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Abstract
It is well known that in an infinite, source-free, purely scattering medium with physically realizable

cross-sections, neutrons attain a Maxwell-Boltzmann distribution characterized by the material temper-
ature. In this work we look at how small variations to these conditions change the behavior of the
thermal-neutron distribution in space and energy. Specifically, our analysis examines the influence of
small amounts of absorption and a small source as well as temperature variations in the material. We
restrict our study to regions away from boundary and initial layers. The result of the asymptotic analysis
is that the amplitude of the neutron scalar flux satisfies a drift-diffusion equation in which the diffusion
coefficient and drift velocity depend on the first-order anisotropy of the scattering kernel as well as the
gradient of the material temperature. Additionally, through first order in the asymptotic expansion the
neutron energy distribution is Maxwell-Boltzmann at the local material temperature.

1 Introduction

There are several well known asymptotic limits of the neutron transport equation. Perhaps the best-known
example is the asymptotic limit of large scattering cross-sections and small absorption cross-sections. In this
situation the leading-order neutron transport solution satisfies a diffusion or drift-diffusion equation [1, 2, 3].
Other transport applications have their own useful asymptotic limits. For example, the transport equations
that govern charge kinetics in semiconductors limit to a drift-diffusion model in certain circumstances [4].
In this work we use an asymptotic analysis to obtain results that to our knowledge have not been previously
published. In particular we study thermal neutrons in the presence of low absorption probability and small
sources. We include time and energy dependence and allow material temperature to vary in space and
time. The results of our analysis are that 1) the leading-order scalar-flux amplitude satisfies a drift-diffusion
equation, 2) the leading-order and next-order scalar fluxes have Maxwell-Boltzmann energy distributions
at the local material temperature, 3) the drift velocity is proportional to the local temperature gradient in
the scattering medium, and 4) the angular flux is isotropic to leading order and linearly anisotropic to the
next order. The first and fourth results have appeared in previous analyses [3], but to our knowledge the
connections with the Maxwell-Boltzmann energy distribution and material temperature gradients have not
been previously published.

There is a strong connection between the results we find for thermal neutrons and the equilibrium-
diffusion limit for thermal radiative transfer [5]. In that limit the distribution of thermal radiation is a
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Planck distribution at the local material temperature and the radiation energy density (a constant multiple
of the energy-integrated scalar flux) satisfies a nonlinear diffusion equation.

In this work we consider a medium containing a small source of neutrons,1 with an absorption cross section
that is much smaller than the scattering cross section. One example would be a heavy-water or graphite
column (often called a thermal column) mounted next to a research reactor, as shown in Fig. 1. In such
an arrangement, if the reactor water temperature is above room temperature, there could be a temperature
gradient in the thermal column, as well as a small amount of absorption in the column’s material. Most
of the thermal neutrons in the thermal column would have originated in the reactor (meaning little or no
volumetric source in the interior of the column).

nuclear 
reactor 

scattering 
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(�thermal 
column�) 

experiment 
(to be 

irradiated) 

Figure 1: A thermal column mounted next to a reactor. Such thermal columns are often installed to provide
thermal neutrons to irradiate experiments.

We restrict our analysis in this study to regions away from boundary and initial layers. Future work will
explore appropriate boundary and initial conditions in the asymptotic limit that we study.

The outline of this paper is the following. We present our starting point, the transport equation for
thermal neutrons, in Section 2. We then in Section 3 perform the asymptotic analysis and discuss the drift-
diffusion model that arises. This is followed by our conclusions in Section 4. Theoretical and physical bases
are presented in an appendix for some operator properties that underpin the asymptotic analysis.

2 Description of the Model

We begin with the transport equation for thermal neutrons:

1

v

∂ψ

∂t
+ Ω̂ · ~∇ψ+ (σs(~r,E, t) + σa(~r,E, t))ψ(~r, Ω̂, E, t)

=

∫ ∞
0

dE′
∫
4π

dΩ′ σs(~r,E
′, t)f(~r,E′ → E, Ω̂′ · Ω̂, t)ψ(~r, Ω̂′, E′, t) + q(~r, Ω̂, E, t) . (1)

Our notation is standard: ~r is the spatial variable, Ω̂ is a unit vector in the neutron’s direction of flight, E
is the neutron energy, and t is the temporal variable. The neutron speed is v(E), ψ(~r, Ω̂, E, t) is the neutron

1That is, we assume that the source-rate density is small relative to the collision-rate density.
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angular flux, σs(~r,E, t) is the macroscopic scattering cross-section, σa(~r,E, t) is the macroscopic absorption
cross-section, f(~r,E′ → E,µ0, t) is the double-differential scattering phase function, and q is a prescribed
source of neutrons (which would typically come from downscattering of fast neutrons). We have assumed
that the scattering function for a given pair of initial and final energies depends only on the scattering angle
and not on the individual incident and exiting directions. That is, we assume that the medium “looks” the
same to a neutron of energy E′ in the lab frame, regardless of its lab-frame direction of travel. This is
sometimes referred to as an “isotropic” or “rotationally invariant” medium. This assumption is valid if: 1)
the bulk speed of the material in the lab frame is negligibly small relative to vibrational nucleus speeds or
the speeds of the majority of the neutrons, and 2) the material does not interact differently with neutrons
moving in different directions (as it might if it had non-random crystal orientations and the neutrons had
large wavelengths).

We expand the scattering phase function in Legendre polynomials:

f(~r,E′ → E,µ0, t) =

∞∑
l=0

2l + 1

2
Pl(µ0)fl(~r,E

′ → E, t) , (2)

where

fl(~r,E
′ → E, t) =

∫ 1

−1
dµ0 P`(µ0)f(~r,E′ → E,µ0, t). (3)

We expand the angular flux in spherical harmonics:

ψ(~r, Ω̂′, E′, t) =

∞∑
l=0

l∑
m=−l

φml (~r,E′, t)Ylm(Ω̂′), (4)

where
φml (~r,E′, t) =

∫
4π

dΩY ∗lm(Ω̂)ψ(~r, Ω̂, E′, t), (5)

Then, after taking advantage of the spherical-harmonics addition theorem, we obtain the transport equa-
tion with the scattering source defined in terms of Legendre scattering moments and spherical-harmonics
flux moments:

1

v

∂ψ

∂t
+ Ω̂ · ~∇ψ+ (σs(~r,E, t) + σa(~r,E, t))ψ(~r, Ω̂, E, t)

=

∞∑
l=0

l∑
m=−l

Ylm(Ω̂)

∫
dE′ σs(~r,E

′, t)fl(~r,E
′ → E, t)φml (~r,E′, t) + q(~r, Ω̂, E, t) . (6)

3 Asymptotic Analysis

We will use a standard approach to the asymptotic analysis as shown in many other works in neutron [2, 1, 6]
and radiation [5, 7] transport. To proceed with the asymptotic analysis we assume we are in a situation
where:

• the scattering cross-section is large,

• the absorption cross-section is small,

• the source is small, and

• the change in time of the solution is small,

• the solution does not change much over distances of a scattering mean free path but may change
significantly over distances of an absorption mean free path,
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• the temperature does not change much over distances of a scattering mean free path,

• cross sections and temperatures do not change rapidly in time.

These conditions are satisfied in, for example, the thermal column experiment mentioned above. In that
situation the scattering cross-section is large relative to the absorption cross section, there is at most a small
thermal-neutron source inside the medium (from downscattering of fast neutrons that enter the column), and
the reactor is likely operating at or near steady-state. Also to proceed we will assume that the region we are
analyzing is away from any boundary and initial layers. We assume that in the interior of the medium, the
spatial variation of the solution, and the material temperature, is small over a distance of a mean-free path.
A large variation could potentially arise near material interfaces, for example, or anywhere the material
temperature varied on a spatial scale comparable a neutron mean-free path (if such a thing were possible),
but our analysis here does not address regions with such sharp spatial variations.

To express the conditions listed above we introduce a small positive parameter, ε, and scale terms in
Eq. (1) appropriately to obtain

ε

v

∂ψ

∂t
+ Ω̂ · ~∇ψ+

(
σs(~r,E, t)

ε
+ εσa(~r,E, t)

)
ψ(~r, Ω̂, E, t)

=

∞∑
l=0

l∑
m=−l

Ylm(Ω̂)

∫
dE′

σs(~r,E
′, t)

ε
fl(~r,E

′ → E, t)φml (~r,E′, t) + εq(~r, Ω̂, E, t) . (7)

Next, we formally expand the angular flux in a power series in ε:

ψ =

∞∑
l=0

εlψ(l). (8)

We then plug this expansion into Eq. (7) and equate like powers of ε.

3.1 The leading-order, O(ε−1), equations

The leading-order terms in ε are the ε−1 terms; these are

σs(~r,E, t)ψ
(0)(~r, Ω̂, E, t) =

∞∑
l=0

l∑
m=−l

Ylm(Ω̂)

∫
dE′ σs(~r,E

′, t)fl(~r,E
′ → E, t)φ

m(0)
l (~r,E′, t) . (9)

This is a steady-transport equation for a source-free, absorption-free infinite medium. One of the triumphs
of kinetic theory is the proof that in such a situation with a physically realizable scattering function, the
solution for ψ is an isotropic-in-angle Maxwellian distribution [8]. This result gives

ψ(0)(~r, Ω̂, E, t) =
φ
(0)
th (~r, t)

4π
M(E, T ) (10)

where
φ
(0)
th (~r, t) =

∫ ∞
0

dE

∫
4π

dΩψ(0)(~r, Ω̂, E, t),

and M(E, T ) is the Maxwellian distribution defined by

M(E, T ) ≡ E

(kT )2
e

−E
kT , (11)

with k being the Boltzmann constant and T being the material temperature, which varies with ~r and t.
Because the temperature in the medium could vary in space and time, Eq. (10) says that to leading order
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the angular flux has an energy distribution that is Maxwell-Boltzmann at the local temperature at any given
time.

The Maxwell-Boltzmann distribution has the following property.∫ ∞
0

M(E, T ) dE = 1, (12)

and φ(0)th is related to the number density of neutrons by

φ
(0)
th (~r, t) =

√
8kT (~r, t)

πmn
nth(~r, t) , (13)

where mn is the mass of the neutron. Note at this point the value of nth is not yet determined, and we will
need to derive an auxiliary equation to solve for this quantity. All we know at this point in the analysis is
that to leading order ψ is isotropic in angle and has a Maxwell-Boltzmann distribution in energy.

The isotropy of the leading-order solution deserves further discussion. If we divide Eq. (9) by σs(~r,E, t)
and then operate with

∫
4π
dΩY ∗lm(Ω̂)(·) we obtain, by orthogonality of the spherical-harmonics functions, the

following.

φ
m(0)
l (~r,E, t) =

1

σs(~r,E, t)

∫
dE′ σs(~r,E

′, t)fl(~r,E
′ → E, t)φ

m(0)
l (~r,E′, t) . (14)

If we define the integral operator operator Sl as

[Sl]g(E) =
1

σs(E)

∫ ∞
0

dE′ σs(E
′)fl(E

′ → E)g(E′) , (15)

then we can rewrite our (l,m)-moment equation as

[I − Sl]φm(0)
l = 0 . (16)

In the appendix we show that [I − Sl] is invertible for all l > 0, at least for physically realizable scattering
laws. It follows that φm(0)

l = 0 for all l > 0, which means there are no anisotropic components in the
leading-order angular flux. We also affirm in the appendix that [I − S0] is not invertible, which agrees with
the known result stated above, namely that an isotropic solution (the Maxwell-Boltzmann distribution) does
satisfy the l = 0 equation. Thus, the leading-order angular flux in our setting is isotropic in direction and
has a Maxwell-Boltzmann distribution in energy.

3.2 The O(1) equations

If we continue our analysis of Eq. (7) and examine the next order in ε (the order-ε0 or O(1) terms), we find

Ω̂ · ~∇ψ(0)(~r, Ω̂, E, t)+σs(~r,E, t)ψ
(1)(~r, Ω̂, E, t)

=

∞∑
l=0

l∑
m=−l

Ylm(Ω̂)

∫
dE′ σs(~r,E

′, t)fl(~r,E
′ → E, t)φ

m(1)
l (~r,E′, t) . (17)

If we operate on Eq. (17) with
∫
4π
dΩ(·), recognizing that ψ(0) is isotropic ≡ φ(0)/4π, we obtain

σs(~r,E, t)φ
(1)(~r,E, t) =

∫ ∞
0

dE′ σs(~r,E
′, t)f0(E′ → E, t)φ(1)(~r,E′, t). (18)

Here we have used the definition of φ:

φ =

∫
4π

dΩψ ,
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and recognized the identity ∫
4π

dΩ Ω̂ = ~0 .

Equation (18) is a source-free infinite-medium equation without absorption. As before, the solution of this
equation is Maxwell-Boltzmann in energy,

φ(1)(~r,E, t) = φ
(1)
th (~r, t)M(E, T ) , (19)

with T the material temperature at position ~r and time t, where the amplitude function φ(1)th is yet unknown.
That is, the isotropic portion of the O(ε) component of the angular flux, ψ(1), has a Maxwell-Boltzmann
distribution in energy, at the local temperature. However, in this case the anisotropic portions are not
necessarily zero as they were in the leading-order component of ψ. We must proceed further to assess this.

When we operate on Eq. (17) with
∫
4π
dΩ Ω̂(·) we obtain:

1

3
~∇φ(0)(~r,E, t) + σs(~r,E, t) ~J

(1)(~r,E, t) =

∫ ∞
0

dE′ σs(~r,E
′, t)f1(~r,E′ → E, t) ~J (1)(~r,E′, t), (20)

where we have used the definitions of φ and ~J :

φ =

∫
4π

dΩψ, and ~J =

∫
4π

dΩ Ω̂ψ,

used the orthogonality of the spherical-harmonics functions, and noted that[∫
4π

dΩ Ω̂Ω̂

]
·
~∇ϕ
4π

=
1

3
~∇ϕ.

In operator form Eq. (20) can be written as

[I − S1] ~J (1)(~r,E, t) = − 1

3σs(~r,E, t)
~∇φ(0)(~r,E, t) . (21)

To proceed beyond Eq. (21) we need to know whether the operator [I − S1] is invertible. It may not be
obvious that this operator is invertible, given that the operator [I − S0] is singular, but in the appendix we
show that [I − Sl] is indeed invertible for l > 0 for any physically realizable neutron scattering function.

With the knowledge that [I − S1] is invertible we can develop a version of Fick’s law (i.e., a statement
that says the “current” of neutrons is proportional to the negative gradient of the density). We rearrange
Eq. (21):

~J (1)(~r,E, t) = −[I − S1]−1
[

1

3σs(~r,E, t)
~∇φ(0)(~r,E, t)

]
= −[I − S1]−1

[
1

3σs(~r,E, t)
~∇
(
φ
(0)
th (~r, t)M(E, T )

)]
, (22)

and then integrate over all energy:

~J (1)(~r, t) = −
∫ ∞
0

dE [I − S1]−1
[

1

3σs(~r,E, t)
~∇
(
φ
(0)
th (~r, t)M(E, T )

)]
. (23)

Using the product rule for derivatives we can rearrange Eq. (23) to obtain

~J (1)(~r, t) =− φ(0)th (~r, t)~∇T (~r, t)

∫ ∞
0

dE [I − S1]−1
[

1

3σs(~r,E, t)

∂

∂T
M(E, T )

]
− ~∇φ(0)th (~r, t)

∫ ∞
0

dE [I − S1]−1
[
M(E, T )

3σs(~r,E, t)

]
, (24)
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or
~J (1)(~r, t) = ~b(~r, t)φ

(0)
th (~r, t)−D(~r, t)~∇φ(0)th (~r, t), (25)

where
~b(~r, t) = −~∇T (~r, t)

∫ ∞
0

dE [I − S1]−1
[

1

3σs(~r,E, t)

∂

∂T
M(E, T )

]
(26)

and
D(~r, t) =

∫ ∞
0

dE [I − S1]−1
[
M(E, T )

3σs(~r,E, t)

]
. (27)

Equation (25) is Fick’s Law plus a drift term (the~b term). Note that we could define a transport cross-section
[8] from this equation as

σ̄tr(~r, t) =

(∫ ∞
0

dE

σs(~r,E, t)
[I − S1]−1M(E, T )

)−1
.

This transport cross section and the corresponding diffusion coefficient are analogous to the Rosseland mean
opacity and its corresponding diffusion coefficient, commonly used in diffusion approximations for radiative
transfer [9]. In this case, however, we do not have a derivative of the Maxwellian in the definition, as the
derivative of the Planckian appears in radiative transfer.

We have operated on the O(1) equations with
∫
4π
dΩ(·) and

∫
4π
dΩΩ̂(·), which is equivalent to operating

with
∫
4π
dΩY ∗00(·) and

∫
4π
dΩY ∗1,m(·) with |m| ≤ 1. We continue by operating with

∫
4π
dΩY ∗lm(·) for l > 1,

obtaining:

σs(~r,E, t)φ
m(1)
l (~r,E, t) =

∫ ∞
0

dE′ σs(~r,E
′, t)fl(~r,E

′ → E, t)φ
m(1)
l (~r,E′, t) , l > 1 , (28)

where we have recognized that the orthogonality of the spherical-harmonics functions implies that∫
4π

dΩYlm(Ω̂)Ω̂ = 0 for l > 1.

We can rewrite this as
[I − Sl]φm(1)

l (~r,E, t) = 0 , l > 1 . (29)

The invertibility of [I − Sl] for l > 0 (see appendix) implies that

φ
m(1)
l = 0 for l > 1.

That is, the O(ε) component of the solution, ψ(1), is at most linearly anisotropic and satisfies:

ψ(1)(~r, Ω̂, E, t) =
1

4π
φ
(1)
th (~r, t)M(E, T ) +

3

4π
Ω̂ · ~J (1)(~r,E, t)

=
1

4π
φ
(1)
th (~r, t)M(E, T )− 3

4π
Ω̂ · [I − S1]−1

[
1

3σs(~r,E, t)
~∇
(
φ
(0)
th (~r, t)M(E, T )

)]
. (30)

At this point in the analysis, the functions φ(0)th and φ(1)th are yet to be determined.

3.3 The O(ε) equations

We can derive a drift-diffusion equation for φ(0)th from the O(ε) terms in Eq. (7). These terms are

1

v

∂ψ(0)

∂t
+ Ω̂ · ~∇ψ(1)+σs(~r,E, t)ψ

(2)(~r, Ω̂, E, t) + σa(~r,E, t)ψ(0)(~r, Ω̂, E, t)

=

∞∑
l=0

l∑
m=−l

Ylm(Ω̂)

∫
dE′ σs(~r,E

′, t)fl(~r,E
′ → E, t)φ

m(2)
l (~r,E′, t) + q(~r, Ω̂, E, t). (31)
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Upon operating on this equation by
∫∞
0
dE
∫
4π
dΩ(·) we obtain

∂

∂t

(
φ
(0)
th

v̄(~r, t)

)
+ ~∇ · ~J (1)(~r, t) + σ̄a(~r, t)φ

(0)
th (~r, t) = Q̄(~r, t), (32)

where we have defined several averaged and integrated quantities:

v̄(~r, t) =

∫∞
0
dE φ

(0)
th (~r, t)M(E, T )∫∞

0
dE 1

v(E)φ
(0)
th (~r, t)M(E, T )

=
1∫∞

0
dE 1

v(E)M(E, T )
, (33)

σ̄a(~r, t) =

∫∞
0
dE σa(~r,E)φ

(0)
th (~r, t)M(E, T )∫∞

0
dE φ

(0)
th (~r, t)M(E, T )

=

∫ ∞
0

dE σa(~r,E)M(E, T ) , (34)

Q̄(~r, t) =

∫ ∞
0

dE

∫
4π

dΩ q(~r, Ω̂, E, t) . (35)

In these expressions the temperature T is understood to be evaluated at position ~r and time t. Using
the definition of ~J (1) from Eq. (25) we see that Eq. (32) is a drift-diffusion equation for the leading-order
thermal-flux amplitude:

∂

∂t

(
φ
(0)
th

v̄

)
− ~∇ ·D~∇φ(0)th + ~∇ ·

(
~bφ

(0)
th

)
+ σ̄aφ

(0)
th = Q̄. (36)

(Every term depends on ~r and t.) This is a closed equation for the leading-order scalar-flux amplitude
function in the system, which will be satisfied away from boundary and initial layers given the conditions
we stipulated above.

3.4 Properties of the model

The drift diffusion model for thermal neutrons given above has several notable consequences. First, the
energy spectrum at each point in space and time is, to leading order, a Maxwell-Boltzmann distribution at
the local temperature. This indicates that in a medium with continuously varying temperatures, we should
expect that the leading-order solution should have an energy spectrum that continuously varies as the local
Maxwellian. However, the magnitude of the leading-order solution will depend on many factors:

1. the fixed source term,

2. the local absorption cross section averaged with a Maxwell-Boltzmann weighting function,

3. the magnitude of the nearby solution (through the diffusion term)

4. the local diffusion coefficient (through the diffusion term), and

5. the gradient of the temperature inside the medium (via the drift speed ~b).

There is a special case of the model where the scattering is isotropic in angle, that is, f1(E′ → E) = 0 and
hence S1 = 0. In this case the diffusion coefficient, D(~r, t), only involves the Maxwell-Boltzmann average of
1/σs(~r,E, t).

4 Conclusions

We have used an asymptotic analysis to develop a model for thermal neutrons in a medium with small
amounts of absorption, large amounts of scattering, and without strong localized sources, away from bound-
aries and material interfaces. Our model has the leading-order neutron energy distribution as a Maxwell-
Boltzmann distribution at the local material temperature, and has a drift-diffusion equation to describe the
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amplitude of the distribution. The diffusion term in our model shows what the appropriate energy average
of the diffusion coefficient should be in the thermal energy range. The drift velocity is proportional to the
gradient of the material temperature and points in the opposite direction.

Our results should be a step toward developing a comprehensive simplified model of thermal neutrons
in highly scattering media, such as in “thermal columns” near research reactors. Additional work should
be performed to derive initial and boundary conditions, and comparisons with energy-resolved transport
calculations (such as continuous-energy Monte Carlo calculations) would be an interesting exploration of the
accuracy of the model for realistic problems.
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A Appendix: Invertibility of [I − Sl] for l > 0

Consider an infinite medium that is purely scattering with σs(E) > 0. Assume that the scattering law
depends only on the dot product of the incident and scattered directions, which means the medium itself
is rotationally invariant. This is sometimes referred to as an isotropic medium. In such an instance the
transport equation for the steady angular flux of neutrons is [10]

σs(E)ψ(Ω̂, E) =

∫
dE′

∫
4π

dΩ′ σs(E
′)f(E′ → E, Ω̂′ · Ω̂)ψ(Ω̂′, E′)

=

∞∑
l=0

l∑
m=−l

Ylm(Ω̂)

∫
dE′ σs(E

′)fl(E
′ → E)φml (E′), (37)

where

fl(E
′ → E) =

1∫
−1

dµ0 f(E′ → E,µ0)Pl(E
′, µ0), (38)

φml (E′) =

∫
4π

dΩ′ Y ∗lm(Ω̂′)ψ(Ω̂′, E′) . (39)

Here µ0 is the dot product of the incident and scattered angle and Pl is the lth-order Legendre polynomial.
If we multiply the transport equation by Y ∗lm(Ω̂) and integrate over Ω̂ we obtain, via orthonormality of the
spherical harmonics functions,

σs(E)φml (E) =

∫
dE′ σs(E

′)fl(E
′ → E)φml (E′). (40)

We can write this equation in operator form as

σs(E) [I − Sl]φml (E) = 0, (41)

where
Slϕ(E) =

1

σs(E)

∫
dE′ σs(E

′)fl(E
′ → E)ϕ(E′). (42)

In this appendix we show that for physically realizable scattering functions, the operator [I−Sl] is invertible
for l > 0. We will begin with remarks about the l = 0 case.

Remark 1. The operator [I − S0] is singular for physically realizable scattering functions.
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Argument. There is a non-zero solution of the equation

(I − S0)ϕ(E) = 0, (43)

given by
ϕ(E) = ϕ̂M(E, T ), (44)

where M(E, T ) is the Maxwell-Boltzmann distribution (for the scalar flux, not density) at temperature T ,
the temperature of the scattering medium, and ϕ̂ is a constant [8]. According to well-known results from
statistical mechanics, the solution is unique except for the multiplicative constant ϕ̂. That is, the Maxwell-
Boltzmann distribution is the only possible solution to the given steady-state problem. This means the
operator [I −S0] has exactly one zero eigenvalue, with a corresponding eigenfunction equal to the Maxwell-
Boltzmann distribution. This in turn means that the operator S0 has one eigenvalue equal to unity, with
eigenfunction equal to the Maxwell-Boltzmann distribution.

The next remark is a mathematical consequence of the physical reality that scattering does not create
particles, but only changes their directions and energies.

Remark 2. The spectral radius of S0 = 1.

Argument. The spectral radius of S0 satisfies

ρ(S0) = sup
ϕ

‖S0ϕ‖
‖ϕ‖

, (45)

where the supremum is taken over all functions in the function space and ‖f‖ is a valid norm of f . For our
purposes we define the norm

‖ϕ‖ ≡
∫
dE σs(E) |ϕ(E)| , (46)

and we choose our function space to include only functions of E whose norms are bounded. We recognize
that the integral of the differential scattering cross section is the scattering cross section:

σs(E
′) ≡

∫
dE σs(E

′)f0(E′ → E) . (47)

The norm of S0ϕ satisfies

‖S0ϕ‖ =

∫
dEσs(E)

∣∣∣∣ 1

σs(E)

∫
dE′σs(E

′)f0(E′ → E)ϕ(E′)

∣∣∣∣
=

∫
dE

∣∣∣∣∫ dE′ σs(E
′)f0(E′ → E)ϕ(E′)

∣∣∣∣
≤
∫
dE

∫
dE′ σs(E

′)f0(E′ → E) |ϕ(E′)| =
∫
dE′σs(E

′) |ϕ(E′)| = ‖ϕ‖ , (48)

from which it follows that the spectral radius of S0 is ≤ 1. Equality holds for any non-negative function
ϕ(E), so the spectral radius equals 1. We saw previously that exactly one eigenvalue equals 1; now we see
that there are no eigenvalues with larger magnitude.

The next remark will also be useful.

Remark 3. If the spectral radius of Sl is less than 1, then the operator [I − Sl] is invertible.

Argument. 1− λ is an eigenvalue of [I −Sl] with eigenfunction f if and only if λ is an eigenvalue of Sl with
eigenfunction f . If all eigenvalues of Sl have magnitude less than unity (i.e., if the spectral radius ρ(Sl) < 1),
then the eigenvalues of [I − Sl] lie within a circle of radius ρ(Sl) centered in the complex plane at 1 on the
real axis. Zero is outside of this circle and is therefore not an eigenvalue of [I−Sl]; thus, [I−Sl] is invertible.
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Remark 4. The spectral radius of Sl is less than 1 for l > 0.

Argument. The spectral radius satisfies

ρ(Sl) = sup
ϕ

‖Slϕ‖
‖ϕ‖

, (49)

where the supremum is taken over all functions in the function space and ‖f‖ is a valid norm of f . We
continue to use the norm

‖ϕ‖ ≡
∫
dE σs(E) |ϕ(E)| . (50)

In what follows we shall use the following identities and definitions.

fl(E
′ → E) =

∫ 1

−1
dµ0 Pl(µ0)f(E′ → E,µ0) , (51)∫

dE

∫ 1

−1
dµ0 f(E′ → E) = 1 , (52)∫
dE fl(E

′ → E) =

∫
dE

∫ 1

−1
dµ0 Pl(µ0)f(E′ → E,µ0)

=

∫
dE
∫ 1

−1 dµ0 Pl(µ0)f(E′ → E,µ0)∫
dE
∫ 1

−1 dµ0 f(E′ → E,µ0)
. (53)

Here µ0 = Ω̂ · Ω̂′. The form of Eq. (53) makes it clear that
∫
dE fl(E

′ → E) is a proper weighted average
of Pl(µ0), with non-negative weight function f(E′ → E,µ0), for particles scattering with initial energy E′.
The average of the absolute value of Pl(µ0) is a function of E′ and will be a useful quantity in what follows,
so we define it here:

〈|Pl(µ0)|〉 ≡
∫
dE

∫ 1

−1
dµ0 |Pl(µ0)| f(E′ → E,µ0) . (54)

With these definitions, the norm of Slϕ satisfies the inequality

‖Slϕ‖ =

∫
dE σs(E)

∣∣∣∣ 1

σs(E)

∫
dE′ σs(E

′)fl(E
′ → E)ϕ(E′)

∣∣∣∣
≤
∫
dE

∫
dE′ |σs(E

′)fl(E
′ → E)ϕ(E′)|

≤
∫
dE′ |σs(E

′)ϕ(E′)|
∫
dE |fl(E′ → E)|

≤
∫
dE′ σs(E

′) |ϕ(E′)|
∫
dE

∣∣∣∣∫ 1

−1
dµ0Pl(µ0)f(E′ → E,µ0)

∣∣∣∣
≤
∫
dE′ σs(E

′) |ϕ(E′)|
∫
dE

∫ 1

−1
dµ0 |Pl(µ0)| f(E′ → E,µ0)

≤
∫
dE′ σs(E

′) |ϕ(E′)| 〈|Pl(µ0)|〉

≤ |Pl|max

∫
dE′ σs(E

′) |ϕ(E′)|

≤ |Pl|max ‖ϕ‖ . (55)

Here |Pl|max is the supremum over all E′ of the averaged |Pl(µ0)|. Pl(µ0) is between −1 and 1 for all values
of l, and µ0. If l = 0, then P0(µ0) = 1 for all µ0 and of course |P0|max = 1. In this case, the equal sign
holds throughout Eq. (55), which is in keeping with our previous result that the spectral radius of S0 is
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unity. However, for l > 0, 〈|Pl(µ0)|〉 = 1 only if µ0 = ±1 for every particle that scatters with initial energy
E′—that is, only if every particle of energy E′ suffers only scattering events that either do not change the
particle’s direction or that exactly reverse its direction. This is not a physically realizable scattering function
for neutrons. That is, for physically realizable scattering functions, the left-hand side of Eq. (55) is strictly
less than the right-hand side for l > 0. It follows that for physically realizable scattering functions, the
spectral radius of Sl is strictly < 1 for l > 0. For a scattering law where µ0 = ±1 for every scattering event
(non physically realizable for neutrons), our argument would not hold.

Now we can combine our results to demonstrate invertibility.

Main Result. The operator [I − Sl] is invertible for l > 0, for physically plausible scattering laws.

Argument. Remark 4 shows that the conditions of Remark 3 are satisfied and the operator is invertible.
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