is larger
than that for Thomson scattering, and the temperatures are
low enough that Compton scattering is negligible. The func-
tion B�x��B�� ,T�x�� is the spectrally integrated Planck
function

B��,T�x�� =

SBT4�x�

�
,

with 
SB as the Stefan–Boltzmann constant. Note that the
flux of radiation in the positive x-direction is given by

Fr
+ = 2��

0

1

d��I

= 2�I�xL�E3��
xL

x

dx���x��

+ 2��

xL

x

dx���x��B�x��E2��
x�

x

dx���x��
 , �5�

where En�x� is the exponential integral function of order n.
The flux in the negative x-direction is

Fr
− = 2��

−1

0

d��I

= − 2�I�xR�E3��
x

xR

dx���x��

− 2��

x

xR

dx���x��B�x��E2��
x

x�
dx���x��
 . �6�

From these definitions, the flux from a material in equilib-
rium, i.e., I=B�� ,T�, has the properties

Fr = 2�B�
−1

1

d�� = 0

and
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Fr
+ = − Fr

− = 
SBT4.

The half-range fluxes Fr
� will be important in treating the

radiative transfer of the shock profile.
Below the shock will be modeled with a three-layer

model that includes the initial �upstream� state, a cooling
layer just behind the density jump, and the final downstream
state. The upstream state is considered to be optically thin to
such a degree that interaction between the radiation and the
material is negligible. A salient feature of this model is that
any radiation traveling into the upstream region cannot re-
turn to the shock.

This model does not include the adaptation zone be-
tween the cooling layer and the final downstream state. In the
adaptation zone the radiation intensity becomes isotropic
over several optical depths. As the radiation slowly ap-
proaches an isotropic distribution, the material temperature
and density approach their final values. This effect is rela-
tively small because the main mechanism for coupling the
radiation to the material is through the radiation mean inten-
sity, which is proportional to the zeroth angular moment of
the intensity. One can ignore the effects of the adaptation
zone when concerned about calculating the energy balance of
the shock. Nevertheless, this region affects the detailed shock
profile and its effect is included when computing the shock
profile below.

III. CONSERVATION RELATIONS

Now consider the model equations in a steady frame
where the upstream material flows into the shock with veloc-
ity −us. Denoting quantities evaluated at the upstream condi-
tions with the subscript “0,” the following relations hold for
the flux of mass, momentum, and energy throughout the
shock profile:

• Conservation of mass flux:

�u = − �0us. �7a�

• Conservation of momentum flux:

�u2 + p = − ��0us�u + p = �0us
2 + p0. �7b�

• Conservation of energy flux:

Fr +
�

� − 1
pu +

�u3

2
= −

�0us
3

2
−

�

� − 1
p0us + Fr0. �7c�

The relations in Eq. �7� are derived by integrating Eq. �1�

in a steady frame from the upstream state to the a generic
point.

If one introduces the inverse compression �=�0 /�, the
normalized radiation flux Frn=2Fr / ��0us

3�, and the normal-
ized pressure

pn =
p

�0us
2 = �1 − �� + p0n, �8�

Equation �7� can be combined into a single equation,

Frn − Frn0 = − 1 +
2�

� − 1
�� − p0n�1 − ��� −

� + 1

� − 1
�2. �9�

From Eq. �9� one can find the value of � at any point in the
system, provided Frn is known.

A. The final state

The final value of the inverse compression can be found
by noting that the final radiation flux is zero and using the
quadratic formula on Eq. �9� to get

�f =
��1 + p0n� − ��p0n� − 1�2 + Frn0��2 − 1�

� + 1
. �10�

In the case of Frn0=0 the value of �f recovers the value for
the thick-thick case.6 The quantities u and T can also be
related to �. Using the gas “constant,”

R =
kB�Z + 1�

Amp
,

for a gas ionized Z times with atomic weight A and with kB

and mp denoting the Boltzmann constant and the mass of a
proton, respectively, it is possible to write the specific pres-
sure, RT= p /�, in dimensionless form as

RTn =
RT

us
2 = ��1 − �� + p0n� . �11�

Using the value of �f the final value of RTn is

RTnf =
�p0n� + � − ��p0n� − 1�2 + Frn0��2 − 1���p0n + ��p0n� − 1�2 + Frn0��2 − 1� + 1�

�� + 1�2 . �12�

This derivation has yet to determine the value of Frn0, in the model this is the right-moving radiation flux at the density jump.
This flux is required to find the state, however, as shown below in the analysis of the cooling layer, Frn0 is a function of the
temperature at the final state.

093301-4 McClarren et al. Phys. Plasmas 17, 093301 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://php.aip.org/php/copyright.jsp



B. The immediate postshock state

The value of the inverse compression just after the den-
sity jump can be easily found by noting that at this point
Frn=Frn0 and solving Eq. �9� to get

�ds =
� − 1

� + 1
+

2�

� + 1
p0n. �13�

The value of �ds for the thick-thin shock is the value of the
final downstream inverse compression for the optically thick
case. In other words, in the final downstream state for an
optically thick shock the difference between the local radia-
tion flux and the far upstream radiation flux is zero; this is
the case at the density jump for the thick-thin shock. It is at
the density jump that Fr0=Fr, making the right-hand side of
Eq. �9� zero. The thick-thin shock then goes on to compress
further until it reaches the final state.

Using Eq. �13� one can also find the maximum value for
the temperature at the downstream state by substituting the
value of �ds into Eq. �11� to get

RTdsn =
�2 − �� − 1�p0��2�p0 + � − 1�

�� + 1�2 . �14�

The temperature in Eq. �14� is also the value for the final
downstream temperature in the optically thick case. There-
fore, the maximum downstream temperature in the thick-thin
case is less than the maximum downstream temperature in
the optically thick case.

C. The cooling layer

At the edge of the final downstream state the net radia-
tion flux is zero because the final state is defined as the state
where the radiation flux is zero. Given that the final tempera-
ture state is characterized by a single temperature, there is
zero net radiation flux inside the region. Nevertheless, at the
boundary between the final state and the cooling layer there
is a right-moving radiation flux from the final state, 
SBTf

4.
This right-moving flux from the final state balances the total
left-moving radiation flux from the cooling layer, −Fcl,


SBTf
4 − Fcl = 0. �15�

In addition to this equation, an effective temperature Teff can
be used to model the emission source of the cooling layer.
This as yet unspecified effective temperature has the effect of
making the flux from the cooling layer at the density jump,
the right edge of the cooling layer, an equal and opposite
contribution to the left-moving flux at the edge of the cooling

layer. Thereby, the contribution to the right-moving flux at
the density jump from the cooling layer is Fcl. This approxi-
mation will be justified later by detailed calculations where
this assumption is not made and the resulting final state
compression/temperatures are not affected. In addition to Fcl,
at the density jump there will be a contribution to the right-
moving radiation flux from the final downstream state. This
contribution can be calculated by taking the known intensity
at the edge of the final state and using the integral transport
equation to calculate the flux at the right edge of the cooling
layer,

2��
0

1

d��

SBTf

4

�
e−	cl/�

= 2
SBTf
4E3�	cl� � �1 − 2	cl�
SBTf

4 + O�	cl
2 � ,

where 	cl is the optical depth of the cooling layer, assumed to
be small. There is no left moving radiation flux at the density
jump because no radiation is moving leftward from the up-
stream state. Therefore conservation of radiation flux at the
density jump gives

Frn0 =
2
SBTf

4E3�	cl� + Fcl
1
2�0us

3

=
1 + 2E3�	cl�

1
2�0us

3 
SBTf
4 = Q�1 + 2E3�	cl���RTfn�4, �16�

where E3�x� is the exponential integral function of order 3. In
this expression Q is the dimensionless shock strength defined
by Drake for the theory of optically thick radiating shocks,5,6

Q =
2
SBus

5

R4�0
. �17�

Under the assumption that 	cl is small, the expansion of Eq.
�16� gives

Frn0 = 2Q�1 − 	cl��RTfn�4 + O�	cl
2 � . �18�

The result in Eq. �18� gives that the radiation flux traveling
upstream from the density jump is, to leading order, twice
the radiation flux moving rightward from the final state. The
approximation that Fr0 is twice 
SBTf

4 was originally men-
tioned by Drake,3 but here the accuracy of that approxima-
tion is shown to be O�	cl�.

Under the approximation that the cooling layer is small,
an assumption justified below, one can write Frn0 as

Frn0 = 2Q��f�1 + p0n − �f��4, �19�

then, to leading order in 	cl, Eq. �10� becomes

�f =
��1 + p0n� − ��p0n� − 1�2 + 2Q��f�1 + p0n − �f��4��2 − 1�

� + 1
. �20�

This is a quartic equation that is solved numerically to find the final inverse compression. The inverse compression then allows
us to compute the final temperature through Eq. �11�.
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In Fig. 2 the values for the final inverse compression and
temperature are plotted as a function of the shock strength. In
the figure note that the final inverse compression goes to zero
�that is, the compression goes to infinity� as the shock
strength goes to infinity. Similarly, the specific pressure,
RTfn, limits to zero as the shock strength increases to infinity.
Though RTfn goes to zero, the value of the final temperature
does not go to zero because the temperature is proportional
to Q2/5RTn. This can be seen in the example below.

To demonstrate the final temperatures and compression
in a specific case, consider the shock to be occurring in xe-
non gas with Z=9, A=130, p0n=0.1, �=5 /3, and three dif-
ferent initial densities. In Fig. 3 one can see how the final
state of the material is affected by the initial density as a
function of the shock speed: shocks propagating into lower
initial densities lead to higher compressions and lower tem-
peratures than with higher upstream densities.

D. The thickness of the cooling layer

Above we were able to compute the final inverse com-
pression and temperature under the assumption that the
thickness of the cooling layer 	cl is small. In this section we
will verify that the results from the three-layer model are

consistent in that assumption. As we will discuss below, in a
three-layer model 	cl can be interpreted as the effective width
over which the material radiates at the effective temperature.
Provided we know the profile of the temperature as a func-
tion of 	, we can compute the thickness of the cooling layer
using the integral radiative transfer equation to find Fcl. It
turns out that this flux is, to second order in 	cl, a linear
function of 	cl. Using this computed value of Fcl and the
equation for the net flux at the boundary between the cooling
layer and the final state, Eq. �15�, we arrive at a value for 	cl.
The value of 	cl computed below will confirm that the optical
thickness of the cooling layer is indeed small.

The left-moving flux at the boundary between the cool-
ing layer and the final state is given by the formula

Fcl = − Fr
−�	cl� = 2��

−1

0

d��
0

	cl

d	f�	�e−�	cl−	�/	�	

= �
0

	cl

d	f�	�E2�	cl − 	� , �21�

where f�	� is the emission source inside the cooling layer
with 	 the distance from the density jump in mean-free paths
and E2�x� is the exponential integral function of order 2.
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FIG. 2. �Color online� Final downstream values of the inverse compression
and temperature as function of Q.
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FIG. 3. �Color online� Final downstream values of the compression and
temperature as a function of shock speed for xenon with Z=9, �=5 /3, and
p0n=0.1 and several initial densities.
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Also, f�0�=B�Tds� and f�	cl�=B�Tf�. Upon expanding f�	� in
a Taylor series about the point 	=0 to get

Fcl = 2��
0

	cl

d	� f�0� + �
n=1

N
1

n!
f �n��0�	�n
E2�	cl − 	� .

�22�

Completing the integration in Eq. �22� and then expanding
the solution in a series about 	cl=0, one gets

Fcl = 2	cl
SBTds
4 + O�	cl

2 � . �23�

Using this relation in Eq. �15� gives a second-order approxi-
mation to 	cl,

	cl =
Tf

4

2Tds
4 . �24�

Therefore, the assumption that 	cl is small depends on the
final temperature being much less than the temperature just
after the density jump. This value of 	cl characterizes the
emission in the cooling layer in an analogous fashion to char-
acterizing a Gaussian by its peak value and width at half the
peak value. Here the integral of the cooling layer emission
times an E2 function is characterized using the peak value of
the emission, 2
SBTds

4 , times the width 	cl.
The value of the thickness of the cooling layer is shown

in Fig. 4. This thickness is less than 0.1 when Q is of the
order of several thousand, a shock strength readily achieved
in current experiments.19,20

Note that the relation in Eq. �24� could be used to com-
pute the normalized upstream flux at the density jump Frn0 as
a function of Tdsn,

Frn0 = 4	clQTdsn
4 + O�	cl

2 � . �25�

This, however, does not lead to an improved closed form
solution for �f and Tf to first order in 	cl because 	cl is a
function of Tf and therefore also Frn0.

E. Anomalous cooling

At this point it is also worth noting that the three-layer
model allows final temperatures that are below the initial
upstream temperature. This anomalous cooling phenomenon
occurs in models of optically thin shocks where the so-called
density collapse drives the final density to large values. Nev-
ertheless, other authors3,12 pointed out that some process not
included in the model will force the final temperature to be
no less than the initial temperature, and the same extra-
model processes will place a lower limit on the final tem-
perature as well. For instance, the material surrounding the
shocked material might act as a temperature bath or magnetic
field effects could limit the temperature increase.3,12 The
three-layer model assumes that there is no radiation absorp-
tion upstream of the density jump, so there is no precursor.
If, on the other hand, the upstream medium has a very small
but finite optical depth, and is initially cold so that it is
heated by the radiation from the shocked material, then the
ratio of precursor temperature to final temperature cannot
greatly exceed unity.3

We do point out that it should not be surprising that a
thick-thin radiating shock could be cooler downstream than
upstream. To show this we appeal to the simplified descrip-
tion of the shock as a hot source radiating into a semi-infinite
half space. In such a situation we can expect that there is a
temperature at which radiation is the dominant mechanism
for the shock to give up its energy due to the fact that the
radiation flux scales as T4. As the shock strength increases,
the downstream temperature increases and, as a result, a
greater fraction of the shock energy is radiated ahead of the
density jump and, therefore, out of the system. This contrasts
with the optically thick radiating shocks where radiation en-
ergy cannot leave the system.

As a result of the above analysis, there is a value of Q at
which RTfn=RT0n. Such a situation could, somewhat impre-
cisely, be called an isothermal shock. Values of Q below this
threshold value will have the RTfn�RT0n, and when Q is
greater than the threshold, the final temperature will be be-
low the initial temperature. Therefore, knowledge of which
value of Q gives an isothermal shock will contain useful
information about the character of the thick-thin radiative
shock. Also, Drake used the isothermal shock case to derive
several relations about the thick-thin shocks.3 Here we will
show under what conditions the shock is isothermal and de-
rive several properties for this special case.

To find the value of Q that gives an isothermal shock, we
will rewrite Eq. �12� with RTfn=RT0n= p0n and solve for Frn0

to get

Frn0 = 1 − p0n
2 , �26�

under the restriction that p0n
�. Then substituting this value
of Frn0 into Eq. �10� and solving for Q, one gets that the
shock will be isothermal when

Q =
1 − p0n

2

2p0n
4 . �27�

This value of Q can be written in terms of the traditional
Mach number, M2=1 / p0n�, as

FIG. 4. �Color online� Values of the optical thickness of the cooling layer
as function of Q shown on a semilog scale. The �=4 /3, p0n=0.1, and
�=5 /3, p0n=0 lines are coincident on the plot.
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Q = 1
2 �M8�4 − M4�2� . �28�

This result has the proper limit; when pn0=0, it takes an
infinite shock strength to have zero temperature in the final
state. Also, the isothermal shock strength might not be strong
enough to make the cooling layer very optically thin. For
example, with p0n=0.1, the value of Q for an isothermal
shock is 4950. For �=4 /3 at this shock strength, 	cl is
still larger than 0.1. Therefore, when p0n=0.1 in a gas with
�=4 /3, for the cooling layer to be negligibly small, the
shock strength would have to be large enough to make the
final temperature below the initial temperature.

The isothermal case also has �f= p0n, as can be found by
substituting the value of Frn0 from Eq. �26� into Eq. �10� for
p0n��. Using this value of �f in Eq. �27�, one can solve for
�f in terms of the shock strength,

�f =��1 + 8Q − 1

4Q
. �29�

This value for the final inverse compression can serve as a
rule of thumb. If one assumes that the shock is isothermal,
the final compression can be readily computed from the
shock strength Q. The relation for the final inverse compres-
sion can be simplified by expanding Eq. �29� for large Q,

�f = 0.840 896Q−1/4 + O�Q−3/4� . �30�

The approximation for �f given in Eq. �30� is remarkably
accurate for Q�1000 when compared with the solutions ob-
tained from solving the quartic in Eq. �20�. In Fig. 5 the
inverse compression computed from the full three-layer
model �i.e., Eq. �20��, the isothermal approximation �i.e., Eq.
�29��, and the expansion of the isothermal approximation for
large Q are compared. This figure shows that Eq. �30� is a
useful rule of thumb for predicting the final inverse compres-
sion given the shock strength Q.

IV. RADIATIVE TRANSFER IN THE SHOCKED
MATERIAL OF THE THREE-LAYER MODEL

In this section the properties of the radiation field down-
stream of the density jump in the three-layer model are in-
vestigated. For a more detailed discussion of radiative trans-
fer in a hot, thin layer such as the cooling layer, the reader is

FIG. 5. �Color online� Values of the final inverse compression computed
from the full three-layer model �i.e., Eq. �20��, the isothermal approximation
�i.e., Eq. �29��, and the expansion of the isothermal approximation for
large Q.
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FIG. 6. Normalized moments of the radiation intensity in the shocked ma-
terial for a shock with Q=105, �=5 /3, and p0n=0.1 as a function of down-
stream optical depth 	.
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invited to consult Ref. 17. As a model for the material tem-
perature in this region, the temperature in the cooling layer is
approximated by a single temperature called Teff, the effec-
tive temperature in the layer. To find Teff one can solve for
the temperature that produces a radiation flux that is equal
and opposite to 2
SBTf

4 at the edge of the cooling layer,

2
SBTeff
4 �0.5 + E3�	cl�� = 2
SBTf

4. �31�

Using Teff as the material temperature for 	� �0,	cl� and Tf

as the temperature for 	�	cl, one can solve the integral
transport equation to get the moments of the radiation inten-
sity as a function of 	. In addition to the radiation flux Fr,
one can compute the mean intensity Jr given by

Jr =
1

2
�

−1

1

Ir�	,��d� ,

and the radiation pressure pr given by

pr =
1

c
�

−1

1

�2Ir�	,��d� .

Note the radiation energy density is related to the mean in-
tensity by Er=4�cJr.

In Figs. 6 and 7 these moments of Ir are plotted as
a function of 	 for a shock with Q=105, �=5 /3, and
p0n=0.1. From Fig. 6 one sees that outside the cooling layer
the mean intensity becomes equal to B�Tf� and the value of
the radiation pressure becomes equal to the radiation pres-
sure of a blackbody at the final temperature. Inside and near
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FIG. 7. Detail of Fig. 6.
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the cooling layer �see Fig. 7� the mean intensity reaches a
maximum, whereas the radiation pressure is nearly flat. This
is consistent with the picture of radiative transfer in a generic
hot thin layer observed by McClarren and Drake.17 These
two quantities have different behavior because the intensity
in the cooling layer has a very pancaked distribution: radia-
tion traveling in the directions near �=0 has a higher inten-
sity because of the 1 /� weighting in the integral radiative
transfer equation. This calculation of radiation pressure puts
a much smaller weight on these angles than the mean inten-
sity and it is radiation traveling at these grazing angles that
causes the peak in the mean intensity. Inside the cooling
layer the radiation flux falls linearly from 2
SBTf

4 to just
below zero before rising to zero. Outside the cooling layer,
the radiation flux rises to a value of 7.5% of its maximum
within a mean-free path of the edge of the cooling layer. This
rise can be attributed to a contribution to the radiation flux
from the cooling layer persisting, while the radiation flux
contribution from the final state decays to zero. As shown
later, this rise is an artifact of neglecting the adaptation zone
in the three-layer model. When the adaptation zone is in-
cluded, this rise outside the cooling layer is smoothed out.

Note that radiative transfer behind the shock cannot be
modeled, even qualitatively, with diffusion or a diffusive clo-
sure of the transport equation with a constant Eddington fac-
tor. This incompatibility of transport and diffusion can be
seen by comparing Jr and Fr in the cooling layer. In the
cooling layer there are places where the gradient of Jr is in
the same direction as Fr. In the parlance of diffusion, at these
points radiation is flowing uphill in an antidiffusive manner.
Indeed the diffusion solution in the cooling layer does not
have an extreme point and the peak in Jr is not present.17

V. SHOCK PROFILES

Now that the compression and temperature just after the
density jump and at the final state have been calculated, as
well as the thickness of the cooling layer, one is in a position
to self-consistently compute the shock profile. The profile
will be computed taking the adaptation zone into account as
well as avoiding the assumption that the cooling layer is
optically thin. This solution method begins with taking the
spatial derivative of Eq. �9� to get an ordinary differential
equation �ODE� for the inverse compression,

dFrn

d	
= �2��1 + p0n� − 2��� + 1�

� − 1

d�

d	
. �32�

The left-hand side of the ODE can be simplified by integrat-
ing Eq. �2� over angle to get

dFrn

d	
=

4�
1
2�0us

3 �B�	� − Jr�	�� . �33�

Therefore, if one has a profile for Jr it is possible to compute
the profile for � from Eq. �32� �recall that B is function of T
which is a function of ��. The integration of the ODE is
started at 	=0, where �=�ds.

One gets a profile for Jr using the simplified model of an
effective temperature as computed in the previous section.
This profile is used to solve the ODE for ��	�. This profile

for � is called �1 as it is the first in a series of iterations.
Using �1 one can compute a temperature profile T1 to pro-
duce an iteration on the mean intensity, Jr,1. In these results it
has been found that three such iterations of computing a
profile for � and a new Jr are sufficient to converge on a
profile.

This iterative procedure for computing a profile does
take into account the adaptation zone between the cooling
layer and the final state. This procedure makes no specifica-
tion that the radiation flux goes to zero at the edge of the
cooling layer. These results indicate that the effect of the
adaption zone is small.

In Figs. 8–11 the profiles for the fundamental radiation
and hydrodynamic quantities of a shock with Q=105,
�=5 /3, and p0n=0.1 are detailed. These figures include the
profiles computed from each iteration of the solution proce-
dure outlined above. There is little change in the temperature
and compression profiles over the iterations. The radiation
moments change more in the initial iterations but are con-
verged by the third iteration. These profiles demonstrate that
within one mean-free path of the density jump the shock has
reached its final state. In these profiles, as seen in the three
layer model, one observes that at points in the cooling layer
Fr /�Er�0 and radiation energy is flowing uphill.
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Using the three-layer model, the final state has
�f=0.0475 �corresponding to a compression of approxi-
mately 21� and RTfn=0.05 with 	cl=0.000 57. These shock
profiles confirm the predictions and validity of the three-
layer model because the profiles include the adaptation zone
and the emission in the cooling layer is not approximated
using an effective temperature. It is also the case in these
profiles that the upstream-moving radiation flux at the den-
sity jump is approximately 2�B�Tf� as argued above.

VI. CONCLUSIONS

The structures of radiative shocks that are optically thin
upstream of the shock and optically thick downstream of the
shock, which are referred to as thick-thin shocks, have been
analyzed. This analysis dealt with the flux-dominated regime
of shocks and viscous effects were ignored and it was as-
sumed that the plasma could be characterized by a single
temperature. To determine the shock structure, one has to
deal with the fact that the radiation flux in the upstream
region is implicitly dependent on the temperature at the final

downstream state. Approximate radiative transfer treatments
were not used to compute the downstream state of the
system.

One of the salient features of thick-thin shocks is that the
density just downstream of the density jump is greater than
the maximum density in a radiative shock that is optically
thick everywhere. For an infinite shock speed, the maximum
density in a thick-thin shock is also infinite. Also, it was
demonstrated that the radiation flux moving upstream from
the density jump is, to leading order in the optical thickness
of the cooling layer, twice the radiation flux emerging in the
upstream direction from the final state. Later, it was con-
firmed that for sufficiently strong shocks the optical thick-
ness of the cooling layer is indeed negligible. Also, as in the
case of optically thin shocks, above a certain shock strength
the three-layer model predicts a final temperature that is
lower than the initial temperature and that the maximum
compression in the shock scales as the shock strength to the
1/4 power.

Analyzing the radiative transfer in the shocked material
revealed that there are points where the radiation flux is in
the same direction as the gradient of the radiation energy
density, i.e., radiation energy flows uphill. This is predicted
by the three-layer model when the cooling layer emission is
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approximated by a blackbody at an effective temperature and
confirmed by calculations of shock profiles taking into ac-
count the adaptation zone. These shock profiles also con-
firmed the validity of the three-layer model. These profiles
showed that the final state predicted by the three-layer model
was accurate, yet that the transition from cooling layer to
final state is more smoothed out than possible with a three-
layer model.

The main deficiency of the above analysis is that no
radiation from the upstream material returns to the shock
structure. This is an assumption the authors plan to revisit in
future work. Additionally, a comparison between theoretical
results with numerical solutions and experiments is planned.
Beyond these additional studies, one could augment this
thick-thin shock model adding geometrical effects such as a
radiating shock in a spherical object or the loss of radiation
energy through the walls of a cylindrical tube from a shock
propagating axially in a shock tube experiment.
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