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THEORETICAL ASPECTS OF THE SIMPLIFIED
Pn EQUATIONS

RYAN G. McCLARREN

Department of Nuclear Engineering, Texas A&M University,
College Station, TX

In celebration of the 50th anniversary of the simplified Pn equations (SPn),
this work reviews the theory underpinning the SPn equations for neutral parti-
cle transport. We recount the derivation of these equations by Gelbard’s formal
procedure and by more recent asymptotic and variational analyses. The relation
between the SPn equations and several other low order approximations is dis-
cussed. Also, the conditions under which the SPn equations are equivalent to
the full Pn equations of the same order are discussed as well as the accuracy of
the SPn equations. Several open problems in the theory of the SPn equations are
posed.
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1. Introduction

The solution of linear transport problems is difficult because of
the rich phase space; in general there are seven independent
variables: three for space, two describing a direction on the unit
sphere, one for speed or energy, and one for time. Obtaining en-
ergy and time dependent solutions to 3-D transport problems is
still challenging, even on petascale computers. Imagine the situa-
tion 50 years ago when the simplified Pn (SPn ) method was devel-
oped by Ely Gelbard: computer resources were strained to solve
3-D diffusion problems. In such a situation the notion of solving
transport problems in higher dimensions could quite rightly be
considered an academic curiosity to those who needed to design
and analyze real systems. To solve transport problems in three
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74 R. G. McClarren

spatial dimensions would be several orders of magnitude larger
than the resource-straining diffusion calculations.

It is into this fray that Gelbard introduced the simplified
Pn method (Gelbard, 1960, 1961, 1962). It was a middle ground
between diffusion and transport that could be solved using the
computational resources of the time. The simplified Pn method
was in some sense the product of a day dream that imagined what
would happen if the spherical harmonics (Pn ) method in general
geometry was as nice as it is in slab geometry (although it is not
clear if this was the genesis of Gelbard’s original derivation). In
slab geometry the Pn equations can be written as a system of 1-D
diffusion equations—in general geometry this is not possible. It
was by the process of writing these 1-D equations in a 3-D form
that led to Gelbard’s formal derivation of the simplified Pn or SPn
equations. These equations were equivalent to the Pn equations in
slab geometry and in other narrow circumstances. In general ge-
ometry initial numerical results suggested that SPn was superior to
diffusion.

For some time the SPn equations existed in theoretical limbo.
The only theoretical justification was, to paraphrase Anselm of
Canterbury’s dictum1—“Gelbard could do it, it was appropriate,
therefore he did it.” In the end, it was the success of the nu-
merical results that were the ultimate justification. It should be
noted, however, that SPn was not widely accepted as an approx-
imate transport method because of the lack of a true theoret-
ical foundation. It was not until the 1990s that this foundation
was poured. Pomraning (1993) and Larsen, Morel, and McGhee
(1993) independently presented analyses that showed that the SPn
equations were an asymptotic correction to standard diffusion the-
ory (in the case of Larsen et al.) and asymptotically related to the
slab geometry Pn equations (in the case of Pomraning). It should
be noted that asymptotic derivations also provide a justification
for Gelbard’s formal derivation. The asymptotic derivations could
have landed at many systems of equations that would ultimately be
equivalent to the SPn equations as written by Gelbard but would
not have their elegant structure. In other words, Gelbard’s deriva-
tion guided the asymptotic derivations.

1The original Latin phrase is “potuit, decuit, ergo fecit.”
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Simplified Pn Equations 75

The SPn equations can also be derived using a variational
analysis. The first of these analyses appeared in Pomraning’s pa-
per where the asymptotic derivation was presented. This deriva-
tion was restricted to a uniform, infinite medium with anisotropic
scattering. Pomraning’s variational analysis was able to produce an
arbitrary order SPn approximation. Later, a finite medium with
material interfaces and boundary conditions, along with multi-
group treatments, were treated to derive the SP2 equations by
Tomasevic and Larsen (1996) and for the SP3 equations by Brant-
ley and Larsen (2000). These later variational analyses were by ne-
cessity algebraically messy but were able to derive “Marshak-like”
boundary conditions as well as interface conditions for the SPn
equations.

The asymptotic and variational derivations and subsequent
work (Larsen, Morel, and McGhee, 1996; Frank et al., 2007) led
to a groundswell of support for the SPn method. In the past
decade the SPn method has been applied to the radiative cool-
ing of industrially produced glass (see Frank et al.(this issue)
for a review), infrared transfer in combustion and reactive flows
(Schneider et al., 2008; Seaı̄d et al., 2004; Teleaga and Seaı̄d, 2008;
Pinnau and Seaı̈d, 2008; Banda, Seaı̈d, and Teleaga, 2008), crys-
tal growth (Backofen et al., 2004), radiative transfer in biologi-
cal tissues (Klose and Larsen, 2006; Chu, Klose, and Dehghani,
2008; Domı́nguez and Bérubé-Lauzière, 2010), electron transport
(Josef and Morel, 1998), and plasma spectroscopy (Ségur et al.,
2006; Capeillere et al., 2008). All of these applications are in ad-
dition to the use of SPn methods in nuclear engineering (Beckert
and Grundmann, 2008; Kotiluoto, Pyyry, and Helminen, 2007;
Hébert, 2010), as was the original application intended for the
SPn method.

Although there is a theoretical foundation for the SPn equa-
tions, these equations are not effective for solving all types of
transport problems. As the derivations below will detail in a more
precise fashion, if the problem is not (1) “close” to diffusive or
(2) locally 1-D, SPn can give answers worse than diffusion. This
is due to the fact that the SPn equations are an asymptotic ap-
proximation to the transport equation. Away from the appropri-
ate asymptotic limit, there is no guarantee that the SPn equations
are accurate. Of course, not all hope is lost: in certain cases the
SPn equations can be shown to be equivalent to the Pn equations,
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76 R. G. McClarren

which are known to be convergent. In these cases the answer will
be as accurate as the Pn solution.

In this study we will review the underlying theory of the SPn
equations. First we will present four ways to derive the SPn equa-
tions: Gelbard’s original “derivation,” two asymptotic derivations,
and a variational derivation. After detailing these derivations we
discuss, in Section 5, the important theoretical aspect of the SPn
equations that under certain circumstances they are equivalent to
the full Pn equations. Alternate forms of the SPn equations are
presented and discussed in Section 6. Before concluding the re-
view we highlight several open questions in the theory of the SPn
equations.

The lion’s share of the exposition will deal with odd-order
SPn equations for mono-energetic, steady-state transport prob-
lems. The choice of mono-energetic and steady problems was
made to make the derivations and discussions as uncluttered
as possible with complicated details that do not provide further
insight into the theory. In several places we mention how things
change in the time dependent case and point the reader to the
primary sources for the full details. Focusing on mono-energetic
problems is only a minor restriction: if the multigroup method
is used for energy dependent problems, the equation for each
group looks like a mono-energetic transport equation with a
source that couples the other groups. Also, we will almost exclu-
sively deal with odd-order SPn equations. While we do not focus
on SP2 equations or other even-order SPn equations, these equa-
tions are important waypoints in the development of SPn in both
theoretical and computational aspects. For example the work of
Tomasevic and Larsen (1996) on a variational derivation of the
SP2 equations motivated Noh and Miller (1996) to study the use
of SP2 synthetic acceleration of the discrete ordinates equations.

2. Formal Derivation of the Simplified Pn Equations

The energy independent, steady transport equation for the angu-
lar flux of neutral particles is

�̂ · ∇ψ + σtψ = 1
4π

∫
4π

σs(�̂′ · �̂)ψ(�r , �̂′) d�̂′ + Q
4π

. (1)
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Simplified Pn Equations 77

Here ψ(�r , �̂) (cm−2 s−1) is the angular flux of particles, �̂ =
(µ, γ ) ∈ S2 is a point on the unit sphere where µ ∈ [−1, 1] is
the cosine of the polar angle and γ ∈ [0, 2π] is the azimuthal an-
gle, σt (cm−1) is the total interaction macroscopic cross-section,
σs(�̂′ · �̂) (cm−1) is the differential scattering macroscopic cross-
section, and Q is a prescribed, isotropic source. The boundary
conditions for the transport equation prescribe the angular flux
coming into the system,

ψ(�r , �̂) = �−(�̂), for �̂ · n̂ < 0, �r ∈ ∂� (2)

with n̂ the outward normal of the boundary of the domain of in-
terest �. From this equation we can proceed in several different
ways to derive the SPn equations. The original derivation of the
SPn equations by Gelbard (1960, 1961, 1962, 1968) involved an
ad hoc substitution of multivariable differential operators. To be-
gin we restrict Eq. (1) to 1-D slab geometry (Bell and Glasstone,
1970; Case and Zweifel, 1967):

µ
∂ψ

∂x
+ σtψ = 1

2

∫ 1

−1
σs(µ0)ψ(x, µ′) dµ′ + Q

2
, (3)

where µ0 = �̂′ · �̂. We then take Legendre polynomial moments
in µ of the 1-D equation and use recursion relations for these
polynomials to get the slab geometry Pn equations:

dφ1

dx
+ σ0φ0 = Q , (4a)

n
2n + 1

d
dx

φn−1 + n + 1
2n + 1

d
dx

φn+1 + σnφn = 0 for n > 0. (4b)

In these equations we have used the definitions

φn(x) =
∫ 1

−1
Pn(µ)ψ(x, µ) dµ, (5a)

and

σn = σt − σsn, (5b)
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78 R. G. McClarren

where the moments of the differential scattering cross section are
defined by

σsn =
∫ 1

−1
Pn(µ0)σs(µ′

0) dµ0,

where Pn is the nth degree Legendre polynomial. The angular flux
is reconstructed as

ψ =
∞∑

n=0

2n + 1
4π

Pn(µ)φn,

and the differential scattering cross-section is

σs(µ′, µ) =
∞∑

n=0

2n + 1
2

Pn(µ)Pn(µ′)σsn.

Note that σ0 = σt − σs ≡ σa, the absorption cross-section, and
that σ1 ≡ σtr, the so-called transport cross-section. In practice the
Pn equations are solved by truncating the expansion at some order
N . To close the equations we assume here that φN +1 = 0, although
many other closures are possible (see, for example, Brunner,
2001; Hauck and McClarren, 2010; Oh and Holloway, 2008; Buet
and Despres, 2006; Frank et al. 2007; Pomraning, 1964).

The Marshak boundary conditions for the Pn equations are
obtained by equating half-range moments of ψ and the incoming
angular flux at the boundary, �−. For an N th order expansion
where N is odd there are (N + 1)/2 boundary conditions:

2π

∫ ±1

0
P2m−1(µ)ψ dµ =

N∑
n=0

2n + 1
2

φn(x)
∫ ±1

0
P2m−1(µ)Pn(µ) dµ

= 2π

∫ ±1

0
P2m−1(µ)�−(x, µ) dµ,

for x = 0, X, and m = 1, 2, . . . , (N + 1)/2. (6)

In Eq. (6) the positive sign in the integration limits is chosen if
x = 0 (the left edge of the system), and at x = X the integrals
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Simplified Pn Equations 79

go from −1 to 0. Mark boundary conditions can be derived in a
similar manner by replacing the P2m−1 functions by a Dirac delta
functions, δ(µ − µm) where the µm are the roots of PN +1(µ). For
even-order expansions the subject of boundary conditions is more
subtle (Lewis and Miller, 1984). Rulko and Larsen (1993) derived
boundary conditions for P2 using a variational analysis, and more
recently Schaefer, Frank, and Levermore (2009) showed that a
diffusive closure for the equations can resolve the issue.

The Pn equations also have conditions at a material interface.
These can be found by integrating the equations in a vanishing
neighborhood of the material interface to get that

φ1,

nφn−1 + (n + 1)φn+1, for 1 < n < N − 1,

and

φN −1,

must be continuous at a material interface.
The Pn equations are quite accurate for slab geometry prob-

lems and they can provide spectral convergence to the transport
solution (Davison, 1960; Kofink, 1958; Guo, 1995; Yaun, 2000;
Boyd, 2001). Extending these equations to multi-dimensional or
curvilinear geometries is exceedingly complicated. In these cases
(except for 1-D spherical geometry) the angular variable must be
expanded in spherical harmonics. This complication arises be-
cause the other component in the angular variable needs to be
included in the expansion. These extra degrees of freedom make
the number of equations that need to be solved increase as N 2

rather than linearly in N as in the slab case. Not only do the num-
ber of equations increase, but the coupling of moments through
the streaming operator loses its simple structure.

The desire to have a system of moment equations in multi-
dimensional geometries with the simplicity of the slab geometry
Pn equations led Gelbard (1961) to formally carry out an ad hoc
replacement of terms in the Pn equations. First, for odd values of
n, φn was replaced by a vector,

φn → �φn = (
φx

n, φ y
n, φz

n

)t
,
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80 R. G. McClarren

then in the even n equations the derivative in x is replaced by a
divergence,

d
dx

→ ∇·,

and in the odd n equations the x derivative is changed to a
gradient,

d
dx

→ ∇.

This allows us to write the first-order form of the SPn equations
as

∇ · �φ1 + σ0φ0 = Q , (7a)

n
2n + 1

∇φn−1 + n + 1
2n + 1

∇φn+1 + σn�φn = 0 for odd n. (7b)

n
2n + 1

∇ · �φn−1 + n + 1
2n + 1

∇ · �φn+1 + σnφn = 0 for even n > 0. (7c)

The boundary conditions for the SPn equations can be obtained
by making simple replacements in the Marshak boundary condi-
tions given in Eq. (6). Namely we replace the φn with the SPn un-
knowns and µ with n̂ · �̂ where n̂ is the unit inward normal to the
boundary to get

N∑
n even

2n + 1
4π

φn(�r )
∫

n̂·�̂>0
P2m−1(n̂ · �̂)Pn(n̂ · �̂) d2�̂

+
N∑

n odd

2n + 1
4π

n̂ · �φn(�r )
∫

n̂·�̂>0
P2m−1(n̂ · �̂)Pn(n̂ · �̂) d2�̂

=
∫

n̂·�̂>0
P2m−1(n̂ · �̂)�−(�r , �̂) d2�̂,

for �r ∈ ∂� and m = 1, 2, . . . , (N + 1)/2. (8)
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Simplified Pn Equations 81

These boundary conditions are a collection of 1-D Marshak
boundary conditions where the SPn unknowns are interpreted as
components of a Legendre polynomial expansion.
The interface conditions for the SPn equations are found from
the slab geometry interface conditions to be for a N odd

n̂ · φ1,

nφn−1 + (n + 1)φn+1 for n odd,

n(n̂ · �φn−1) + (n + 1)(n̂ · �φn+1) for n even,

and

φN −1

are continuous at a material interface with outward normal n̂.
The simple structure of the SPn equations can be exploited

to eliminate the vector unknowns. From each odd n equation we
get

�φn = − 1
σn

(
n

2n + 1
∇φn−1 + n + 1

2n + 1
∇φn+1

)
, (9)

assuming σn 	= 0. Then using this relation in the even equations
we get the second-order form of the SPn equations

−∇ · 1
3σ1

∇φ0 − ∇ · 2
3σ1

∇φ2 + σ0φ0 = Q , (10a)

−∇ ·
(

n(n − 1)
(2n + 1)(2n − 1)σn−1

)
∇φn−2

−∇ ·
(

(n + 1)(n + 2)
(2n + 1)(2n + 3)σn+1

)
∇φn+2

−∇ ·
(

n2

(2n + 1)(2n − 1)σn−1
+ (n + 1)2

(2n + 1)(2n + 3)σn+1

)
∇φn

+ σnφn = 0, for n = 2, 4, . . . , N − 1. (10b)

The second-order form is useful because it makes the SPn equa-
tions look like a set of coupled diffusion equations.
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82 R. G. McClarren

It is obvious that the SPn equations, in either form, are equiv-
alent to the Pn equations in slab geometry. The SPn equations are
also equivalent to the Pn equations in general geometry; however,
this is true only under certain special conditions that we shall de-
scribe later. The perhaps surprising upshot of this formal deriva-
tion is that this simplified form of the Pn equations is equivalent to
the full Pn equations in certain cases. On the downside this deriva-
tion does not lead to an expression for the angular flux in terms
of moments. Later, in the variational derivation of the SPn equa-
tions, we will be able to reconstruct the angular flux from the
unknowns.

2.1. SP1 and SP3 Equations

To demonstrate what the SPn equations look like in a concrete
sense here we write out the equations for expansions in two and
four unknowns. In first order form the SP1 equations are

∇ · �φ1 + σaφ0 = Q , (11a)

1
3
∇φ0 + σtr �φ1 = 0. (11b)

The boundary conditions for the SP1 equations are, using Eq. (6),

1
2
φ0(�r ) + n̂ · �φ1(�r )

= 2
∫

n̂·�̂>0
P1(n̂ · �̂)�−(�r , �̂) d2�̂, for �r ∈ ∂�. (12)

In second-order form the SP1 equations are

−∇ · 1
3σtr

∇φ0 + σaφ0 = Q . (13)

This is equivalent to the diffusion approximation to transport in
general geometry. This implies that the SP1 and P1 equations are
the same in general geometry. The boundary condition for the
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Simplified Pn Equations 83

second-order form equation is

1
2
φ0(�r ) − 1

3σtr
n̂ · ∇φ0(�r )

= 2
∫

n̂·�̂>0
P1(n̂ · �̂)�−(�r , �̂) d2�̂, for �r ∈ ∂�. (14)

Next we’ll look at the SP3 equations. The SP3 equations are in
first-order form

∇ · �φ1 + σaφ0 = Q , (15a)

1
3
∇φ0 + 2

3
∇φ2 + σtr �φ1 = 0, (15b)

2
5
∇ · �φ1 + 3

5
∇ · �φ3 + σ2φ2 = 0, (15c)

3
7
∇φ2 + σ3 �φ3 = 0. (15d)

The boundary conditions for the first-order form of the SP3 equa-
tions can be obtained from Eq. (8).

There are two equations in the second-order form of the SP3

equations:

−∇ · 1
3σtr

∇φ0 − ∇ · 2
3σtr

∇φ2 + σaφ0 = Q , (16a)

−∇ · 2
15σtr

∇φ0 − ∇ ·
(

4
15σtr

+ 9
35σ3

)
∇φ2 + σ2φ2 = 0. (16b)

The first of these equations is the diffusion equation with a cor-
rection term involving φ2.

The SP3 equations can be manipulated into a form that re-
sembles a two group diffusion equation by defining φ̂0 = φ0 +2φ2.
Using this new variable, Eq. (16a) becomes

−∇ · 1
3σt

∇φ̂0 + σaφ̂0 = 2σaφ2 + Q . (17a)
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84 R. G. McClarren

this is a diffusion equation for φ̂0 coupled to φ2 through an inter-
action term. We can also get such an equation for φ2 using the
definition of φ̂0:

−∇ · 9
35σt

∇φ2 +
(

σ2 + 4
5
σa

)
φ2 = 2

5
(σaφ̂0 − Q). (17b)

These equations can be solved with a two-group diffusion code
by properly setting the diffusion coefficients and cross-sections or
with a one-group diffusion code utilizing an iteration strategy for
the coupling terms. This iterative strategy is known as the FLIP
iteration strategy (Gelbard, 1968).

2.2. Time-dependent SPn equations

The SPn equations for time dependent problems can be derived
in a similar formal manner as the steady-state SPn equations. The
time dependent Pn equations in 1-D slab geometry have a term
that is the partial derivative with respect to time of φn divided
by the particle speed in each equation. Therefore to get the SPn
equations in time-dependent form we simply add such a term to
each of the SPn equations in first-order form:

1
v

∂φ0

∂t
+ ∇ · �φ1 + σ0φ0 = Q , (18a)

1
v

∂ �φn

∂t
+ n

2n + 1
∇φn−1 + n + 1

2n + 1
∇φn+1 + σn�φn = 0

for odd n, (18b)

1
v

∂φn

∂t
+ n

2n + 1
∇ · �φn−1 + n + 1

2n + 1
∇ · �φn+1 + σnφn = 0

for even n > 0. (18c)

The reader’s attention is drawn to the fact that the time depen-
dent SPn equations will not have a simple second-order form be-
cause we cannot write the odd order unknowns in terms of spa-
tial derivatives of even unknowns due to the addition of the time
derivative.
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Simplified Pn Equations 85

The initial conditions for these equations are not obvious due
to the fact that beyond �φ1 we cannot interpret the SPn unknowns
as moments of the initial angular flux. The most obvious initial
condition is to set

φ0(�r , 0) =
∫

4π

I (�r , �̂) d2�̂, and

�φ1(�r , 0) =
∫

4π

I (�r , �̂)�̂ d2�̂, (19)

where I (�r , �̂) is the initial angular flux. The other unknowns can
initially be set to zero. We will return to the point of initial con-
ditions below in the discussion of an asymptotic derivation of the
time dependent SPn equations.

3. Asymptotic Derivation of the SPn Equations

3.1. Larsen, Morel, and McGhee’s Derivation

There are at least two ways that asymptotic analysis can be used
to derive the SPn equations. Neither of these derivations includes
asymptotic boundary conditions. First, we will review the deriva-
tion of Larsen, Morel, and McGhee (LMM)(Larsen et al., 1993,
1996). Their analysis derived the SPn equations for anisotropic
scattering that is not highly forward peaked and included en-
ergy dependence through the multigroup method. Here we will
present a derivation for isotropic scattering in the one-speed
case2; the result for anisotropic scattering is the same as that given
in the previous section. Our derivation begins by assuming an op-
tically thick system and scaling the transport equation, Eq. (1), by
a small, positive, dimensionless parameter ε. Specifically, we write

σt → σt

ε
,

2The derivation when there is anisotropic scattering requires some tensor analysis
that we would rather avoid resorting to in this review.
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86 R. G. McClarren

that is that the total cross-section is large,

σs → σs

ε
, n ≥ 0

that is the scattering cross-section is of the same order as the total
cross-section,

σa → ε2σa,

that is the cross-section is small, O(ε2), and finally

Q → εQ ,

that is the source is small. Making these changes the transport
equation can be written as

(
1 + ε

σt
�̂ · ∇

)
ψ = 1 − ε2σa/σt

4π
φ + ε2Q

4πσt
, (20)

where φ is the P0 moment of ψ . If we invert the operator on the
left-hand side of this equation, we get an expression for ψ in terms
of φ and Q

ψ =
(

1 + ε

σt
�̂ · ∇

)−1 [
1 − ε2σa/σt

4π
φ + ε2Q

4πσt

]
.

If we expand the inverse operator in a power series, assuming that
ε is small enough to make this possible, we get

ψ =
(

1 − ε

σt
�̂ · ∇ + ε2

(
1
σt

�̂ · ∇
)2

− ε3
(

1
σt

�̂ · ∇
)3

+ ε4
(

1
σt

�̂ · ∇
)4

) − ε5
(

1
σt

�̂ · ∇
)5

)

+ ε6
(

1
σt

�̂ · ∇
)6

) + O(ε7)
) [

1 − ε2σa/σt

4π
φ + ε2Q

4πσt

]
. (21)
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Simplified Pn Equations 87

Next, we find the following identity to be useful (Frank et al.,
2007)

1
4π

∫
4π

(
1
σt

�̂ · ∇
)l

d2�̂ = 1 + (−1)l

2
1

n + 1

(
1
σt

∇
)l

. (22)

Upon integrating Eq. (21) over the unit sphere and dividing by,
4π we get

φ

4π
=

(
1 + ε2

3

(
1
σt

∇
)2

+ ε4

5

(
1
σt

∇
)4

) + O(ε6)
)

×
[

1 − ε2σa/σt

4π
φ + ε2Q

4πσt

]
,

which we can manipulate into

(1 − ε2σa/σt)φ + ε2Q
σt

=
(

1 + ε2

3

(
1
σt

∇
)2

+ ε4

5

(
1
σt

∇
)4

+ ε6

7

(
1
σt

∇
)6

+ O(ε8)
)−1

φ

=
(

1 − ε2

3

(
1
σt

∇
)2

− 4ε4

45

(
1
σt

∇
)4

− 44ε6

945

(
1
σt

∇
)6 )

φ + O(ε8),

(23)

by once again expanding an inverse in a power series. From this
equation we can derive the SP1 through SP3 equations by keeping
terms up to a certain order in ε.

3.1.1. SP1 (DIFFUSION) AND SP3 EQUATIONS BY ASYMPTOTICS

If we take terms up to O(ε2) in Eq. (23) we get (after some
simple manipulation)

−∇ · 1
3σt

∇φ − σaφ = Q , (24)

which is the second-order form of the SP1 equation.
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88 R. G. McClarren

If instead we keep terms up to O(ε6) in Eq. (23), we get

ε2

σt
(Q − σaφ) = −ε2

3

(
1
σt

∇
)2

(φ + 2φ2), (25)

where φ2 is given by

φ2 = 2ε2

15

(
1 + 11ε2

21

(
1
σt

∇
)2

)(
1
σt

∇
)2

φ

= 2ε2

15

(
1 − 11ε2

21

(
1
σt

∇
)2

)−1 (
1
σt

∇
)2

φ + O(ε5). (26)

Dropping the error term we can rearrange this equation into

−ε2∇ · 1
σt

∇
(

2
15

φ + 11
21

φ2

)
+ σtφ2 = 0, (27)

which is precisely the second-order form of the SP3 equation for
φ2 given by Eq. (16b) with isotropic scattering. We can also re-
arrange Eq. (25) to get the first of the second-order form SP3

equations:

−∇ · 1
3σt

∇ (φ + 2φ2) + σaφ = Q . (28)

This equation is the same as Eq. (16a) Therefore, from the asymp-
totic scaling we can also derive the SP3 equations.

From this derivation we can see that the SP3 equations are a
correction to the diffusion (SP1) equation that is correct through
order ε6. This means that SP3 equations will have a wider domain
of applicability. Of course, because this is an asymptotic limit of
the transport equation, problems where ε is order 1 will not be
well approximated by diffusion or the SP3 equations.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
x
a
s
 
A
&
M
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
2
:
4
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Simplified Pn Equations 89

3.1.2. TIME-DEPENDENT SPn BY AN ASYMPTOTIC DERIVATION

Using the asymptotic approach similar to the LMM deriva-
tion, Frank et al. (2007) derived time-dependent SP2 and SP3

equations that are not exactly equivalent to those given in
Eq. (18), except in the steady-state limit. These equations have
been used in practical glass cooling applications (see Frank et al.,
this issue, for a review). In the asymptotic derivation there is an
ambiguity on how to define the φ2 unknown. It is this ambigu-
ity that leads to flexibility on how the equations are formulated.
A moment analysis for a 1-D time dependent problem, however,
demonstrates that the asymptotically derived SP3 equations do not
capture the spatial moments of the transport solution in the same
way as the P3 moments (Densmore and McClarren, this issue).

In the asymptotic derivation of the time-dependent SPn equa-
tions, Frank et al. (2007) noted that there are two ways to treat the
initial conditions. As said previously, the value for the scalar flux,
φ0, is straightforward to compute given the initial angular flux.
For the other unknowns, they suggest that it is possible to either
set these to zero initially, solve a steady-state SPn system, or inter-
pret these as actual Legendre moments.

3.2. Pomraning’s Asymptotic Derivation

Pomraning presented a different asymptotic derivation that high-
lights a different connection between the SPn equations and
the transport equation (Pomraning, 1993). Specifically, it demon-
strates that if the transport solution is locally 1-D, the SPn solution
will asymptotically agree with the transport solution. We begin by
writing a generic point on the unit sphere using the coordinate
system

�̂ =
√

1 − µ2(cos γ )î +
√

1 − µ2(sin γ ) ĵ + µk̂, (29)

for µ ∈ [−1, 1], and γ ∈ [0, 2π]. We assert that this coordinate
system is not necessarily fixed in space. Also, we will write the in-
terval over the scattering kernel using the addition formula for
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90 R. G. McClarren

Legendre polynomials:

1
4π

∫
4π

σs(�̂′ · �̂)ψ(�r , �̂′) d�̂′

=
∫ 2π

0
dγ ′

∫ 1

−1
dµ′

∞∑
n=0

(
2n + 1

4π

)
σsn

[
Pn(µ)Pn(µ′)

+ 2
n∑

m=1

(n − m)!
(n + m)!

Pm
n (µ)Pm

n (µ′) cos m(γ − γ ′)
]
ψ(µ′, γ ′), (30)

where the Pm
n are associated Legendre functions. We will use a

scaling that makes the solution have weak dependence in the î
and ĵ directions and a weak dependence on the azimuthal angle
γ . Specifically our scaling makes the transport equation, Eq. (1),

[
µ

∂

∂z
+ ε

(√
1 − µ2(cos γ )

∂

∂x
+

√
1 − µ2(sin γ )

∂

∂y

)]
ψ + σtψ

= Q
4π

+
∫ 2π

0
dγ ′

∫ 1

−1
dµ′

∞∑
n=0

(
2n + 1

4π

)
σsn

[
Pn(µ)Pn(µ′)

+ 2ε

n∑
m=1

(n − m)!
(n + m)!

Pm
n (µ)Pm

n (µ′) cos m(γ − γ ′)
]
ψ(µ′, γ ′). (31)

In limit of ε → 0 Eq. (31) becomes a “1-D” transport equation:

µ
∂ψ

∂z
+ σtψ = 1

4π

∫ 1

−1
dµ′

∞∑
n=0

(
2n + 1

2

)
σsnψ(µ′)

+ Q
4π

+ O(ε). (32)

This is not exactly a 1-D transport equation because for this to be
the case we need to consider the fact that in the transport equa-
tion the spatial derivatives are evaluated with �̂ held constant. For
Eq. (32) to be a 1-D transport equation to order ε the coordinate
system where the dependence on x, y , and γ is weak must vary
slowly in space. This slow variation can be quantified by requiring
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Simplified Pn Equations 91

that the change in k̂ is order ε

(
µ

∂

∂z

)
�̂

k̂ = O(ε), (33)

which is equivalent to requiring

(
µ

∂

∂z

)
�̂

µ = O(ε). (34)

Therefore we can say that the streaming term in Eq. (32) can be
approximated by

(
µ

∂

∂z

)
�̂

ψ =
(

µ
∂

∂z

)
µ

ψ + O(ε).

Now that we have quantified this error as O(ε), we can interpret
Eq. (32) as a 1-D transport equation without increasing the order
of the error.

From the 1-D transport equation we can now expand ψ in
Legendre polynomials as done in Section 2 to get the Pn equations
given by Eq. (4):

∂φ1

∂z
+ σ0φ0 = Q ,

n
2n + 1

∂φn−1

∂z
+ n + 1

2n + 1
∂φn+1

∂z
+ σnφn = 0 for n > 0.

These are partial derivatives because we have not eliminated the
dependence on x and y .

To proceed we will use the weak dependence of ψ on the x
and y directions to define some quantities of equivalent asymp-
totic error. For any even Legendre moment we can write

∇φn = ∂φn

∂x
î + ∂φn

∂y
ĵ + ∂φn

∂z
k̂ = ∂φn

∂z
k̂ + O(ε), n even, (35)

because the derivative of ψ in the scaled transport equation is
order ε. Furthermore, for odd Legendre moments we define a
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92 R. G. McClarren

vector of that moment as

�φn = φnk̂, n odd,

so that

∇ · �φn = ∂φn

∂z
, n odd.

Using these definitions we can rewrite the Pn equations in equiva-
lent form with the same order of asymptotic error, O(ε), without
any reference to the z coordinate:

∇ · φ1 + σ0φ0 = Q , (36a)

n
2n + 1

∇φn−1 + n + 1
2n + 1

∇φn+1 + σn�φn = 0 for odd n > 0, (36b)

n
2n + 1

∇ · �φn−1 + n + 1
2n + 1

∇ · �φn+1 + σnφn = 0

for even n > 0, (36c)

These are precisely the SPn equations in first-order form.
Before concluding this section we note that Pomraning’s

derivation of the SPn equations can, without much complication,
be used to derive the time-dependent SPn equations given by
Eq. (18).

3.3. Comparison of the Asymptotic Derivations

The two asymptotic derivations presented above take two differ-
ent approaches: the LMM derivation makes assertions about the
material properties (small absorption and sources, large scatter-
ing) whereas the Pomraning derivation asserts that the solution is
locally 1-D. Both approaches result in the SPn equations to some
order in the asymptotic parameter.

The main difference in the two derivations other than what is
scaled is that the Pomraning derivation does not give higher order
correction terms. The SPn equations are shown to be an O(ε)
approximation to the 1-D Pn equations regardless of the order of
expansion, but there is no clear path to add a correction to make
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Simplified Pn Equations 93

the equations accurate to higher order in ε. Of course since this
is an asymptotic derivation, higher order corrections may not be
useful to obtain more accurate approximations.

For a given problem it is conceptually easier to recognize
when the assertions of the LMM derivation are valid than those
in Pomraning’s derivation. Usually the problem statement will
make it clear when scattering dominates absorption and sources
are small. It is somewhat more difficult to infer whether the so-
lution will be locally 1-D. Moreover, even in locally 1-D solu-
tions the 1-D coordinate system can change rapidly making the
assertions in Pomraning’s derivation invalid. Consider a solution
that has a shadow: in the illuminated and dark parts of the shadow
the solution can be described using one spatial dimension. The
coordinate system, nevertheless, changes abruptly at the edge of
the shadow as the solution has strong dependence on the direc-
tion perpendicular to the shadow.

4. Variational Derivations of the SPn Equations

It is also possible to derive the SPn equations via a variational
analysis. In this section we will present such a derivation of the
SP3 equations for the case of an infinite, uniform medium with
isotropic scattering. This case will not treat boundary conditions
or material interfaces or anisotropic scattering for simplicity in
presentation. Most of these complications can be added in a
straightforward manner, but the additional level of detail is al-
gebraically supererogatory for this review—boundary and inter-
face conditions are not exactly straightforward as will be dis-
cussed next. Much of the background for this type of variational
derivation is well covered in the incomparable book by Bell and
Glasstone (1970), and the analysis below follows closely the work
of Brantley and Larsen (2000, 1997).

For the variational analysis we will need to define an inner
product of two functions of space and angle:

( f, g) =
∫

�

d3r
∫

4π

d2�̂ f (�r , �̂)g(�r , �̂), (37)

where � is the domain of interest. Now suppose we want to
calculate the integral over all space and angle of the angular
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94 R. G. McClarren

flux, (1, ψ). This integral is related to the functional (Bell and
Glasstone, 1970)

J(�∗, �) = (1, �) −
(

�∗, L� − Q
4π

)
, (38)

where � and �∗ are functions of space and angle and the opera-
tor L is the transport operator

L� = �̂ · ∇� + σt� − σs

4π

∫
4π

d2�̂′ �(�r , �̂′).

It is easy to show that if � = ψ where ψ is the solution to the
transport equation, Eq. (1), in an isotropically scattering infinite
medium, then regardless of the form of �∗, J(�∗, �) = (1, �).
Also, if � = ψ + δψ and �∗ = ψ∗ + δψ∗ where ψ∗ is the solution
of the adjoint transport equation with a unit source,

−�̂ · ψ∗ + σtψ
∗ = σs

4π

∫
4π

d2�̂′ ψ∗ + 1, (39)

and δψ and δψ∗ are small, but arbitrary variations of order O(δ),
then

J(ψ + δψ, ψ∗ + δψ∗) = (1, ψ) + O(δ)2.

That this functional is O(δ2) can be shown using the definition of
the adjoint operator and the fact that (δψ∗, δψ) is second-order
in δ.

Now to derive the SP3 equations we need to have a form for
� and �∗. To do this we begin with the expression for the angular
flux under the slab geometry P3 equations,

ψ(x, µ) = 1
4π

[
φ0 + 3µφ1 + 5

2
(3µ2 − 1)φ2 + 7

2
(5µ3 − 3µ)φ3

]

= 1
4π

[
φ0 − µ

σt

d
dx

(φ0 + 2φ2) + 5
2

(3µ2 − 1)φ2

− 3
2σt

(5µ3 − 3µ)
d

dx
φ2

]
, (40)
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Simplified Pn Equations 95

where the second relation is found by writing the Pn equations in
second-order form. Now let us write φ2 as the second derivative of
a function f (x),

φ2(x) = d2

dx2
f (x),

this now makes the angular flux in Eq. (40)

ψ(x, µ) = 1
4π

[
φ0 − µ

σt

d
dx

(
φ0 + 2

d2

dx2
f
)

+ 5
2

(
3µ2 d2

dx2
− d2

dx2

)
f

− 3µ

2σt

d
dx

(
5µ2 d2

dx2
− 3

d2

dx2

)
f
]
. (41)

Taking Eq. (41) and making the same substitution as in the formal
derivation of the SPn equations we get a form for � given by

�(�r , �̂) = 1
4π

[
φ0 − �̂ · ∇

σt
(φ0 + 2∇2 f ) + 5

2
(3(�̂ · ∇)2 − ∇2) f

− 3
2σt

(�̂ · ∇)(5(�̂ · ∇)2 − 3∇2) f
]
, (42)

where now φ0 and f are functions of �r . We similarly define the
adjoint test function �∗ by replacing �̂ by −�̂:

�∗(�r , �̂) = 1
4π

[
φ∗

0 + �̂ · ∇
σt

(φ∗
0 + 2∇2 f ∗) + 5

2
(3(�̂ · ∇)2 − ∇2) f ∗

+ 3
2σt

(�̂ · ∇)(5(�̂ · ∇)2 − 3∇2) f ∗
]
. (43)

Given these forms for � and �∗ we are in a position to simplify
J by performing the angular integrals. Specifically, we can use
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96 R. G. McClarren

Eq. (22) to get

(
�∗, L� − Q

4π

)

= − 1
84π

∫
�

d3r
{

7φ∗
0

(
3Q − 3σaφ0 + 1

σt
∇2φ0 + 2

σt
∇4 f

)

− ∇2 f ∗
(

105σt∇2 f − 14
σt

∇2φ0 − 55
σt

∇4 f
)}

. (44)

To finish the derivation of the SPn equations we take the first vari-
ation of the functional δJ to get

δJ = (1, δ�) −
(

δ�∗, L� − Q
4π

)
−

(
�∗, Lδ� − Q

4π

)
.

We then find conditions for δJ = 0, that is for the functional to
be stationary by setting the coefficients of δ� and δ�∗ to be zero.
This will lead to a system of equations for the forward and adjoint
fluxes. Specifically we can use Eq. (44) to evaluate (δ�∗, L� −
Q/4π) to get

(
δ�∗, L� − Q

4π

)

= − 1
84π

∫
�

d3r
{

7δφ∗
0

(
3Q − 3σaφ0 + 1

σt
∇2φ0 + 2

σt
∇4 f

)

− δ∇2 f ∗
(

105σt∇2 f − 14
σt

∇2φ0 − 55
σt

∇4 f
)}

, (45)

which upon setting the coefficients of δφ∗
0 and δ∇2 f ∗ to zero and

using the definition of f gives

− 1
3σt

∇2φ0 − 2
3σt

∇2φ2 + σaφ0 = Q , (46a)

− 2
15σt

∇2φ0 − 11
21σt

∇2φ2 + σtφ2 = 0. (46b)
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Simplified Pn Equations 97

These are precisely the SP3 equations in second-order form for a
uniform medium.

Extending the analysis in this section to include material in-
terfaces and boundary conditions greatly increases the complexity
of the derivation. This involves adding terms to the functional to
deal with the discontinuities at the material interfaces and prob-
lem boundaries (Bell and Glasstone, 1970), along with the addi-
tional assumption that the auxillary function f is locally 1-D at
the interface or boundary. This analysis has been carried out for
the SP2 equations by Tomasevic and Larsen (1996) and for SP3

by Brantley and Larsen (2000). The boundary conditions that re-
sult are the “Marshak-like” boundary conditions listed in Eq. (8).
For material interface conditions for SP3 the result is that at an
interface the following quantities must be continuous:

φ0 + 2φ2,

(n̂ · ∇)
3σt

(φ0 + 2φ2) ,

φ2,

9
(n̂ · ∇)

35σt
φ2,

where n̂ is the outer unit normal of the material interface. These
are identical to the interface conditions derived by the formal
derivation. The variational analysis can also be extended to multi-
group problems with anisotropic scattering for SP2 and SP3 in a
straightforward manner (Tomasevic and Larsen, 1996; Brantley
and Larsen, 2000). Pomraning did a variational derivation of the
SPn equations of arbitrary order in a uniform, infinite medium
(Pomraning, 1993) with anisotropic scattering in the one-group
case.

5. Equivalence of SPn and Pn Equations

Early on in the history of the SPn equations it was realized
that there is a variety of conditions under which the SPn and
Pn equations are equivalent. This equivalence is actually quite
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98 R. G. McClarren

surprising because for a given order n the SPn equations
in second-order form has (n + 1)/2 unknowns whereas the
Pn equations have O(n2) unknowns in general geometry. A discus-
sion of this equivalence appears in the Bettis report where the SPn
equations are first mentioned (Gelbard, 1960).

In that work Gelbard discussed the fact that for a 3-D material
medium of infinite extent with a constant total cross-section and
isotropic source(s) the solution to the SPn equations and the full
Pn equations are identical. This was first shown by taking both the
full Pn equations and the SPn equations and Fourier transforming
each in space. It can then be shown that the resulting equation
for each Fourier mode is equivalent. Other facts about the equiv-
alence of the SPn and Pn equations are that

• In general infinite geometry only σt need be constant. The ab-
sorption and scattering cross-sections do not have any restric-
tions on themselves independently.

• In 1-D cylindrical or spherical geometry the sources and scatter-
ing do not need to be isotropic; they are allowed to be linearly
anisotropic.

The fact that only the total cross-section needs to be indepen-
dent allows certain multi-material problems to be solved using
SPn . Gelbard suggested that the leakage rate from a cylinder
with σt = ω that is surrounded by vacuum can be calculated us-
ing SPn in an infinite medium where the vacuum is replaced with
a material having σa = ω (Gelbard, 1961). The case of a medium
surrounded by a pure absorber has been used to solve problems
to high angular accuracy using SPn equations in their An form
(Ciolini et al., 2006).

5.1. Numerical Demonstration of SPn -Pn Equivalence

To demonstrate the equivalence of the Pn and SPn equations in
a homogeneous medium we have used both methods to solve a
specific problem in 2-D Cartesian geometry. This problem has
σt = 1.0 and σa = 0.9 with a problem domain of Lx = Ly = 5.
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Simplified Pn Equations 99

There are prescribed sources given by

Q(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 1.75 ≤ x ≤ 2.25, 1.75 ≤ y ≤ 2.25
1 2.75 ≤ x ≤ 3.25, 1.5 ≤ y ≤ 2.5
1 1.75 ≤ x ≤ 2.25, 2.75 ≤ y ≤ 3.25
1 3.5 ≤ x ≤ 4.25, 3.5 ≤ y ≤ 3.75
0 otherwise

. (47)

We used periodic boundary conditions for the test problem. Math-
ematically, this is equivalent to solving the PDEs on a torus.

This problem has a scattering ratio of 0.1 and is significantly
outside the asymptotic limit discussed in Sec. 3. Therefore, we
cannot ascribe any agreement between Pn and SPn to asymptotic
agreement between the two methods. Additionally, this test prob-
lem is not well approximated by diffusion, so we expect that a
high order of n will be needed to obtain an accurate solution.
Also, the test problem will have an inherently multi-dimensional
solution because the problem definition is rather asymmetric.
The SPn equations were solved in even-parity form using a sim-
ple finite-difference discretization. Hence, in each computational
cell there are 1

2(N + 1) unknowns. The Pn equations used a lin-
ear discontinuous Galerkin discretization that is a linear, steady
version of the discretization presented in McClarren et al. (2008).
The Pn equations were solved in their first-order form, rather than
even-parity form, because a first-order form Pn code was readily
available. For a 2-D problem, the first-order Pn equations have
1
2(N 2 + 3N ) + 1 unknowns per cell (in even-parity form there
would be 1

4(N 2 +2N +1) unknowns per cell). For our spatial grid
we used Nx = Ny = 100.

In Fig. 1 the Pn and SPn solutions to the test problem are
compared at N = 1, and 5. In these figures one can see that, de-
spite using completely different numerical methods, the Pn and
SPn solutions appear to be identical. Moreover, there is a signifi-
cant difference between the N = 1 and N = 5 solutions.To more
precisely demonstrate that the Pn and SPn solutions are equivalent
for this problem we look at the solution along the diagonal x = y
in Fig. 2. In this figure we see that the SPn and Pn solutions lie on
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100 R. G. McClarren

FIGURE 1 Scalar flux, φ0, from several methods for the test problem. Note that
the color scales are different for the N = 5 and N = 1 solutions.

top of each other. We have found that the maximum pointwise
relative difference between the Pn and SPn solution is about 0.1%.
This is remarkable agreement considering the different numeri-
cal methods used and the large differences between the solutions
at different N . This problem demonstrates that there exist cases
where diffusion is inadequate and high-order SPn gives accurate
answers.

We did not solve the problem with P7 or higher approxi-
mations. The principle reason for this is that the problem size
becomes intractable for serial computing. For the linear discon-
tinuous Galerkin method with Nx = Ny = 100, the P7 solution re-
quires 1.44 × 106 unknowns. On the other hand, SP7 calculations
with this many computational cells can be easily accomplished on
a laptop computer.
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Simplified Pn Equations 101

FIGURE 2 Scalar flux along the diagonal of the test problem. For most of the
lines the SPn solution is obscured by the Pn solution.

5.2. Selengut’s P3 Equivalent Equations

D.S. Selengut derived a set of P3 equivalent SP3 equations in 1970
in a conference paper (Selengut, 1970). In deriving these equa-
tions Selengut presented a solution to the P3 equations in terms
of the scalar flux only. Using this solution he was able to recon-
struct the proper conditions that need to be satisfied at a material
interface.

Despite the fact that such a method would obviously be ex-
traordinarily useful for numerical computation (the 2 unknowns
of the SP3 equations being much smaller that the 16 unknowns
for the full P3 equations), this work was never picked up for use by
other researchers. The trail may have went cold due to the nearly
inscrutable structure of the paper. Also, it has been noted that the
solution used to derive the interface conditions may not be the
most general solution (Sanchez, 2008).
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102 R. G. McClarren

5.3. Some Remarks on the Accuracy of SPn for General Problems

In general the SPn solution is not equivalent to the Pn solution and
therefore increasing n does not guarantee a more accurate solu-
tion (i.e., at some order n the maximum potential accuracy is ob-
tained and going to a n + 2 order expansion will give a worse
answer). It is a common assertion based on much experience
and numerical experimentation that the added work to obtain
SPn solutions beyond SP5 or SP7 is not wholly worthwhile. Further-
more, it has been asserted that most of the benefit of SPn over dif-
fusion is obtained from SP3 (Brantley and Larsen, 2000; Smith,
1986a, 1996b). Indeed production codes exist that specifically
solve the SP3 equations (Kotiluoto, Pyyry, and Helminen, 2007).

Also, given the asymptotic derivations of the SPn equations we
do know what types of problems this approximation is well suited.
The LMM derivation shows that in problems where isotropic or
slightly anisotropic scattering dominates absorption and stream-
ing the SPn solutions are a reasonable approximation. On the
other hand, Pomraning’s derivation demonstrates that if the solu-
tion is locally 1-D everywhere the SPn equations can approximate
the transport solution well.

6. Alternate Forms of the SPn Equations

The SPn equations can be cast into several alternate but equiva-
lent forms. As shown previously there is a form of the equations
that looks like a system of multi-group diffusion equations with
upscattering. This form was derived by means of a solid harmonic
expansion by Ackroyd et al. (1999). This form is useful because it
means that the SPn solution can be obtained from solving a prop-
erly posed multigroup diffusion equation. Besides this form there
are the An and canonical forms of the SPn equations.

The An equations were first derived as an approximate trans-
port method by Coppa and Ravetto (Coppa and Ravetto, 1982).
The equations can be derived from the integral transport equa-
tion for a finite medium with a constant cross-section by approxi-
mating the kernel of the integral transport equation with a super-
position of diffusion-like kernels. These equations take the form
of a system of coupled diffusion equations, where the coupling
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Simplified Pn Equations 103

comes through a scattering term. The An equations are

−∇ ·
(

µ2
α

σt
∇ψα

)
+ σtψα = σs

N∑
β=1

wβψβ + Q , α = 1, 2, . . . , n,

(48)

where the µα are the zeros of the Legendre polynomial of or-
der 2n and the wβ are the positive weights of the Gauss-Legendre
quadrature set of order 2n. The scalar flux is also written as

φ0 =
N∑

β=1

wβψβ.

It has been shown that the An equations are equivalent to the
SP2n−1 equations (Ciolini et al., 2002) in the cases of isotropic
and P1 anisotropic scattering. The proof for isotropic scattering
is straightforward: the second-order form of the SP2n−1 equations
can be written as

−∇ ·
(

1
σt

∇A�φ
)

+ σt �φ = �Q ,

with �φ = [φ0, φ2, . . . , φ2n−1]t, �Q = [σsφ0 + Q , 0, . . . , 0]t, and the
elements of the tridiagonal (2n − 1) × (2n − 1) matrix A can
be easily inferred from Eq. (10b). Given this matrix form of the
second-order SP2n−1 equations, we can diagonalize the matrix A
to directly derive the An equations.

The An equations with arbitrary order anisotropic scattering
were called the “canonical form” of the SPn equations by Larsen
et al. (1996). The An or canonical form of the SPn equations is
attractive because they can be solved in a straightforward man-
ner by a code that solves the even-parity discrete ordinates (Sn)
equations or one that solves the diffusion equation. The standard
source iteration technique for solving the even-parity Sn equations
can converge slowly for the canonical form of SPn equations in
problems with highly anisotropic scattering unless some sort of
diffusion acceleration is used.
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104 R. G. McClarren

Another form of the An equations (and therefore the SP2n−1

equations) is a boundary integral equation (Colombo, 1988;
Ciolini et al., 2002). This form has been used to obtain high or-
der An solutions to several problems having a constant total cross-
section—a situation where the An solution is equivalent to the
P2n−1 solution.

The An equations have a well defined limit as n → ∞, and
Montagnini and Ravetto (2004) used this fact to generate the
Green’s function for the A∞ equations. This Green’s function is
a bilinear combination of the well-known Case eigenfunctions of
slab geometry transport theory (Case and Zweifel, 1967).

7. The Future of SPn and Open Problems

The development of a theoretical foundation for the SPn
equations was an important development in transport theory.
There are, nevertheless, several important questions that remain
unanswered regarding SPn.

• Pn equivalent forms of SPn

As first suggested by Selengut (1970), it is in principle possible
to derive SPn equations that are equivalent to the Pn equations
of the same order provided that the problem can be subdi-
vided into subregions of constant cross-sections. That such a
Pn -equivalent form of SPn might exist is not as quixotic as
it might sound. One can show that in a region of constant
cross-section that SPn and Pn solve the same equations. There-
fore, the only difference between SPn and Pn are the interface
and boundary conditions that connect the solutions in these
constant cross-section regions. Of course it may be possible that
the extra unknowns in the Pn equations are essential in these
conditions.

Selengut claimed to have derived interface conditions for
the SP3 equations that would give solutions equivalent to those
from P3. This claim has not been independently verified, and
no P5 or higher equivalent equations have appeared in the
literature. A rigorous answer to the question of whether such
equivalent forms exist would be a major contribution to the the-
ory of SPn —especially if the answer is in the affirmative as this
could revolutionize transport calculations due to small number
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Simplified Pn Equations 105

of unknowns in the SPn equations relative to Pn. The solution
could be to use the solid harmonics expansion of Ackroyd
et al. (1999). The solid harmonics equations are both formally
convergent and equivalent to the SPn equations in a uniform
medium. Therefore, it may be possible to use solid harmonics
to derive Pn equivalent boundary and interface conditions.

• Intermediate approximations
The SPn equations take the form of a system of coupled dif-
fusion equations; this compares to the full Pn equations that
have complicated cross-derivative terms in second-order form.
There has not been a proposed approximate form that is a
middle ground between the two methods. Such a form might
be derived by determining higher order corrections in Pom-
raning’s asymptotic derivation of the SPn equations, or through
some other form. This intermediate form would be useful for
treating transport problems where SPn does not provide the
required accuracy, such as problems where there are large
shadows.

• Optimal order of SPn equations
Given that the SPn equations are an asymptotic approximation
to the transport equation there is an optimal finite SPn order
solution in terms of accuracy. To present there has not been
an analysis of this optimal order or even a heuristic presented
to determine this optimal order for a given transport problem.
The knowledge of this optimal order would make SPn solutions
more valuable because it would eliminate the uncertainty in
determining the balance between solution cost and accuracy. It
is true that in most problems going from diffusion to SP3 pro-
duces a large return for the extra computational effort, but in
some problems going to even higher order might be beneficial.

• SPn closures
The SPn equations are usually truncated by assuming that
φN +1 = 0 in a similar manner to the standard Pn closure. There
are of course alternate ways to close the SPn equations and the
relative benefits of these closures have not been investigated.
One possibility is to take some standard Pn closures in slab ge-
ometry and make a similar replacement as in Gelbard’s formal
derivation. Such an approach would lead to, for example, an
SPn form of the M3 equations (Hauck, 2011). The benefits or
pitfalls of making such a closure for SPn are by no means clear.
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106 R. G. McClarren

An analysis of these closures would be a valuable contribution
to the SPn body of knowledge.

The SPn equations do have a strong theoretical background:
specifically they are an asymptotic and variational approxima-
tion to the transport equation. They are also equivalent to
the full Pn equations in several circumstances. Additionally, the
SPn equations are flexible in terms of the form one can solve
them. In this review we have endeavored to highlight these points
and hopefully spur new investigations into SPn theory. Whether or
not SPn will be an important method 50 years hence remains to be
seen. We can be confident, however, that there are still worthwhile
research topics with this method.
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