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ABSTRACT KEYWORDS
We present a set of 1-D transport models for solid cylinders of Particle transport;
material irradiated with particles on the axial ends. The mod- mathematical modeling

els are based on 1-D models originally developed for evac-
uated ducts with reflecting walls. The goal of this work is to
show that 1-D models can be used for time-dependent trans-
port in solid cylinders. A future use of this approach will apply
these models to the high-energy density physics problem of a
Marshak wave propagating down a cylindrical foam or other
experiments. The models we present use a Galerkin procedure
to project the radial dependence of the 3-D transport equa-
tion onto an expansion in terms of polynomials. Results dem-
onstrate that for steady state problems with low scattering
ratios, a three-basis function expansion can adequately cap-
ture the 3-D solution as computed via Monte Carlo. Smaller
number of basis functions did not result in adequate solu-
tions. As the radius of the cylinder increases, the 1-D model is
more effective. Results from time dependent problems indi-
cate that the 1-D models move particles too fast down the
cylinder at early times, but are accurate on the order of 10 or
more mean-free times. Our results indicate that 1-D models
may be effective in modeling 2-D Marshak waves, but further
work is necessary to answer this question.

1. Introduction

There has been a long history of the development of reduced-dimension
transport models for particle flow through evacuated ducts or pipes. These
models are often called 1-D models because there is a single spatial degree
of freedom. The development of these models goes back to the early 1980s
with the work of Prinja, Pomraning, Larsen, and others (Prinja and
Pomraning, 1984; Larsen, 1984; Larsen, Malvagi, and Pomraning 1986). In
these models, the variation of the solution in the azimuthal angle and
transverse directions, relative to the length of the duct, are represented
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using a basis expansion. This results in a system of transport equations for
the coefficients of the expansion. These equations have the interesting
property that the term in the place of the total-interaction cross-section has
a dependence on the cosine of the polar angle.

The original models presented by Larsen, Malvagi, and Pomraning (1986)
included two basis functions, and Garcia, Ono, and Vieira (2000) added a
third basis function, followed by the extension of the 1-D models to multi-
group transport (Garcia, Ono, and Vieira 2003). Additionally, Prinja (1996)
and Gonzalez and McClarren (2017) added nonlocal scattering to the models;
this allows particles to exit the duct at one point, and reenter at a different
location. All the while the improvements in the numerical methods used to
solve these models were pursued with sullen mouth; see Garcia and Ono
(1999); Barichello and Siewert (2011); Garcia (2013, 2014, 2015); Ganapol
(2015); Garcia (2016); and Ganapol (2017).

These 1-D models have been used in acoustics by Jing, Larsen, and Xiang
(2010); Jing and Xiang (2010), and Visentin et al. (2012). An additional appli-
cation of these models for radiative transfer in cylindrical ducts (such as fiber
optic cables) with Fresnel reflection at the edge of the duct was presented by
Cassell and Williams (2007) where an integral equation is derived, and
Williams (2007) gives the solution for a infinite and semi-infinite duct.

At the same time there has been interest in the high-energy density physics
community for simplified models for radiative transfer of X-rays traveling
axially down a solid cylinder. Typically, the scenario has a cylinder of foam
heated on one end by X-rays. In these scenarios the radial leakage out of the
cylinder slows the propagation of the heat wave and causes the heat front to
be curved. As a result predictions based on 1-D planar models predict higher
temperatures and faster energy propagation. To deal with these shortcomings
there have been new models developed and applied to experiments.

The archetypical problem for these models is the 1-D Marshak wave
problem (Marshak 1958). In this problem a cold slab is heated from one
end, and a heat front propagates into the slab. The wave has a self-similar
nature and semi-analytic solutions are available for it (Petschek,
Williamson, and Wooten 1960; Nelson and Reynolds 2009) and for prob-
lems where the material is moving (Lane and McClarren 2013). Hammer
and Rosen (2003) developed a simplified model that incorporated a time
dependent driving temperature, and other effects that would be important
in an experiment. Later, Hurricane and Hammer (2006) developed a model
to include the effect of a finite width medium and estimate the curvature
of the wave front. These methods were recently applied to experiments by
Moore et al. (2015) and Guymer et al. (2015).

This work is the first step to apply 1-D duct models to the problem of a
Marshak wave in a cylindrical volume. To this end, the cylinder of foam is
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Figure 1. Geometric layout for this study: L is the perimeter of the object, p is the radius, 0 is
an angle relative to the z axis, w is a unit vector in the radial plane, A is the cross-sectional
area, and the length of the object is Z. In our calculations there is an incoming angular flux at
z=0, and vacuum boundaries on the other sides.

a nonevacuated duct with walls that allow for zero or partial reflection.
Then we will be able to make ordered and convergent approximations to
the Marshak problem without requiring multi-dimensional transport simu-
lations. The overall goal is to unite the high-energy density physics problem
and previously developed transport theory in to a harmonious wayang
kulit, rather than a Punch and Judy.

In this article, we demonstrate that the 1-D duct models can be applied
to problems of axial transport in a solid cylinder with or without walls. For
this work we focus on linear transport to demonstrate that 1-D models can
capture radial effects in the time-dependent transport solution. This work
represents the first step in the application of these models to the eventual
goal of time-dependent nonlinear radiative transfer and Marshak waves.

2. 1-D models

We are interested in situations where particles are allowed to enter the solid on
the faces at z=0 and z=Z, and the sides of the cylinder have vacuum boundary
condition. We define a function h(x, y) that is zero on the outer surface of the
solid and negative when the point x, y is on the interior of the solid:

h(x,y) =x* +y2—p2.

For the cylinder, the perimeter is L = 2np and area is A = mp? (See
Figure 1 for a sketch of our geometry). In this situation we will use the
duct models derived in previous works (Larsen, Malvagi, and Pomraning
1986; Garcia, Ono, and Vieira 2000) for transport in evacuated ducts to
model our system. In a sense, our problem is the opposite of the duct
problem: we have solids with a vacuum outside, rather than a vacuum with
a solid surrounding it. We do note, however, that the work of Larsen,



4 (&) R.G. MCCLARREN AND A. R. LONG

Malvagi, and Pomraning (1986) provides equations for non-evacuated
ducts, though no solutions are given.

We are interested in solving for the angular flux of neutral particles
W(x,y,z, 1, @,t) [particles/(cm?- steradian - s)], where the duct is aligned
with z, t is the time variable, 4 = cos 0,0 € [0, 7| is the cosine of the polar
angle with respect to the z axis, and ¢ € [0,27] is the azimuthal angle. The
transport equation for W is

10¥Y L 0 .0 oY
———+ (1-472) (cosq)a-l- sm(p@){’—l—ugﬁ—aﬁ’

v Ot
1 27 (1)
o Q
= |dd |do' ¥ o't —.
EJ MJ o' ¥(x,y,z, 1, ¢, )+4n
—1 0

In this equation v [cm/s] is the speed of the particles, o, [em™'] is the
total interaction cross-section, o, [cm™'] is the isotropic scattering cross-
section, and Q [particles/(cm®s)] is the isotropic source. The boundary
conditions allow incoming particles at z=0 and Z,

W(x,y,0,u, 0, t) = gi(x,y, 1, ¢, 1), h(x,)<0, >0,
W(x,y, Z, w, ¢, t) = gr(x,y, 1, @, 1), h(x,»)<0, u<0.
On the other faces, no particles enter:

P(x,p,2,1,0,t) =0, h(x,y) =0, - n<0,

where n is the outward normal on the surface. The initial condition

is \P(%)’y z U, @, O) = gt(x7y7 Z, 1, CD)
To develop a one-dimensional model we expand ¥ in terms of basis
functions that depend on x, y, and ¢ as

¥(x,y,2, 1, ) Zl// (2, 1 D) bi(x, ¥, ). )

Here

The basis functions are
bl(%)’a@) = 17
bz(xJ’, QD) = u[D(xvyv QD)—V] )
bs(x;% (P) = ?[D(x7y7 QD)—V] [D(x7y7 @)_V_Q]_’A’/uz-

The function D(x, y, ¢) gives the distance from point (x, y) to the edge of
the cylinder along the direction —w, where w is a vector pointing radially,

= (cos @, sin ¢, 0).
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The function D(x, y, ¢) is given by

[T

D(x,y, @) =1 0+ [(r-w)’ + p*—x—y*]*,

with r = (x,y,0). In these basis functions, u, v, ¢, and 7 are functions of
p given by

37 __1.89153

u(p) = ~ (3a)
(P) PV I’ —64 P

8p
v(p) = L ~0.848826p, (3b)

3n
8 on 2\ )~0.124555 (3¢)
=8(——" 7 )pa0. , C

1) 5002 —64) 31)° p
1 3.72789

o - ~ . 3d
7(p) — s (3d)

25(9n2764)p2

These basis functions are chosen because they are degree 0, 1, and 2 poly-
nomials that are orthogonal in the sense that

27
J d(pJ dxdy bi(x,y, p)bj(x,y, ¢) = 2mAdy;,
0 A
where 0;; is the Dirac delta function.
Following Garcia, Ono, and Vieira (2000), one can derive the coupled
system of three 1-D transport equations:

1Oy, oY, / 2 ° _ O +Q
> o1 +u Dz +o; + V11— ].E_l:a”%(z’ s t) 5 ¢i(z,1) i (4)
where
Q‘_—Lrnd Jdd b; Q) —
" 2nmA 0 ¢ A e ,(x,y, )47z'

This system of equations is a system of coupled, time-dependent trans-
port equations where the coupling takes the form of an angle-dependent
absorption and emission term. This coupling is strongest when u=0 and
vanishes at u=1. The values of the coupling constants a; are given in
Table 1 in symbolic form and approximate form as a product a;;p in Table
2. Notice that the coupling constants are not strictly positive.
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Table 1. Table of coupling constants a; that appear in Equation (4).

aj j=1 2 3
i=1 T%p 3r—16 2(11772—1024)
V9Nl —64p 3n4/(972 —64) (22512 —2176)p
16 128 2
2 N V92 —64p ~ Ganp—9p 3,[\1/(;(2951:(2—,6;1)76})
3 _ 2(45m2—512) 16(4512—512) 2(512-4512)?
/(912 —64) (22512 —2176)p V22512 ~2176(97° ~64m)p T(9n?—64)(22512-2176)p

Table 2. Approximate forms of coupling constants a; multiplied by p that appear in Table 1.

aip j=1 2 3
i=1 0.63662 0.869387 0.833217
2 —1.02215 1.64114 3.94166
3 1.29755 —2.08332 2.64463

3. Application of model

To test the method we have considered time dependent problems of linear
particle transport in solid cylinders and compared the 1-D model to a full
2-D cylindrical transport solution from the implicit Monte Carlo code
Milagro (Urbatsch and Evans 2006). These problems all have a unit, inci-
dent isotropic source at z=0 and vacuum boundaries on all other sides.
The initial condition is that there are no particles in the system. We com-
pute both time dependent solutions and steady-state solutions; the steady
state solutions are the results as t — oco. To compare methods we will use
the scalar flux solution to the problem:

1 2n
(15(96,)/,2: t) = J dﬂjd(ﬂ‘{'(%)’,z»ﬂa (pat)'
—1 0

The first problem we consider has a purely absorbing cylinder of radius
2 and length 10 with ¢, = 1. For the 1-D model we solve the model equa-
tions using discrete ordinates with 120 angles and the diamond difference
spatial discretization and 200 zones. The results at steady state with three
basis functions are shown in Figure 2. These results demonstrate that the
1-D model captures the full solution except near z=0 at high values
of r = /x> + 2.

For cylinders that have some scattering, the results from the approximate
model gets worse as more scattering is added. We solve the same problem
as above, except we increase the scattering ratio, ¢ = g/ay, and radius. To
visualize these solutions we use contour plots to show the steady state sca-
lar flux as a function of r and z. We use negative values of r to contain the
approximate 1-D model solutions (i.e., the plots have ¢,(|r|,z) for r<0),
and positive values of r for the Monte Carlo (MC) solutions. The contours
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Figure 2. Results comparing the 1-D model with three basis functions and a Monte Carlo calcu-
lation as a function of axial position and radius for a purely absorbing cylinder of radius 2 and
length 10.

in the plot are labeled with the value of the scalar flux on that contour
line. If the approximate model solution agrees with the Monte Carlo
results, the contour plots should display symmetry about r =0.

In Figure 3, we show results for the three-basis function model at six dif-
ferent values of ¢. Up to ¢=0.75 the Monte Carlo and approximate results
are generally in good agreement near the center of the cylinder. For higher
scattering ratios, the 1-D model does not agree with the Monte Carlo
results: at a given value of z near r=0, the 1-D model solution is too low.
This appears to be due to the fact that the basis function representation
cannot handle the sharp decrease in the solution as the edge of the cylinder
is approached. This sharp decrease can be seen in the figure by the MC
contour lines being very close together near the radial edge of the cylinder.
At ¢=0.9 and above, there are noticeable differences between the results
from the two methods.

Increasing the radius to be 20 mean-free paths, the 1-D model results
improve. In Figure 4 we can see that up to ¢=0.9 the MC results are indis-
tinguishable from the 1-D model except near the outer edge of the cylinder.
Once again, at high scattering ratios the 1-D model has large inaccuracies
when compared with Monte Carlo. Near the radial edge the solution
decreases rapidly in the Monte Carlo solution, especially near the z=0 end
of the cylinder. This variation cannot be captured with a quadratic basis-
function expansion.

The three-basis function treatment is essential to capture the solution to
these problems. Using one or two basis functions, as shown in Figure 5,
the 1-D model has unacceptable errors. This figure shows the solution for
a cylinder with radius 6 and a scattering ratio of ¢=0.75. On the same
problem, the three-basis function was comparable to the Monte Carlo solu-
tion near the center of the cylinder. Using a smaller number of basis func-
tions, the solution does not agree with the three-basis function solution. In
particular, the solution is too low at the same z position near the center of
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Figure 3. Comparison of steady-state MC and 1-D model solutions with three basis functions
for different scattering ratios for a cylinder of radius 6 mean-free paths. The positive r values
are the MC solution (solid), with the 1-D model solutions at the negative values (dashed).

the cylinder. Additionally, the one and two basis function solutions exag-
gerate the errors near the outer edge of the cylinder: the Monte Carlo solu-
tion is rapidly varying as a function of radius here and the 1-D models do
a worse job of approximating the solution here as the number of basis
functions decreases.

The time dependent behavior of the 1-D model is explored next. For
time dependent problems we use the implicit Euler method to handle time
integration. Figure 6 shows results for the ¢ =0.9 case with a radius of 20
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mean-free paths. We choose this scattering ratio because the solution was
accurate at steady state. At early times, =1 or 2 mean-free times, the 1-D
model solution moves particles too far into the cylinder. At later times the
Monte Carlo solution catches up with the 1-D model and the results are
nearly in agreement by 10 mean-free times. We investigated whether the
early time solution was due to time integration error, and did not see a
change in the results when decreasing the time step size by a factor of 10.
Given that the time-dependent results moved particles too fast down the
cylinder at early times and too slow at late times (e.g., steady state) when the
scattering ratio approaches 1, we should be able to observe a time where they
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Figure 7. Comparison of MC and 1-D model solutions with three-basis function for a cylinder
of radius 20 mean-free paths and ¢=0.99 at several mean-free times. The positive r values are
the MC solution (solid), with the 1-D model solutions at the negative values (dashed). Each fig-

ure used 200 time steps.

agree. This is shown in Figure 7 where the ¢=0.99 results match at t= 20,
but have the 1-D model moving particles too fast, relative to MC, at earlier
times. The steady solution (c.f. Figure 4) has the 1-D model moving particles
a shorter distance down the cylinder than the MC results.

4, Conclusions and future work

The numerical results for the 1-D models of transport in solid cylinders
indicate that at late times and at steady-state (1) as the radius of the cylin-
der increases, the 1-D model results approach the reference the Monte
Carlo results, and (2) for a given cylinder radius the 1-D model is more
accurate for lower scattering ratios. The 1-D models are not accurate near
the outer radial edge of the cylinder where the solution changes rapidly.
Furthermore, at early times in transient problems the 1-D model appears
to move particles too fast into the cylinder, a deficiency that improves at
later times.

Our results indicate that our 1-D models should be applicable to nonlin-
ear radiative transfer problems involving cylindrical Marshak waves. These
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problems typically have large radii in terms of mean-free paths, and, fur-
thermore, the heat wave moves slow compared to the collisional time scale
for radiation. Therefore, the accuracy of our model at late times and large
radii indicates that extending them to Marshak waves should be a fruitful
endeavor. The errors in the 1-D models near the radial edge of the cylinder
may not be problematic: the results given by Hurricane and Hammer
(2006) indicate that the sharp changes in the solution near the radial edge
of the cylinder in our results do not appear in the optically thick Marshak
wave problems, as they did in the linear transport problems solved here.

Before the 1-D models can be applied to Marshak waves there is add-
itional development needed. With a temperature dependent cross-section
there will be a radial dependence in the cross-sections and source when
constructing the 1-D model. This will make the development of a 1-D
model more difficult, but can be handled in the Galerkin procedure and
will lead to additional coupling between the angular flux moments.

Additional future work could explore the asymptotic limit of these 1-D
models in the limit of optically thick (both radially and axially) cylinders.
The resulting limit will be a system of coupled diffusion equations. This is
an even simpler model that, if accurate, could enable detailed theoretical
study based on the analytic tractability of the resulting equations.

All of these considerations, plus the fact that other simplified models are
somewhat effective in describing Marshak waves, indicate that there is
promise for these methods to be applied to Marshak wave problems to give
an ordered and convergent approximation. The work contained above is by
no means conclusive, but does indicate further development may
be fruitful.
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