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We extend moment analysis, a technique developed for investigating the accu-
racy of discrete-ordinates spatial discretization schemes, to time-dependent radi-
ation transport and apply it to several angular approximation methods. Specif-
ically, we examine the diffusion approximation, the P1/3 approximation, and
three time-dependent generalizations of the simplified PN approximation: the
SP2, SP3, and SSP3 approximations. We show that all of the these methods
preserve the correct flux-weighted average of x but not the correct flux-weighted
average of (x − xa)2, where x is the spatial variable and xa is an arbitrary
point. We also demonstrate that, for general cross sections and large elapsed
time, the error in the flux-weighted average of (x − xa)2 is smallest in mag-
nitude for the SP2 and SP3 approximations. In addition, we present a simple
improvement to the SP2 approximation that allows this method to produce the
correct flux-weighted average of (x − xa)2. We present numerical results that
test this analysis. From these results, we find that the angular approximation
methods with the most accurate solutions also have the most accurate values for
the flux-weighted average of (x − xa)2. In particular, the SP2 and SP3 approx-
imations are two of the most accurate methods at large elapsed times, while the
improved SP2 approximation is one of the most accurate methods at all times.
We also observe, however, that an accurate value for the flux-weighted average
of (x − xa)2 is not always accompanied by an accurate solution. Consequently,
we conclude that an accurate flux-weighted average of (x − xa)2 is a necessary
rather than sufficient condition for an overall accurate angular approximation
method.
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1. Introduction

The numerical simulation of radiation transport can be computa-
tionally expensive due to a phase space of up to seven dimensions
(position, angle, time, and energy). This statement is especially
true for time-dependent calculations, where the expense is typi-
cally mitigated by simplifying, in particular, the dependence on
the angular variable. The most well-known and widely employed
angular approximation method is the diffusion approximation.
However, several other techniques have been suggested as more
accurate alternatives. One such method is the P1/3 approximation,
which is a modification of the P1 equations that yields solutions
that propagate at the correct speed (Olson et al., 2000). Also,
Frank et al. (2007) have presented several time-dependent gen-
eralizations of the simplified PN approximation. These methods
are the Simplified P2 (SP2), Simplified P3 (SP3), and Simplified-
Simplified P3 (SSP3) approximations.

To compare the angular approximation methods discussed
previously, we consider a theoretical technique developed by
Brantley and Larsen (2000) for examining the accuracy of
discrete-ordinates spatial discretization schemes, known as mo-
ment analysis. This technique is based on the method of mo-
ments (Lewis, 1950), a procedure for obtaining exact expressions
for spatial and angular moments of the angular flux in an infinite,
homogeneous medium. Moment analysis consists of calculating
the flux-weighted averages of x and (x − xa)2, where x is the spa-
tial variable and xa is an arbitrary point, both exactly and as deter-
mined by a particular discretization scheme. The error in the flux-
weighted averages corresponding to the discretization scheme can
then be used to quantify the accuracy of the scheme as a function
of the spatial mesh and material properties. Although restricted to
infinite, homogeneous media, moment analysis is otherwise gen-
eral in the sense that it doesn’t require a sufficiently refined spatial
mesh in order to be valid, as does standard truncation analysis.
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194 J. D. Densmore and R. G. McClarren

In this paper we extend this moment analysis technique to
time-dependent radiation transport and apply it to the aforemen-
tioned angular approximation methods. Moment analysis is espe-
cially appropriate for investigating the accuracy of these methods
as they do not represent a sequence of increasingly accurate an-
gular discretizations and consequently are not amenable to trun-
cation analysis. We will show that all of the angular approxima-
tion methods preserve the correct flux-weighted average of x but
not the correct flux-weighted average of (x − xa)2. We will fur-
ther demonstrate that, for general cross sections and large elapsed
times, the error in this latter quantity is smallest in magnitude for
the SP2 and SP3 approximations, and thus we expect these two
methods to be the most accurate in this regime. In addition, we
will present a simple modification of the SP2 approximation that
allows this method to produce the correct flux-weighted average
of (x −xa)2. Presumably, this improved SP2 approximation should
be more accurate than any of the other angular approximation
methods.

We begin the remainder of this paper by developing exact ex-
pressions for the flux-weighted averages of x and (x − xa)2 in the
case of time-dependent radiation transport. We then determine
these same quantities for the diffusion, P1/3, SP2, SP3, and SSP3 ap-
proximations. Next, we compare the errors in the flux-weighted
average of (x − xa)2 for each angular approximation method. Af-
ter this comparison, we present our improved SP2 approximation.
We then test our theoretical predictions with several numerical
examples. We conclude with a brief discussion.

2. Moment Analysis of the Analytic Transport Equation

We consider monoenergetic, planar-geometry, time-dependent
radiation transport in an isotropically scattering, source-free, in-
finite, homogeneous medium. This process is modeled by the fol-
lowing transport equation,

1
v

∂ψ

∂t
+ µ

∂ψ

∂x
+ �tψ = �s

2

∫ 1

−1
ψ(x, µ′, t)dµ′, (1)
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Moment Analysis of Angular Approximation Methods 195

and boundary conditions,

lim
|x|→∞

ψ = 0. (2)

Here, −∞ < x < ∞ is the spatial variable, −1 ≤ µ ≤ 1 is the an-
gular variable, t > 0 is the the temporal variable, ψ(x, µ, t) is the
angular flux, �t is the total cross section, �s is the scattering cross
section, and v is the particle speed. Two other important quanti-
ties are the scalar flux,

φ(x, t) =
∫ 1

−1
ψ(x, µ, t)dµ, (3)

and the absorption cross section,

�a = �t − �s. (4)

Along with Eqs. (1) and (2), we also prescribe an isotropic initial
condition of the form

ψ(x, 0, µ) = �(x)
2

, (5)

where � is the initial scalar flux. We require that � vanish rapidly
enough as |x| → ∞ such that Eq. (2) is satisfied.

We are interested in calculating the flux-weighted averages of
x,

〈x〉φ(t) =

∫ ∞

−∞
xφ(x, t)dx

∫ ∞

−∞
φ(x, t)dx

, (6)

and (x − xa)2, where xa is an arbitrary point,

〈
(x − xa)2〉

φ
(t) =

∫ ∞

−∞
(x − xa)2φ(x, t)dx
∫ ∞

−∞
φ(x, t)dx

. (7)
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196 J. D. Densmore and R. G. McClarren

These two expressions are time-dependent generalizations of the
center of mass and squared radius of gyration, respectively, de-
fined by Brantley and Larsen (2000). To proceed, it will be useful
to define the following spatial and angular moments of the angu-
lar flux,

φk(x, t) =
∫ 1

−1
Pk(µ)ψ(x, µ, t)dµ, (8)

and

φm,k(t) =
∫ ∞

−∞
xmφk(x, t)dx

=
∫ ∞

−∞

∫ 1

−1
xmPk(µ)ψ(x, µ, t)dµdx. (9)

Here, Pk(µ) is the Legendre polynomial of order k (Lewis and
Miller, 1993). By comparing Eqs. (3) and (8) and using the fact
that P0(µ) = 1, it is clear that φ0 is the scalar flux. Then, we can
combine Eqs. (6), (7), and (9) to write

〈x〉φ(t) = φ1,0(t)
φ0,0(t)

, (10)

and

〈(x − xa)2〉φ(t) = φ2,0(t) − 2xaφ1,0(t) + x2
aφ0,0(t)

φ0,0(t)
. (11)

Multiplying Eqs. (1), (2), and (5) by Pk(µ), integrating over
angle, and employing Eq. (8) and the orthogonality of the Legen-
dre polynomials gives

1
v

∂

∂t
φk + k + 1

2k + 1
∂

∂x
φk+1 + k

2k + 1
∂

∂x
φk−1 + �tφk = �sφ0δk,0, (12)

lim|x|→∞ φk = 0, (13)
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Moment Analysis of Angular Approximation Methods 197

and

φk(x, 0) = �(x)δk,0. (14)

In developing Eq. (12), we have additionally applied the recursion
relation (Lewis and Miller, 1993)

µPk(µ) = k + 1
2k + 1

Pk+1(µ) + k
2k + 1

Pk−1(µ). (15)

Next, we define spatial moments of the initial scalar flux corre-
sponding to Eq. (9),

�m =
∫ ∞

−∞
xm�(x)dx. (16)

When we multiply Eqs. (12) and (14) by xm , where m ≥ 0, inte-
grate over space, and make use of Eqs. (9), (13), and (16), we
have

1
v

d
dt

φm,k − m(k + 1)
2k + 1

φm−1,k+1 − mk
2k + 1

φm−1,k−1

+ �tφm,k = �sφm,0δk,0, (17)

and

φm,k(0) = �mδk,0. (18)

For m = 0 and k = 0, Eqs. (17) and (18) become

1
v

d
dt

φ0,0 + �aφ0,0 = 0, (19)

and

φ0,0(0) = �0. (20)

We can solve Eqs. (19) and (20) to write

φ0,0(t) = �0e −�avt . (21)
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198 J. D. Densmore and R. G. McClarren

For m = 0 and k = 1, Eqs. (17) and (18) yield

1
v

d
dt

φ0,1 + �tφ0,1 = 0, (22)

and

φ0,1(0) = 0. (23)

Solving Eqs. (22) and (23) shows that

φ0,1(t) = 0. (24)

For m = 1 and k = 0, we obtain from Eqs. (17), (18), and (24)

1
v

d
dt

φ1,0 + �aφ1,0 = 0, (25)

and

φ1,0(0) = �1. (26)

The solution to these two expressions is

φ1,0(t) = �1e −�avt . (27)

If we define the initial flux-weighted average of x as

〈x〉� =

∫ ∞

−∞
x�(x)dx

∫ ∞

−∞
�(x)dx

(28)

= �1

�0
,

where the second equality follows from Eq. (16), then evaluating
Eq. (10) with Eqs. (21), (27), and (28) gives

〈x〉φ(t) = 〈x〉�. (29)
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Moment Analysis of Angular Approximation Methods 199

Thus, the flux-weighted average of x is constant and equal to its
initial value.

For m = 0 and k = 2, Eqs. (17) and (18) yield

1
v

d
dt

φ0,2 + �tφ0,2 = 0, (30)

and

φ0,2(0) = 0. (31)

When we solve Eqs. (30) and (31), we have

φ0,2(t) = 0. (32)

For m = 1 and k = 1, we obtain from Eq. (17), (18), (21), and
(32)

1
v

d
dt

φ1,1 + �tφ1,1 = �0

3
e −�avt , (33)

and

φ1,1(0) = 0. (34)

The solution to Eqs. (33) and (34) is

φ1,1(t) = �0

3�s

(
e −�avt − e −�tvt) . (35)

For m = 2 and k = 0, combining Eqs. (17), (18), and (35) gives

1
v

d
dt

φ2,0 + �aφ2,0 = 2�0

3�s

(
e −�avt − e −�tvt) , (36)

and

φ2,0(0) = �2. (37)
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200 J. D. Densmore and R. G. McClarren

By solving Eqs. (36) and (37), we see that

φ2,0(t) = �2e −�avt + 2�0

3�2
s

[
(�svt − 1)e −�avt + e −�tvt] . (38)

Defining the initial flux-weighted average of (x − xa)2 as

〈(x − xa)2〉� =

∫ ∞

−∞
(x − xa)2�(x)dx
∫ ∞

−∞
�(x)dx

(39)

= �2 − 2xa�1 + x2
a�0

�0
,

where the second equality is again from Eq. (16), and substituting
Eqs. (21), (27), (38), and (39) into Eq. (11) allows us to write

〈
(x − xa)2〉

φ
(t) = 〈

(x − xa)2〉
�

+ 2
3�2

s

(
�svt − 1 + e −�svt). (40)

This expression is a statement that the flux-weighted average of
(x − xa)2 is equal to its initial value plus a term that describes how
particles spread out from their initial positions. Of course, this
term is an increasing function of time.

Equations (29) and (40) also hold for the PN and SN angu-
lar discretizations (Lewis and Miller, 1993) of Eqs. (1), (2), and
(5). Equations (12)–(14) with φk = 0 for k > N are the PN equa-
tions, and thus the analysis in this case is nearly identical to the
one presented above. [If N = 1, then φ2 = 0 and there is no need
to develop Eq. (32)]. For the SN discretization, the only restric-
tion on the angular quadrature is that it integrate the first three
Legendre polynomials exactly.

3. Moment Analysis of Angular Approximation Methods

We now determine the flux-weighted averages of x and (x − xa)2

corresponding to several angular approximation methods. These
methods all replace Eq. (1) with an equation or set of equations
for the scalar flux and possibly higher-order angular moments of
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Moment Analysis of Angular Approximation Methods 201

the angular flux. Similar to Eqs. (9)–(11), we define

φm(t) =
∫ ∞

−∞
xmφ(x, t)dx, (41)

and express Eqs. (6) and (7) as

〈x〉φ(t) = φ1(t)
φ0(t)

, (42)

and

〈
(x − xa)2〉

φ
(t) = φ2(t) − 2xaφ1(t) + x2

aφ0(t)
φ0(t)

. (43)

3.1. Diffusion Approximation

The diffusion approximation of Eqs. (1), (2), and (5) is

1
v

∂φ

∂t
− 1

3�t

∂2φ

∂x2
+ �aφ = 0, (44)

lim
|x|→∞

φ = 0, (45)

and

φ(x, 0) = �(x). (46)

Multiplying Eqs. (44) and (46) by xm , where m ≥ 0, integrating
over space, and applying Eqs. (16), (41), and (45) yields

1
v

d
dt

φm − m(m − 1)
3�t

φm−2 + �aφm = 0, (47)

and

φm(0) = �m . (48)
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202 J. D. Densmore and R. G. McClarren

For m = 0, we obtain from Eqs. (47) and (48)

1
v

d
dt

φ0 + �aφ0 = 0, (49)

and

φ0(0) = �0. (50)

The solution to these two expressions is

φ0(t) = �0e −�avt . (51)

For m = 1, Eqs. (47) and (48) become

1
v

d
dt

φ1 + �aφ1 = 0, (52)

and

φ1(0) = �1. (53)

Solving Eqs. (52) and (53) gives

φ1(t) = �1e −�avt . (54)

For m = 2, using Eqs. (47), (48), and (51) allows us to write

1
v

d
dt

φ2 + �aφ2 = 2�0

3�t
e −�avt , (55)

and

φ2(0) = �2. (56)

When we solve Eqs. (55) and (56), we have

φ2(t) = �2e −�avt + 2�0vt
3�t

e −�avt . (57)
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Moment Analysis of Angular Approximation Methods 203

Evaluating Eqs. (42) and (43) with Eqs. (28), (39), (51), (54), and
(57) shows that for the diffusion approximation

〈x〉φ(t) = 〈x〉�, (58)

and

〈(x − xa)2〉φ(t) = 〈
(x − xa)2〉

�
+ 2vt

3�t
. (59)

By comparing Eqs. (58) and (59) to Eqs. (29) and (40), we
see that the diffusion approximation produces the correct flux-
weighted average of x but not the correct flux-weighted average
of (x−xa)2. This result is in contrast to steady-state radiation trans-
port, where the diffusion approximation preserves both quantities
exactly (Brantley and Larsen, 2000).

3.2. P1/3 Approximation

Olson et al. (2000) have suggested the following modification to
the P1 equations, i.e., Eqs. (12)–(14) with φk = 0 for k > 1,

1
v

∂φ

∂t
+ ∂J

∂x
+ �aφ = 0, (60)

η

v
∂J
∂t

+ 1
3

∂φ

∂x
+ �t J = 0, (61)

lim|x|→∞ φ = 0, (62)

lim|x|→∞ J = 0, (63)

φ(x, 0) = �(x), (64)

and

J (x, 0) = 0. (65)

Here, J (x, t) is the current,

J (x, t) =
∫ 1

−1
µψ(x, µ, t)dx, (66)
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204 J. D. Densmore and R. G. McClarren

which, because P1(µ) = µ, is Eq. (8) for k = 1. The only differ-
ence between Eqs. (60)–(65) and the P1 equations is the coeffi-
cient η multiplying the time derivative in Eq. (61). When η = 1
we of course recover the P1 equations, while η = 0 yields the dif-
fusion approximation in Eqs. (44)–(46). However, setting η = 1/3
gives the P1/3 approximation of Eqs. (1), (2), and (5), which pro-
duces solutions that propagate at the correct speed v instead of
the erroneous v/

√
3 for P1 (Olson et al., 2000).

To determine the flux-weighted averages of x and (x − xa)2

for the P1/3 approximation, we first define spatial moments of the
current corresponding to Eq. (41),

Jm(t) =
∫ ∞

−∞
xmJ (x, t)dx. (67)

Then, when we multiply Eqs. (60), (61), (64), and (65) by xm ,
where m ≥ 0, integrate over space, and employ Eqs. (16), (41),
(62), (63), and (67), we have

1
v

d
dt

φm − mJm−1 + �aφm = 0, (68)

η

v
d
dt

Jm − m
3

φm−1 + �tJm = 0, (69)

φm(0) = �m, (70)

and

Jm(0) = 0. (71)

For m = 0, Eqs. (69)–(71) are

1
v

d
dt

φ0 + �aφ0 = 0, (72)

η

v
d
dt

J0 + �tJ0 = 0, (73)

φ0(0) = �0, (74)
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Moment Analysis of Angular Approximation Methods 205

and

J0(0) = 0. (75)

The solution to Eqs. (72)–(75) is

φ0(t) = �0e −�avt , (76)

and

J0(t) = 0. (77)

For m = 1, we obtain from Eqs. (68)–(71), (76), and (77)

1
v

d
dt

φ1 + �aφ1 = 0, (78)

η

v
d
dt

J1 + �t J1 = �0

3
e −�avt , (79)

φ1(0) = �1, (80)

and

J1(0) = 0. (81)

Solving these expressions yields

φ1(t) = �1e −�avt , (82)

and

J1(t) = �0

3(�t − η�a)

(
e −�avt − e −�tvt/η) . (83)

For m = 2, combining Eqs. (68), (70), and (83) shows that

1
v

d
dt

φ2 + �aφ2 = 2�0

3(�t − η�a)

(
e −�avt − e −�tvt/η) , (84)
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206 J. D. Densmore and R. G. McClarren

and

φ2(0) = �2. (85)

We can solve Eqs. (84) and (85) to write

φ2(t) = �2e −�avt + 2�0

3(�t − η�a)2

{
[(�t − η�a)vt − η]e −�avt

+ ηe −�tvt/η}. (86)

Substituting Eqs. (28), (39), (76), (82), and (86) into Eqs. (42)
and (43) gives

〈x〉φ(t) = 〈x〉�, (87)

and

〈(x − xa)2〉φ(t) = 〈(x − xa)2〉�
+ 2

3(�t − η�a)2
{(�t − η�a)vt − η[1 − e −(�t−η�a)vt/η]}. (88)

Equations (29) and (87) are identical, and thus the P1/3 approxi-
mation yields the correct flux-weighted average of x. In fact, this
result holds regardless of the value of η in Eq. (61). However, Eq.
(88) only matches Eq. (40) if η = 1, the value for P1. Olson (2009)
has extended the idea behind the P1/3 approximation to higher-
order PN discretizations, multiplying the time derivatives in the
additional equations by coefficients chosen to preserve the cor-
rect particle speed. Our conclusions above hold in this case, as
well; any choice of coefficients produces the correct flux-weighted
average of x, but the coefficient multiplying the time derivative of
the current must be set to unity in order to generate the correct
flux-weighted average of (x − xa)2.
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Moment Analysis of Angular Approximation Methods 207

3.3. SP2 Approximation

The SP2 approximation of Eqs. (1) and (2) is (Frank et al., 2007)

1
v

∂φ

∂t
+ �aφ − �tξ = 0, (89)

1
v

∂ξ

∂t
− 1

3�t

∂2φ

∂x2
− 4

15�t

∂2ξ

∂x2
+ �tξ = 0, (90)

lim
|x|→∞

φ = 0, (91)

and

lim
|x|→∞

ξ = 0. (92)

In these expressions, ξ(x, t) is an auxiliary variable. Also, corre-
sponding to Eq. (5), the initial condition for φ is

φ(x, 0) = �(x), (93)

while the initial condition for ξ satisfies

− 4
15�t

d2

dx2
ξ(x, 0) + �tξ(x, 0) = 1

3�t

d2�

dx2
, (94)

which is a steady-state version of Eq. (90) evaluated at t = 0 with
Eq. (93). Similar to Eq. (41), we define

ξm(t) =
∫ ∞

−∞
xmξ(x, t)dx. (95)

Then, multiplying Eqs. (89), (90), (93), and (94) by xm , where
m ≥ 0, integrating over space, and making use of Eqs. (16), (41),
(91), (92), and (95) allows us to write

1
v

d
dt

φm + �aφm − �tξm = 0, (96)

1
v

d
dt

ξm − m(m − 1)
3�t

φm−2 − 4m(m − 1)
15�t

ξm−2 + �tξm = 0, (97)

φm(0) = �m, (98)
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208 J. D. Densmore and R. G. McClarren

and

−4m(m − 1)
15�t

ξm−2(0) + �tξm(0) = m(m − 1)
3�t

�m−2. (99)

For m = 0, Eqs. (96)–(99) become

1
v

d
dt

φ0 + �aφ0 − �tξ0 = 0, (100)

1
v

d
dt

ξ0 + �tξ0 = 0, (101)

φ0(0) = �0, (102)

and

ξ0(0) = 0. (103)

Solving Eqs. (101)–(103) gives

φ0(t) = �0e −�avt , (104)

and

ξ0(t) = 0. (105)

For m = 1, Eqs. (96)–(99) yield

1
v

d
dt

φ1 + �aφ1 − �tξ1 = 0, (106)

1
v

d
dt

ξ1 + �tξ1 = 0, (107)

φ1(0) = �1, (108)

and

ξ1(0) = 0. (109)

The solution to Eqs. (106)–(109) is

φ1(t) = �1e −�avt , (110)
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Moment Analysis of Angular Approximation Methods 209

and

ξ1(t) = 0. (111)

For m = 2, we obtain from Eqs. (96)–(99), (104), and (105)

1
v

d
dt

φ2 + �aφ2 − �tξ2 = 0, (112)

1
v

d
dt

ξ2 + �tξ2 = 2�0

3�t
e −�avt , (113)

φ2(0) = �2, (114)

and

ξ2(0) = 2�0

3�2
t
. (115)

By solving Eqs. (112)–(115), we see that

φ2(t) = �2e −�avt

+ 2�0

3�t�2
s

[
(�t�svt − �a)e −�avt + �ae −�tvt] , (116)

and

ξ2(t) = 2�0

3�2
t �s

(
�te −�avt − �ae −�tvt) . (117)

When we evaluate Eqs. (42) and (43) with Eqs. (28), (39), (104),
(110), and (116), we have

〈x〉φ(t) = 〈x〉�, (118)

and

〈(x − xa)2〉φ(t) = 〈(x − xa)2〉�
+ 2

3�t�2
s

[
�t�svt − �a

(
1 − e −�svt)] . (119)
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210 J. D. Densmore and R. G. McClarren

A comparison of Eqs. (29), (40), (118), and (119) reveals that, as
with the diffusion and P1/3 approximations, the SP2 approxima-
tion preserves the correct flux-weighted average of x but not the
correct flux-weighted average of (x − xa)2.

3.4. SP3 Approximation

The SP3 approximation of Eqs. (1) and (2) is (Frank et al., 2007)

1
v

∂φ

∂t
− 1

3�t

∂2φ

∂x2
− 2

3�t

∂2χ

∂x2
+ 1

3�t

∂2ζ

∂x2
+ �aφ = 0, (120)

α

v
∂χ

∂t
− 2

45�t

∂2φ

∂x2
− 11

63�t

∂2χ

∂x2
+ �t

3
χ = 0, (121)

1
v

∂ζ

∂t
− 1

3�t

∂2φ

∂x2
− 2

3�t

∂2χ

∂x2
− 12(1 − α) − 5

15�t

∂2ζ

∂x2

+ �aφ + �tζ = 0, (122)

lim|x|→∞ φ = 0, (123)

lim|x|→∞ χ = 0, (124)

and

lim
|x|→∞

ζ = 0. (125)

Here, χ(x, t) and ζ(x, t) are auxiliary variables and 0 ≤ α ≤ 1 is
an adjustable parameter that controls robustness. Note that when
α = 0 the time derivative in Eq. (121) vanishes, whereas α � 0.9
results in an ill-posed system of equations (Frank et al., 2007). In
addition, the initial condition for φ that replaces Eq. (5) is

φ(x, 0) = �(x), (126)

while the initial condition for ζ is given by

ζ(x, 0) = 0. (127)

Frank et al. (2007) also propose two different initial conditions
for χ . The first is described by a steady-state version of Eq. (121)
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Moment Analysis of Angular Approximation Methods 211

evaluated at t = 0 using Eq. (126), similar to Eq. (94),

− 11
63�t

d2

dx2
χ(x, 0) + �t

3
χ(x, 0) = 2

45�t

d2�

dx2
. (128)

The second follows from identifying χ as the second Legendre
moment of the angular flux, i.e., Eq. (8) for k = 2. Substituting
Eq. (5) into this expression yields

χ(x, 0) = 0. (129)

If we define spatial moments of χ and ζ corresponding to Eq.
(41),

χm(t) =
∫ ∞

−∞
xmχ(x, t)dx, (130)

and

ζm(t) =
∫ ∞

−∞
xmζ(x, t)dx, (131)

then we can multiply Eqs. (120)–(122) and (126)–(129) by xm ,
where m ≥ 0, integrate over space, and apply Eqs. (16), (41),
(123)–(125), (130), and (131) to show that

1
v

d
dt

φm − m(m − 1)
3�t

φm−2 − 2m(m − 1)
3�t

χm−2

+ m(m − 1)
3�t

ζm−2 + �aφm = 0, (132)

α

v
d
dt

χm − 2m(m − 1)
45�t

φm−2 − 11m(m − 1)
63�t

χm−2

+ �t

3
χm = 0, (133)

1
v

d
dt

ζm − m(m − 1)
3�t

φm−2 − 2m(m − 1)
3�t

χm−2

− [12(1 − α) − 5]m(m − 1)
15�t

ζm−2 + �aφm + �tζm = 0, (134)
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212 J. D. Densmore and R. G. McClarren

φm(0) = �m, (135)

ζm(0) = 0, (136)

and

−11m(m − 1)
63�t

χm−2(0) + �t

3
χm(0) = 2m(m − 1)

45�t
�m−2, (137)

or

χm(0) = 0. (138)

For m = 0, Eqs. (132)–(136) are

1
v

d
dt

φ0 + �aφ0 = 0, (139)

α

v
d
dt

χ0 + �t

3
χ0 = 0, (140)

1
v

d
dt

ζ0 + �aφ0 + �tζ0 = 0, (141)

φ0(0) = �0, (142)

and

ζ0(0) = 0, (143)

while Eqs. (137) and (138) both become

χ0(0) = 0. (144)

When we solve Eqs. (139)–(144), we have

φ0(t) = �0e −�avt , (145)

χ0(t) = 0, (146)

and

ζ0(t) = −�a�0

�s

(
e −�avt − e −�tvt) . (147)
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Moment Analysis of Angular Approximation Methods 213

For m = 1, we obtain from Eqs. (132) and (135)

1
v

d
dt

φ1 + �aφ1 = 0, (148)

and

φ1(0) = �1. (149)

Solving Eqs. (148) and (149) gives

φ1(t) = �1e −�avt . (150)

For m = 2, combining Eqs. (132), (135), and (145)–(147) allows
us to write

1
v

d
dt

φ2 + �aφ2 = 2�0

3�t�s

(
�te −�avt − �ae −�tvt) , (151)

and

φ2(0) = �2. (152)

The solution to these two expressions is

φ2(t) = �2e −�avt

+ 2�0

3�t�2
s

[
(�t�svt − �a)e −�avt + �ae −�tvt] . (153)

Equations (145), (150), and (153) are the same as Eqs. (104),
(110), and (116), and thus Eqs. (42) and (43) are identical be-
tween the SP2 and SP3 approximations. This result does not de-
pend on the value of α or which initial condition for χ is used.

3.5. SSP3 Approximation

Frank et al. (2007) have suggested simplifying the SP3 approxima-
tion and also improving its robustness by neglecting ζ . Equations
(120)–(129) then reduce to the SSP3 approximation of Eqs. (1),
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214 J. D. Densmore and R. G. McClarren

(2), and (5),

1
v

∂φ

∂t
− 1

3�t

∂2φ

∂x2
− 2

3�t

∂2χ

∂x2
+ �aφ = 0, (154)

α

v
∂χ

∂t
− 2

45�t

∂2φ

∂x2
− 11

63�t

∂2χ

∂x2
+ �t

3
χ = 0, (155)

lim|x|→∞ φ = 0, (156)

lim|x|→∞ χ = 0, (157)

φ(x, 0) = �(x), (158)

and

− 11
63�t

d2

dx2
χ(x, 0) + �t

3
χ(x, 0) = 2

45�t

d2�

dx2
, (159)

or

χ(x, 0) = 0. (160)

In addition, we immediately obtain from Eqs. (132)–(138)

1
v

d
dt

φm − m(m − 1)
3�t

φm−2 − 2m(m − 1)
3�t

χm−2

+ �aφm = 0, (161)

α

v
d
dt

χm − 2m(m − 1)
45�t

φm−2 − 11m(m − 1)
63�t

χm−2

+ �t

3
χm = 0, (162)

φm(0) = �m, (163)

and

−11m(m − 1)
63�t

χm−2(0) + �t

3
χm(0) = 2m(m − 1)

45�t
�m−2, (164)
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Moment Analysis of Angular Approximation Methods 215

or

χm(0) = 0. (165)

For m = 0, Eqs. (161)–(163) become

1
v

d
dt

φ0 + �aφ0 = 0, (166)

α

v
d
dt

χ0 + �t

3
χ0 = 0, (167)

and

φ0(0) = �0, (168)

and Eqs. (164) and (165) both yield

χ0(0) = 0. (169)

Solving Eqs. (166)–(169) gives

φ0(t) = �0e −�avt , (170)

and

χ0(t) = 0. (171)

For m = 1, Eqs. (161) and (163) are

1
v

d
dt

φ1 + �aφ1 = 0, (172)

and

φ1(0) = �1. (173)

The solution to Eqs. (172) and (173) is

φ1(t) = �1e −�avt . (174)
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216 J. D. Densmore and R. G. McClarren

For m = 2, Eqs. (161), (163), (170), and (171) show that

1
v

d
dt

φ2 + �aφ2 = 2�0

3�t
e −�avt , (175)

and

φ2(0) = �2. (176)

When we solve Eqs. (175) and (176), we have

φ2(t) = �2e −�avt + 2�0vt
3�t

e −�avt . (177)

Equations (170), (174), and (177) are identical to Eqs. (51),
(54), and (57), which results in Eqs. (42) and (43) being the
same for the SSP3 approximation as the diffusion approximation.
Again, this outcome holds regardless of the value of α or the
choice of initial condition for χ .

4. Comparison of Moment Errors

We found in the previous section that all of the angular approx-
imation methods we consider preserve the correct flux-weighted
average of x but generate an incorrect flux-weighted average of
(x − xa)2. To examine the errors in this latter quantity, we ex-
press the flux-weighted average of (x − xa)2 corresponding to
each method as the exact result given by Eq. (40) plus a time-
dependent error term E (t),

〈(x − xa)2〉φ(t) = 〈(x − xa)2〉�
+ 2

3�2
s

(�svt − 1 + e −�svt) + E (t). (178)

Comparing Eq. (178) to Eqs. (59), (88), and (119) shows that for
the diffusion and SSP3 approximations

E (t) = 2
3�t�2

s
[−�s�avt + �t(1 − e −�svt)], (179)
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Moment Analysis of Angular Approximation Methods 217

for the P1/3 approximation

E (t) = 2
3(�t − η�a)2�2

s

{ − (1 − η)(�t − η�a)�s�avt

− η�2
s [1 − e −(�t−η�a)vt/η]

+ (�t − η�a)2(1 − e −�svt)
}
, (180)

and for the SP2 and SP3 approximations

E (t) = 2
3�t�s

(1 − e −�svt). (181)

Equations (179)–(181) have a complicated dependence on
not only the elapsed time but also the cross sections, and thus a
general comparison of these expressions is difficult. However, a
limit of interest is the behavior of these error terms for large t and
arbitrary cross sections. In this case, Eqs. (179)–(181) become for
the diffusion and SSP3 approximations

E (t) ∼ −2�avt
3�t�s

, (182)

for the P1/3 approximation

E (t) ∼ − 2(1 − η)�avt
3(�t − η�a)�s

, (183)

and for the SP2 and SP3 approximations

E (t) ∼ 2
3�t�s

. (184)

From Eq. (182) we see that the diffusion and SSP3 error is nega-
tive for large t , implying that the flux-weighted average of (x−xa)2

is too small. This result is somewhat counterintuitive, as it is well
known that the diffusion approximation produces solutions that
propagate too quickly, a deficiency that should cause the flux-
weighted average of (x − xa)2 to be too large. Of course, the ex-
planation of this contradiction is that solutions generated by the
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218 J. D. Densmore and R. G. McClarren

diffusion approximation are also attenuated too much. Equation
(183) shows that the P1/3 error is also negative for large t . Sim-
mons and Mihalas (2000) have demonstrated through a perturba-
tion analysis of the P1/3 approximation that this method can also
attenuate solutions too much, which is consistent with Eq. (183).
By comparing Eqs. (182) and (183), we additionally see that the
P1/3 error is smaller in magnitude than the diffusion and SSP3 er-
ror for large t . However, the angular approximation methods with
the smallest error in magnitude for large t are the SP2 and SP3 ap-
proximations, as seen from Eq. (184). Clearly, this error term is
bounded independently of the elapsed time, unlike Eqs. (182)
and (183). Thus, we expect the SP2 and SP3 approximations to be
more accurate than the diffusion, P1/3, and SSP3 approximations
for sufficiently large elapsed times.

5. Improved SP2 Approximation

In the SP3 and SSP3 approximations, there are two different initial
conditions for the auxiliary variable χ . The first initial condition
satisfies a time-independent equation given by Eq. (128) or (159),
while the second initial condition is developed by identifying χ as
the second Legendre moment of the angular flux and in our case
is zero, as in Eq. (129) or (160). However, for the SP2 approxima-
tion we only have one initial condition for the auxiliary variable
ξ , which is defined by Eq. (94). An alternative to solving this time-
independent equation is to set the initial value of ξ equal to zero,
too, i.e.,

ξ(x, 0) = 0. (185)

Not only does this initial condition simplify the SP2 approxima-
tion, it should also improve the accuracy of this method, as we will
see shortly.

When Eq. (185) replaces Eq. (94), Eqs. (104), (105), (110),
(111), and therefore Eq. (118) remain unchanged, whereas Eq.
(115) becomes

ξ2(0) = 0. (186)
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Moment Analysis of Angular Approximation Methods 219

Using this expression along with Eq. (114) as the initial conditions
for Eqs. (112) and (113) shows that Eqs. (116) and (117) are now

φ2(t) = �2e −�avt + 2�0

3�2
s

[(�svt − 1)e −�avt + e −�tvt], (187)

and

ξ2(t) = 2�0

3�t�s
(e −�avt − e −�tvt), (188)

respectively. We can then substitute Eqs. (39), (104), (110), and
(187) into Eq. (43) to write

〈(x − xa)2〉φ(t) = 〈(x − xa)2〉� + 2
3�2

s
(�svt − 1 + e −�svt). (189)

Equations (40) and (189) are identical, and thus employing Eq.
(186) as the initial condition for ξ in the SP2 approximation pre-
serves the correct flux-weighted average of (x −xa)2. We therefore
expect this improved SP2 approximation to be more accurate than
the other angular approximation methods.

6. Numerical Results

We now test our theoretical predictions regarding the error in the
flux-weighted average of (x − xa)2 for each angular approxima-
tion method by calculating this quantity directly from numerical
results. These results also allow us to relate the accuracy of the
flux-weighted average of (x − xa)2 to the overall accuracy of the
method. As we will see, an accurate value for this flux-weighted
average does not necessarily guarantee an accurate solution.

We consider two problems corresponding to a non-
dimensional version of the Eqs. (1), (2), and (5) with �t = 1.0,
�a = 0.3, and v = 1. The problems differ in their initial condi-
tions, which are symmetric about x = 8. We simulated these prob-
lems using the diffusion, P1/3, SP2, SP3, and SSP3 approximations
along with the improved SP2 approximation and the P1 discretiza-
tion out to elapsed times of t = 1, 5, and 15. In the SP3 and SSP3

approximations we set α = 2/3. For the diffusion and simplified
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220 J. D. Densmore and R. G. McClarren

PN calculations we employed a basic finite difference scheme
with backward Euler time integration, while for the P1/3 and
P1 calculations we used a semi-implicit discontinuous Galerkin
method (McClarren et al., 2008). Furthermore, we performed our
simulations on a sequence of uniform spatial grids with an increas-
ing number of cells and a time-step size of �t = 0.3�x. From this
sequence we computed the flux-weighted average of (x − xa)2

for xa = 8 using Wynn-epsilon acceleration (Bornemann et al.,
2004; Ganapol, 2008). For the different elapsed times we speci-
fied different spatial domains: x ∈ [0, 16] for t = 1, x ∈ [−4, 20]
for t = 5, and x ∈ [−10, 26] for t = 15. We also generated refer-
ence transport solutions using high-order PN discretizations (P99

for t = 1 and P29 and for t = 5 and 15) and the semi-implicit dis-
continuous Galerkin method (McClarren et al., 2008).

In Figure 1 we plot the absolute value of the error in the
flux-weighted average of (x − xa)2 given by Eqs. (179)–(181) as
a function of vt for the cross sections specified previously. At early
times, we see that the errors for all of the angular approximation
methods are comparable, with the P1/3 approximation marginally
better. Later near vt = 5, the error for the P1/3 approximation is
nearly zero. Then at late times, the SP2 and SP3 approximations
have the smallest error in magnitude. We therefore expect that
the angular approximation method that is the most accurate to
vary as a function of time.

In the numerical results that follow, we use the term “initial
smoothing” with the SP3 and SSP3 approximations to denote that

FIGURE 1 Absolute value of the error in 〈(x − xa)2〉φ as a function of vt .
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Moment Analysis of Angular Approximation Methods 221

a time-independent equation, Eq. (128) or (159), was solved to
determine the initial condition for the auxiliary variable χ . When
this term is absent, the alternate initial condition, Eq. (129) or
(160), was applied. Also, in addition to the flux-weighted average
of (x − xa)2, we report the error in the scalar flux with respect to
the reference transport solution for each angular approximation
method as measured by the 2-norm on the finest spatial grid. Fur-
thermore, we plot the scalar flux for this grid and x ≥ 8 only as
the two problems are symmetric about this point.

The first problem has an initial condition consisting of a
square pulse,

�(x) =
{

1 7 ≤ x ≤ 9
0 otherwise

. (190)

We simulated this problem using spatial grids with 2 j cells, where
j = 4 . . . 10. The results from these simulations are given in Fig-
ures 2–4 and Tables 1–3.

In Figure 2 the scalar flux at t = 1 is plotted. Perhaps un-
surprisingly none of the angular approximation methods cap-
tures the reference transport solution well: at such an early time
the solution is dominated by free streaming, for which low-order
angular discretization schemes like the approximation methods

TABLE 1 Theoretical and Numerical Values of 〈(x − xa)2〉φ and Error in the
Scalar Flux for the First Problem at t = 1

Theoretical Numerical
Method 〈(x − xa)2〉φ 〈(x − xa)2〉φ ||φtrans − φ||2
Transport 0.60080 — —
P1 0.60080 0.60082 0.31277
P1/3 0.81816 0.81817 0.28555
Diffusion 1.00000 1.00000 0.27561
SP2 1.08024 1.08017 0.31533
Improved SP2 0.60080 0.60080 0.26538
SP3 w/init. smoothing 1.08024 1.07913 0.27386
SP3 1.08024 1.08024 0.28055
SSP3 w/init. smoothing 1.00000 0.99854 0.29040
SSP3 1.00000 1.00000 0.28021
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Moment Analysis of Angular Approximation Methods 225

TABLE 2 Theoretical and Numerical Values of 〈(x − xa)2〉φ and Error in the
Scalar Flux for the First Problem at t = 5

Theoretical Numerical
Method 〈(x − xa)2〉φ 〈(x − xa)2〉φ ||φtrans − φ||2 × 103

Transport 3.77578 — —
P1 3.77578 3.77213 6.91272
P1/3 3.76269 3.76236 0.16214
Diffusion 3.66667 3.66662 2.02640
SP2 4.69940 4.69979 3.33851
Improved SP2 3.77578 3.77629 0.68197
SP3 w/init. smoothing 4.69940 4.69959 3.33851
SP3 4.69940 4.69993 3.88592
SSP3 w/init. smoothing 3.66667 3.66579 7.73697
SSP3 3.66667 3.66658 5.73906

we consider are, in general, woefully inaccurate. Indeed, Table 1
shows that at this time all the methods have about the same error.

The numerical results at t = 5 are displayed in Figure 3 and
Table 2. Here, we see that the P1/3 and improved SP2 approx-
imations have the smallest error. This observation is consistent
with the corresponding values for the flux-weighted average of
(x − xa)2, which are very accurate. Note also that although the
flux-weighted average of (x − xa)2 for both versions of the SSP3

TABLE 3 Theoretical and Numerical Values of 〈(x − xa)2〉φ and Error in the
Scalar Flux for the First Problem at t = 15

Theoretical Numerical
Method 〈(x − xa)2〉φ 〈(x − xa)2〉φ ||φtrans − φ||2 × 104

Transport 13.2585 — —
P1 13.2585 13.2747 0.77078
P1/3 11.1701 11.1847 1.09592
Diffusion 10.3333 10.3868 1.81881
SP2 14.2109 14.2513 0.57862
Improved SP2 13.2585 13.2990 0.19938
SP3 w/init. smoothing 14.2109 14.2511 0.43971
SP3 14.2109 14.2513 0.36923
SSP3 w/init. smoothing 10.3333 10.3852 2.97479
SSP3 10.3333 10.3858 2.77415
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226 J. D. Densmore and R. G. McClarren

approximation and the P1 discretization is close to the exact value,
these methods have the highest error.

Figure 4 and Table 3 show that at t = 15 the SP2 approxima-
tion, both versions of the SP3 approximation, the improved SP2

approximation, and the P1 discretization have the most accurate
values for the flux-weighted average of (x − xa)2, as predicted by
our theory. These methods also have the smallest error in their
scalar flux. In addition, we see that the accuracy of the P1/3 ap-
proximation at t = 5 does not guarantee accuracy at this later
time.

The second problem has an initial scalar flux characterized
by a Gaussian profile,

�(x) = e −4(x−8)2
. (191)

We simulated this problem again using spatial grids with 2 j cells,
where j = 5 . . . 11 in this case. The results generated by these sim-
ulations are displayed in Figures 5–7 and Tables 4–6.

Our previous comments for the first problem apply to this
problem, too. At t = 1, Figure 5 and Table 4 show that no angu-
lar approximation method is very accurate. Later at t = 5, we see
from Figure 6 and Table 5 that the P1/3 and improved SP2 approx-
imations match the reference transport solution the best. The
flux-weighted average of (x − xa)2 for these two methods is also
very close to the exact value. As before, both versions of the SSP3

TABLE 4 Theoretical and Numerical Values of 〈(x − xa)2〉φ and Error in the
Scalar Flux for the Second Problem at t = 1

Theoretical Numerical
Method 〈(x − xa)2〉φ 〈(x − xa)2〉φ ||φtrans − φ||2 × 102

Transport 0.39246 — —
P1 0.39246 0.39091 2.5802
P1/3 0.60983 0.60982 4.3836
Diffusion 0.79167 0.79167 3.7028
SP2 0.87191 0.87176 3.1799
Improved SP2 0.39246 0.39247 3.1718
SP3 w/init. smoothing 0.87191 0.87098 4.1592
SP3 0.87191 0.87191 6.5069
SSP3 w/init. smoothing 0.79167 0.79044 2.0607
SSP3 0.79167 0.79167 2.7127
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230 J. D. Densmore and R. G. McClarren

TABLE 5 Theoretical and Numerical Values of 〈(x − xa)2〉φ and Error in the
Scalar Flux for the Second Problem at t = 5

Theoretical Numerical
Method 〈(x − xa)2〉φ 〈(x − xa)2〉φ ||φtrans − φ||2 × 103

Transport 3.56745 — —
P1 3.56745 3.56733 6.0160
P1/3 3.55436 3.55449 0.12301
Diffusion 3.45833 3.45826 1.4125
SP2 4.49107 4.49137 3.1799
Improved SP2 3.56745 3.56705 0.60744
SP3 w/init. smoothing 4.49107 4.49112 1.7987
SP3 4.49107 4.49138 2.6168
SSP3 w/init. smoothing 3.45833 3.45757 5.7591
SSP3 3.45833 3.45824 4.2273

approximation and the P1 discretization have the highest error
at this time, even though the flux-weighted average of (x − xa)2

for these methods is fairly accurate. Then at t = 15, Figure 7 and
Table 6 show that once more the SP2 approximation, both ver-
sions of the SP3 approximation, the improved SP2 approximation,
and the P1 discretization are the most accurate methods with re-
spect to the scalar flux and the flux-weighted average of (x − xa)2,
while the relative error in the P1/3 approximation has increased
substantially from t = 5.

TABLE 6 Theoretical and Numerical Values of 〈(x − xa)2〉φ and Error In the
Scalar Flux for the Second Problem at t = 15.

Theoretical Numerical
Method 〈(x − xa)2〉φ 〈(x − xa)2〉φ ||φtrans − φ||2 × 104

Transport 13.050 — —
P1 13.050 13.050 0.35646
P1/3 10.962 10.961 0.49504
Diffusion 10.125 10.125 0.82434
SP2 14.003 14.003 0.26242
Improved SP2 13.050 13.050 0.092725
SP3 w/init. smoothing 14.003 14.003 0.16636
SP3 14.003 14.003 0.19837
SSP3 w/init. smoothing 10.125 10.124 1.3689
SSP3 10.125 10.124 1.2734
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Moment Analysis of Angular Approximation Methods 231

We can make several general observations regarding the nu-
merical results presented in this section. First, the predicted val-
ues for the flux-weighted average of (x − xa)2 agreed well with the
observed numerical values for this quantity. However, an accurate
flux-weighted average of (x −xa)2 did not always correspond to an
accurate solution. It appears that requiring this flux-weighted av-
erage to be accurate is a necessary rather than sufficient condition
for determining if a particular angular approximation method
will produce accurate solutions. Nevertheless, the improved SP2

approximation, which does preserve the correct flux-weighted av-
erage of (x − xa)2, was consistently one of the most accurate an-
gular approximations for the problems we examined.

Before concluding this section, we feel that some further
discussion concerning the behavior of the P1 discretization is
in order. Although this method also preserves the correct flux-
weighted average of (x − xa)2, it was not particularly accurate for
the two problems we considered. Indeed, it was the shortcomings
of the P1 discretization that motivated the development of alter-
nate techniques such as the angular approximation methods we
examined in this paper. The P1 equations are the lowest order sys-
tem that has the same flux-weighted averages of x and (x − xa)2

as the analytic transport equation. Unfortunately, capturing these
quantities exactly with such a simplified system of equations leads
to several idiosyncrasies, such as solutions that propagate at an
incorrect speed. In the previous numerical results, this incorrect
speed caused the odd behavior of the P1 discretization.

7. Conclusions

We have extended moment analysis, a technique developed for
investigating the accuracy of discrete-ordinates spatial discretiza-
tion schemes, to time-dependent radiation transport and applied
it to several angular approximation methods. Although restricted
to infinite, homogeneous media, moment analysis is especially ap-
propriate for examining the accuracy of these methods as they
do not correspond to a sequence of increasingly accurate angular
discretizations and therefore are not amenable to standard trun-
cation analysis. We have shown that all of the methods preserve
the correct flux-weighted average of x but not the correct flux-
weighted average of (x − xa)2. In addition, we have demonstrated
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232 J. D. Densmore and R. G. McClarren

that, for general cross sections and large elapsed time, the error
in this latter quantity is smallest in magnitude for the SP2 and SP3

approximations. We have also presented a simple improvement
to the SP2 approximation that allows this method to produce the
correct flux-weighted average of (x − xa)2.

With a set of numerical examples we have tested the re-
sults of our analysis. We found that, for each angular approxi-
mation method, the predicted value for the flux-weighted aver-
age of (x − xa)2 agreed well with the numerical value for this
quantity. We further observed that an accurate flux-weighted av-
erage of (x − xa)2 was not always accompanied by an accurate
solution. However, the angular approximation methods that pro-
duced the most accurate solutions also had the most accurate val-
ues for this flux-weighted average. In particular, the SP2 and SP3

approximations were two of the most accurate methods at large
elapsed times, while the improved SP2 approximation was one of
the most accurate methods at all times, for the the problems we
examined. Thus, we conclude that an accurate flux-weighted av-
erage of (x − xa)2 is a necessary, but not sufficient, condition for
an overall accurate angular approximation method.
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