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Abstract

This paper attempts to unify the asymptotic diffusion limit analysis of ther-
mal radiation transport schemes, for a linear discontinuous representation
of the material temperature reconstructed from cell centred temperature un-
knowns, in a process known as ‘source tilting’. The asymptotic limits of both
Monte Carlo (continuous in space) and deterministic approaches (based on
linear discontinuous finite elements) for solving the transport equation are
investigated in slab geometry. The resulting discrete diffusion equations are
found to have nonphysical terms that are proportional to any cell-edge dis-
continuity in the temperature representation. Based on this analysis it is
possible to design accurate schemes for representing the material tempera-
ture, for coupling thermal radiation transport codes to a cell centred repre-
sentation of internal energy favoured by ALE (arbitrary Lagrange-Eulerian)
hydrodynamics schemes.
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1. Introduction

High-energy density physics (HEDP) calculations to simulate experiments,
such as inertial confinement fusion or high-mach number shock interactions,
require the combination of two disparate fields of computational physics:
hydrodynamics and thermal radiation transport. Computational hydrody-
namics and radiation transport each have unique approaches to numerically
solving the constituent partial differential equations. For example, radiation
transport methods, in general, need discretizations designed to preserve the
asymptotic diffusion limit of transport, often requiring several unknowns per
spatial cell. On the other hand, hydrodynamics methods often use a single
degree of freedom per spatial cell, which can lead to unexpected difficulties
when coupling the two methods. This paper focuses on one particular aspect
of this coupling: the coupling of hydrodynamics codes that use a cell centred
treatment of the internal (material) energy to Monte Carlo and deterministic
solutions of time dependent thermal radiation transport problems. In such
an arrangement, the corresponding first-order accurate representation of the
material temperature is insufficient to facilitate accurate computation of the
thermal energy transport processes for algorithms which properly account for
the directionality of the radiation field when the computational mesh does
not resolve the radiation mean-free path.

Discrete diffusion schemes also need to make use of a higher order repre-
sentation of the material temperature in order to avoid problems with excess
numerical diffusion. However, this can be overcome by using a mixed element
formulation which decomposes the second order diffusion equation into a set
of coupled first order equations. A number of schemes exist which produce
accurate solutions to this set of equations based on edge-based representa-
tions of the normal component of the flux vector [1, 2].

Deterministic transport algorithms based on discontinuous finite element
formulations perform best if they use a nodal representation of the material
temperature field, rather than the piecewise constant representation inher-
ited from the hydrodynamics algorithm, which produces first order conver-
gence with respect to the mesh spacing. In addition to recovering a second
order convergence rate for sufficiently fine meshes, this paper demonstrates
that a nodal treatment is essential in order to ensure accurate results in the
asymptotic diffusion limit for both deterministic and Monte Carlo transport
algorithms.

The asymptotic diffusion limit refers to meshes which are sufficiently fine
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that they resolve the transport processes on the coarser length-scale associ-
ated with the diffusion of radiation energy through opaque media, but where
it is impractical to resolve down to a photon mean free path. Schemes which
do not perform well in this limit are generally unsuitable for modelling prob-
lems such as laser hohlraums, where the optical depth of the walls and the
capsule are so large that it is impractical to use meshes with more than a
few tens of cells through their respective thicknesses, especially for 3D sim-
ulations.

While our focus is on deterministic schemes based on the use of discon-
tinuous finite elements for modelling the spatial variations, we acknowledge
that it is possible to develop accurate schemes for solving the transport equa-
tion based on enforcing particle balance in local sub-volumes. The family of
corner balance transport schemes splits a mesh of arbitrary polygonal ele-
ments into a set of sub-cells (corners) and couples the transport equation in
each sub-volume to a set of independent piecewise constant material tem-
perature values [3]. This approach is similar in spirit to the use of node
centred temperatures, as there is still the requirement to model the variation
of the material temperature within each sub-element in order to produce ac-
curate results in the diffusion limit. Another way for deterministic transport
algorithms to implement a nodal representation of the temperature in prac-
tice is to have the the radiation solver “own” a slope of the temperature in
each cell that is not communicated to the hydrodynamics scheme[4]. This
arrangement can lead to discontinuities in the temperature representation.

We analyse the asymptotic diffusion limit of both deterministic and Monte
Carlo transport schemes in slab geometry, illustrating the close correspon-
dence between the results. This leads us towards the formulation of discrete
diffusion equations for the mesh cells which are approximations to the energy
balance equation satisfied by Monte Carlo transport schemes and determin-
istic transport discretisations based on the use of linear discontinuous finite
elements.

These discrete equations allow us to synthesize the results of the trans-
port solutions on coarse meshes, as well as highlighting the most important
aspects of the algorithm used to construct a higher order representation of
material temperature suitable for use in the transport simulations. This the-
oretical underpinning is essential in order to guide the search for improved
tilt schemes towards the most profitable avenues for future research.

Initially we consider the behaviour of a purely absorbing medium. This
analysis is then extended to consider scattering problems, where the scatter-
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ing is assumed to be a consequence of the semi-implicit temporal discreti-
sation techniques which are commonly employed to overcome the time-step
constraints due to the stiff coupling associated with the energy exchange
term. These techniques are observed to improve the spatial convergence
behaviour and this is confirmed by the asymptotic analysis. Unfortunately
they also degrade the temporal accuracy of the results, leading to an interplay
between the spatial and temporal resolution which can produce misleading
results in convergence studies.

2. Problem description

We consider the solution of the coupled thermal radiation transport equa-
tion [5],

1

c

∂Ψ

∂t
+ µ

∂Ψ

∂x
+ σΨ = σΦ (1a)

and material energy equation,

(ρCV )
∂T

∂t
= 2π

∫ 1

−1

σ(Ψ− Φ)dµ, (1b)

for a purely absorbing slab in a grey medium. In these equations, x is the
spatial variable, t time variable, µ is the cosine of the angle between a pho-
ton’s direction-of-flight and the x-axis, Ψ(µ, x, t) is the intensity of thermal
radiation, σ(x, t) is the absorption opacity, c is the speed of light. The mate-
rial temperature is denoted by T (x, t), and ρCV (x, t) is the heat capacity (the
material density times the specific heat). The quantity Φ(x, t) ≡ Φ(T (x, t))
is the thermal emissivity, which is a Planckian blackbody emission source
integrated over all frequency:

Φ(T ) =
acT 4

4π
, (2)

where a = 4σsb/c (σsb is the Stefan-Boltzmann constant).
In the asymptotic diffusion limit this reduces to a single equilibrium dif-

fusion equation[6],

(ρCV )
∂T

∂t
+

1

c

∂Φ

∂t
= ∇ ·

(
1

3σ
∇Φ

)
(3)

and our source tilt schemes should produce an accurate discretisation of this
equation for meshes capable of resolving the spatial variation of Φ (in the
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asymptotic diffusion limit where σ∆x � 1), rather than needing to resolve
the radiation mean free path σ−1.

We are interested in solving the coupled system of equations in the con-
text of radiation-hydrodynamics when it is coupled to a set of hydrodynamic
equations, such as the Euler equations, for the evolution of the material
density, velocity, and internal energy. In this context, there is a separate dis-
cretization for the hydrodynamic system. In many cases, the internal energy,
and therefore, the temperature are represented using a piecewise constant
representation. For this reason, we will discretise the material energy equa-
tion in space using a piecewise constant representation. Despite the piecewise
constant representation of the temperature, the thermal emissivity is allowed
to have a piecewise linear variation (derived from the cell temperatures) for
use in the transport/material system (1). As we will show, this is essential
in order to prevent excess numerical diffusion in the transport equation. The
aim of this paper is to derive a single equation for the energy flow in the
equilibrium diffusion limit as a function of the piecewise linear emissivities.

The slab is subdivided into cells with piecewise constant material proper-
ties in each cell. We start by establishing our notation. The spatial domain
extends from x = 0 to x = L and is subdivided into N cells. The cells,
which are not necessarily equally spaced, are given an index i extending
from from 1 and to N , while the nodes are labelled with half indices starting
with x 1

2
= 0 and extending to xN+ 1

2
= L. We define the width of cell i,

∆xi = xi+ 1
2
− xi− 1

2
, the cell absorption cross section σi (in units of inverse

length), which is assumed to be independent of frequency, and from these
the dimensionless optical depth τi = σi∆xi. We also define a set of cell cen-
tred heat capacities (ρCV )i so that the internal energy in cell i is given by
(ρCV )iTi per unit volume; for simplicity we assume that the heat capacities
are constant i.e. the internal energy is a linear function of temperature.

The cell temperatures are assumed to have a piecewise constant variation.
We can use them to define a corresponding set of nodal, i.e., cell-edge, T 4

values and from these the equilibrium radiation energy densities U(T ) =
(4π/c)Φ(T ) = aT 4. Using the piecewise constant temperatures to define a
piecewise linear emissivity is commonly referred to ‘source tilting’ because
the emissivity is allowed to have a linear variation within each element.

Φ is defined to have a linear discontinuous (LD) variation, i.e., the node
values are defined locally in each cell i, with the left value Φi,L corresponding
to the value at node i − 1

2
and the right value Φi,R corresponding to the
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value at node i+ 1
2
. For a continuous reconstruction procedure we can define

unique values at each node i.e. Φi,R = Φi+1,L = Φi+ 1
2

at the interior mesh
nodes. Internal to the element the temperature varies according to:

Φ(x, t) = Φi,L(t)b1(x) + Φi,R(t)b2(x) x ∈ [xi− 1
2
, xi+ 1

2
], (4)

where,

b1(x) =
xi+ 1

2
− x

∆xi
, b2(x)

x− xi− 1
2

∆xi
.

The spatial variation of Φ is illustrated in figure 1.

Figure 1: Plot of Φ(x, t) in terms of the discontinuous nodal values Φi,L(t) and Φi,R(t),
illustrating how it can be decomposed into separate contributions from the right (top) and
left (bottom) basis function in each cell i. The solid lines are the value of Φ(x, t) in each
cell.

We note that in many numerical treatments, the underlying temperature
could also be assumed to have a linear discontinuous spatial variation inde-
pendent of the variation assumed for Φ, so these functions have consistent
values only at the nodes of the element (i.e., a linear temperature is not the
same as a linear emissivity). This potential inconsistency in the formulation
has been investigated for deterministic calculations by Morel et al. [7] and for
Monte Carlo by Smedley-Stevenson [8]. For the purposes of this asymptotic
analysis it is sufficient to concentrate on modelling the evolution of the cell
averaged temperatures.

The expression for the emissivity can be substituted into the right hand
side of the photon transport equation, Eq. (1a):

1

c

∂Ψ

∂t
+ µ

∂Ψ

∂x
+ σiΨ = σiΦ = σi (Φi,Lb1(x) + Φi,Rb2(x)) (5)
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where all quantities in this expression aside from the basis functions have
an implied time-dependence which we have omitted. This is coupled to a
cell-averaged version of the material equation, Eq. (1b):

(ρCV )i
∂Ti
∂t

∆xi = 2π

∫ x
i+1

2

x
i− 1

2

∫ 1

−1

σi(Ψ(µ, x)− Φ(x))dµdx (6)

The boundaries of the problem are assumed to be freely radiating with
an isotropic incident source Ψ(µ, x) = ΦL at x 1

2
for µ > 0 and Ψ(µ, x) = ΦR

at xN+ 1
2

for µ < 0, which is sufficient for the problems we are interested in
studying. This avoids having to treat the issues associated with unresolved
boundary layers induced by the directionality of the radiation field incident
at the ends of the domain, which would act as a distraction to the conclusions
of the analysis presented in this paper.

3. Spatially continuous transport equation

Our aim is to derive an analytic expression for the energy transport be-
tween neighbouring cells in terms of the node centred unknowns used to
represent the spatial variation of the emissivity, for the spatially continuous
transport equation corresponding to the use of a Monte Carlo method (or
alternatively a mesh converged deterministic solution method) to solve the
transport equation. By assuming the cells are optically thick, this prob-
lem reduces to that of calculating the energy flow across the cell interfaces,
treating each pair of cells as two adjacent half-spaces with a linearly varying
source in each region.

In the energy balance equation we assume that the radiation and material
are in thermal equilibrium. This is not a significant assumption, as the opti-
cally thick cell assumption ensures that any boundary layers in the radiation
field due to discontinuities in Φ are localised to the cell edges and do not
significantly affect the mean value of the radiation energy density when av-
eraged across the entire cell width. Furthermore, the contribution from this
term is insignificant for most problems, as the energy density is dominated
by the contribution from the material. A less accurate alternative approach
would be to simply neglect this term in the energy equation.

Densmore has performed a comprehensive analysis of the asymptotic dif-
fusion limit of the continuous transport problem for a linear discontinuous
treatment of the source term [9]. Rather than repeating his analysis, we fo-
cus on generating approximate solutions of the Schwartzschild-Milne integral
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equation appropriate for optically thick meshes, but relax the assumption of
a spatially constant scattering ratio. Our aim is to produce a set of equations
which enable predictions to be made about the diffusion limit behaviour for
a given source tilt scheme.

3.1. Interface fluxes

We start off by deriving a cell energy balance equation for the equilibrium
energy density. Integrating the transport equation over space and angle (and
making use of the assumption that the radiation is in thermal equilibrium
with the material,which is valid away from boundary layers, leads to:[

(ρCV )i
∂Ti
∂t

+
∂Ui
∂t

]
∆xi = −2π

∫ x
i+1

2

x
i− 1

2

∫ 1

−1

µ
∂

∂x
Ψ(x, µ)dµdx (7)

= −2π

∫ 1

−1

µ(Ψ(xi+ 1
2
, µ)−Ψ(xi− 1

2
, µ))dµ

= F (xi+ 1
2
)− F (xi− 1

2
),

where

Ui∆xi =
4π

c

∫ x
i+1

2

x
i− 1

2

Φ(x)dx (8)

=
2π

c
(Φi,L + Φi,R) ∆xi =

4π

c
Φi∆xi

and the radiation flux is F (x). We are left with the problem of estimating
the net radiation flux across the boundaries, F (xi+ 1

2
)− F (xi− 1

2
), in order to

determine the rate of energy transport.

3.2. Purely absorbing problems

In Monte Carlo methods for thermal radiative transfer, when the time
scale of radiation emission and absorption is resolved by the time step, the
coupled system of equations reduces to a transport equation for a pure ab-
sorber with a fixed source which can be solved independently from the ma-
terial energy equation. In this section we investigate this case; later we will
examine the case where the emission and absorption processes are not re-
solved and an effective scattering term is introduced.

To model the thermal emission term in the transport equation we source
radiation isotropically according to this spatial emission profile and then
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propagate it through the medium and deposit the energy in the appropriate
cells to model the absorption term. The contributions to the emission can
be split into the 2N individual contributions from the finite element basis
functions, reducing this problem to one of modelling the propagation of the
left and right element basis functions for a single reference element extending
from x̂ = 0 to x̂ = 1. Furthermore, symmetry means that results for the right
basis function can be derived directly from those for the left basis function
by replacing x̂ by 1− x̂.

Ignoring time of flight effects (which are insignificant for optically thick
problems) allows us drop the time derivative from the transport equation
when evaluating the radiation flux, which leads to a balance equation for
the total energy in each cell as a function of the nodal temperatures in this
and the neighbouring cells in the absence of spatial discretisation errors in
modelling the transport problem; this allows us to study the behaviour of
the Monte Carlo method applied to this transport problem.

The corresponding balance equation is given by:

1

4π

[
(ρCV )i

∂Ti
∂t

+
∂Ui
∂t

]
∆xi =

− σi [Φi,LLi,L→i−1 + Φi,RLi,R→i−1] + σi+1 [Φi+1,LLi+1,L→i + Φi+1,RLi+1,R→i]

− σi [Φi,LLi,L→i+1 + Φi,RLi,R→i+1] + σi−1 [Φi−1,LLi−1,L→i + Φi−1,RLi−1,R→i]
(9)

for interior cells 2 ≤ i ≤ N − 1, while for the boundary cells we have:

1

4π

[
(ρCV )1

∂T1

∂t
+
∂U1

∂t

]
∆x1 =

−σ1 [Φ1,LL1,L→0 + Φ1,RL1,R→0]
+σ2 [Φ2,LL2,L→1 + Φ2,RL2,R→1]
−σ1 [Φ1,LL1,L→2 + Φ1,RL1,R→2]
+1

4
ΦL

(10)

and

1

4π

[
(ρCV )N

∂TN
∂t

+
∂UN
∂t

]
∆xN =

−σN [ΦN,LLN,L→N−1 + ΦN,RLN,R→N−1]
+1

4
ΦR

−σN [ΦN,LLN,L→N+1 + ΦN,RLN,R→N+1]
+σN−1 [ΦN−1,LLN−1,L→N + ΦN−1,RLN−1,R→N ]

(11)
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Here Li,L→i−1 represents the rate at which particles sourced according to
the left basis function in cell i cross the left boundary and then deposit their
energy in cell i−1, with the other quantities defined similarly. Here, we have
precluded the possibility that particles can pass through cell i − 1 into cell
i − 2 etc. Note that the factor 4π on the left hand side is a consequence of
the definition of Φ and we could instead use U = (4π/c)Φ = aT 4 on the right
hand side of this expression so that this is expressed in terms of the radiation
energy densities.

These terms can be evaluated explicitly according to the following formuli:

Li,L→i−1 = Li,R→i+1 = hL(τi)∆xi (12)

Li,L→i+1 = Li,R→i−1 = hR(τi)∆xi (13)

where

hL(τ) =
1

12τ 2

(
(−2 + 3τ) + (2− τ + τ 2)e−τ − τ 3E1(τ)

)
(14)

hR(τ) =
1

6τ 2

(
1 + (−1− τ + τ 2)e−τ − τ 3E1(τ)

)
(15)

and E1(x) =
∫∞
x
t−1e−tdt is the exponential integral. In the optically thick

limit these expressions reduce to:

hL(τ) =
1

4τ
− 1

6τ 2
(16)

hR(τ) =
1

6τ 2
(17)

The above expressions are derived directly from the formal solution of the
steady-state transport equation i.e. the Schwarzschild-Milne equation for the
radiation flux [10, Chapter 10].

To simplify the notation we introduce the following definitions for the
jump across each interface δΦi+ 1

2
= Φi+1,L − Φi,R and use the change within

each cell to define a cell centred flux

Fi = − 4π

3τi
(Φi,R − Φi,L) = − 4π

3τi
∆Φi (18)

which is related to the slope of Φ within the element. Substituting the
asymptotic values into the balance equation leads to:

1

4π

[
(ρCV )i

∂Ti
∂t

+
∂Ui
∂t

]
∆xi =

+1
4
δΦi+ 1

2
− 1

4
δΦi− 1

2
− 1

8π
(Fi+1 + Fi) + 1

8π
(Fi−1 + Fi) (19)
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for 2 ≤ i ≤ N − 1, with similar expressions for the boundary cells. We do
not explicitly cancel the contributions from the slopes within cell i, in order
to aid the interpretation of these terms as a difference between the average
values of the flux at the interfaces.

The jump terms in this expression do not depend on the material prop-
erties and therefore lead to unphysical energy exchange (e.g., even if σ →∞
there would still be energy flow across the cell boundary). The flux terms
represent the energy change associated with discrete approximations to the
equilibrium radiation fluxes on the faces of the element. Consequently, we
must attempt to use a nearly continuous representation for the thermal emis-
sion term if we are to obtain accurate results from optically thick mesh Monte
Carlo photon transport calculations.

3.2.1. Applicability to SIMC

By employing fully implicit time differencing with the discrete expres-
sion derived above, we should be able to predict the behaviour of the Sym-
bolic Implicit Monte Carlo (SIMC) method [11] when combined with various
source tilt strategies for determining the nodal values of Φ, for optically thick
problems where it may not be possible to perform accurate Monte Carlo sim-
ulations. The slope can be calculated explicitly (a technique we refer to as
a ‘frozen tilt’), but with the emissivity scaled according to the fourth power
of the cell averaged temperature such that the scheme remains stable.

We note that Clouët and Samba [12] obtained similar results in their
asymptotic diffusion limit analysis of the SIMC method. Their work is more
comprehensive, in that it extends to 2 and 3D geometries modelled with
linear finite element basis functions, although they focused their attention
on the asymptotic limit of the consistent linear discretisations rather than
using their results to analyse source tilt schemes.

It is also useful in the context of this paper, as it provides additional
information about the form of the multi-dimensional expressions, which are
shown to be identical to those in slab geometry in 3-dimensions. The corre-
sponding expressions for 2D problems contain additional corner terms (with
a similar scaling to the flux terms), but these extra terms vanish for contin-
uous tilt schemes. This provides additional confidence in the utility of the
slab geometry studies for guiding the development of multi-dimensional tilt
schemes.
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3.3. Scattering problems

We now extend the above analysis to the case where some scattering is
present in the system. This analysis is particularly applicable to the Implicit
Monte Carlo (IMC) method. A new analytic solution of the two half-spaces
problem has been derived [13], which generalised the coupling coefficients for
the pure absorber problem to the case of different/non-zero scattering ratios
in adjacent cells. Again we assume that the cells are sufficiently opaque that
radiation cannot penetrate beyond the direct neighbours (and ignore time of
flight effects) in order to derive the energy equation.

The corresponding transport problem is written as:

µ
∂Ψ

∂x
+ σiΨ = (1− ci)σi (Φi,Lb1(x) + Φi,Rb2(x)) +

1

2
ciσi

∫ 1

−1

Ψ dµ (20)

where we have introduced a scattering term into the right hand side of the
transport equation. This is the equation being solved in the grey Implicit
Monte Carlo (IMC) method [14], where fi = 1−ci is the Fleck parameter (or
Fleck factor) for cell i. fi is a function of both the material properties and
the time-step (∆t), which scales as 1/∆t in opaque strongly emitting cells
to ensure that the scheme remains stable i.e. it prevents cells from emitting
more energy than is stored locally in the material.

We note that the asymptotic scaling of the absorption and scattering
terms is different depending on whether we are considering physical scattering
or the scattering term results from the time discretisation. In this paper we
focus on the latter case and investigate the case of a fixed Fleck parameter
i.e. fixed σic∆t (fixed attenuation over the free streaming path length) for
a purely absorbing problem, which means that the scattering ratio remains
fixed as we investigate the limiting case of a large total cross-section (which
corresponds to absorptions only)[6].

The transport equation can be transformed into optical depth co-ordinates
in order to eliminate the effects of variable cross-sections, so that the cou-
pling between cells is a function of the scattering ratios only. This allows us
to derive equivalent expressions for the interface fluxes, which are valid pro-
vided that the cells remain optically thick i.e. provided

√
1− ciσi∆xi � 1.
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The corresponding energy balance equation is given by:

1

4π

[
(ρCV )i

∂Ti
∂t

+
∂Ui
∂t

]
∆xi =

+η(ci+1 → ci)(1− ci+1)Φi+1,L − η(ci → ci+1)(1− ci)Φi,R

−η(ci → ci−1)(1− ci)Φi,L + η(ci−1 → ci)(1− ci−1)Φi−1,R

− 1
4π
θ(ci+1 → ci)Fi+1 − 1

4π
θ(ci → ci+1)Fi

+ 1
4π
θ(ci−1 → ci)Fi−1 + 1

4π
θ(ci → ci−1)Fi

(21)

for 2 ≤ i ≤ N − 1, with similar expressions at the boundaries.
Here the coefficient η(c1 → c2) = η(c2 → c1)(1 − c2)/(1 − c1) is defined

so that 4πη(c1 → c2)(1 − c1)Φ is flux between two adjacent half spaces
with scattering ratios c1 and c2, due to a spatially uniform isotropic source
(1− c1)Φ located in region 1; η → 1/4 in purely absorbing regions. Likewise,
the coefficient θ(c1 → c2) = 1 − θ(c2 → c1) is defined so that θ(c1 → c2)F1

is the flux between two adjacent half spaces, for a linear (in space) isotropic
emission profile (1 − c1)σ1Φ(x) in region 1∗; θ → 1/2 for regions with equal
scattering ratios. The behaviour of these coefficients is described in greater
detail in Appendix A.

Using these relationships, the equations simplify to:

1

4π

[
(ρCV )i

∂Ti
∂t

+
∂Ui
∂t

]
∆xi =

+η(ci → ci+1)(1− ci)δΦi+ 1
2
− η(ci → ci−1)(1− ci)δΦi− 1

2

− 1
4π

((1− θ(ci → ci+1))Fi+1 + θ(ci → ci+1)Fi)
+ 1

4π
((1− θ(ci → ci−1))Fi−1 + θ(ci → ci−1)Fi)

(22)

for 2 ≤ i ≤ N − 1 and at the boundaries we have:

1

4π

[
(ρCV )1

∂T1

∂t
+
∂U1

∂t

]
∆x1 =

+η(c2 → c1)(1− c2)δΦ 3
2
− 1

4
(1− α(c1))(Φ1,L − ΦL)

− 1
4π

((1− θ(c1 → c2))F2 + θ(c1 → c2)F1)
+ 1

4π
θ(c1 → 0)F1

(23)

∗Φ(x) is the piecewise linear function whose slope is consistent with the value of F1 =
−(4π/3σ1)∇Φ(x) in region 1, which intercepts the axis at the interface between the two
regions and is zero throughout region 2.
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and:

1

4π

[
(ρCV )N

∂TN
∂t

+
∂UN
∂t

]
∆xN =

+1
4
(1− α(cN))(ΦR − ΦN,R)− η(cN → cN−1)(1− cN)δΦN− 1

2

− 1
4π
θ(cN → 0)FN

+ 1
4π

((1− θ(cN → cN−1))FN−1 + θ(cN → cN−1)FN)

(24)

Here the boundary source terms are written in terms of the albedo for
isotropic radiation incident on the respective surface i.e. α(c1) = 1− 4η(0→
c1) or α(cN) = 1− 4η(0→ cN) due to the presence of scattering.

From these expressions we see that the influence of the jump terms di-
minishes as the scattering ratio increases i.e., η(c1 → c2)(1 − c1) decreases
as c1 → 1, and explains why the IMC method with large time-steps is less
susceptible to the presence of discontinuities in the treatment of the thermal
emission source term. Furthermore, we see that local differences in the scat-
tering ratio (associated with the spatial variation of the Fleck parameter)
lead to a bias in the flux across the interface towards the value in the cell
with the larger scattering ratio.

Provided we have an efficient mechanism for evaluating these coupling
coefficients for arbitrary values of the scattering ratios, then we could use
the same strategy to simulate results from the IMC method as we propose
for testing the results of the SIMC method. In this case, we treat the terms
on the right hand side of the equation explicitly using the start of time-step
values, taking advantage of the scaling of the jump terms which should ensure
that the algorithm remains stable.

Finally, we restate the limitations of this analysis. It is constrained to
meshes where the cell optical depth τi � 1/

√
1− ci = 1/

√
fi ≥ 1. For a given

mesh this places a lower limit on the Fleck parameter of 20–30×τi−2, which
prevents us from studying the behaviour as fi → 0. For smaller values of
the Fleck parameter the assumption that the coupling is limited to nearest
neighbours breaks down and we must solve the full transport problem in
order to synthesize the IMC solution.

Densmore [9] followed this latter approach in order to show that the
piecewise constant IMC scheme has a valid asymptotic diffusion limit pro-
vided that the Fleck parameter scales as ε2. Furthermore, he has shown that
the piecewise linear approach can produce accurate results for constant, ε
and ε2 scalings, for certain kinds of problem. Both the constant and ε scaling
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results in his analysis are consistent with the results in this section, as they
were derived by making the same assumption that the boundary layers as-
sociated with discontinuities in Φ are localised to the neighbouring cells i.e.
zi+1/2 → ±∞ for x ∈ [xi, xi+1].

3.4. Asymptotic diffusion limit

In the asymptotic diffusion limit the constraint that coupling is limited
to nearest neighbours translates to requiring

√
f � ε, which can be satisfied

for f = f0 or f = f1ε. The property
√
fτ � 1 in the discrete equations

means that the coefficient in the unphysical jump terms will dominate that
in the slope terms. Consequently, in order to obtain the correct asymptotic
behaviour the magnitude of the jumps δΦi+ 1

2
must be much smaller than the

slopes ∆Φi.
For a piecewise constant treatment of Φ this can never be realized. How-

ever, depending on the details of the slope calculation, it may be possible
to choose the mesh so that we can control the jumps in order to satisfy√
fτδΦ � ∆Φ; this is the argument made by Densmore. In this paper we

make a stronger statement: by enforcing continuity we can guarantee that
this relationship is satisfied, irrespective of the scaling of the Fleck parameter,
for arbitrary meshes.

4. Spatially discretised transport equation

So far we have considered the behaviour of the spatially continuous trans-
port equation. A set of discrete equations for the material temperature evo-
lution have been derived as a function of the reconstructed emissivity values,
assuming the cells are optically thick. It is useful to repeat the analysis for
the spatially discretised transport equation in order to understand the con-
vergence behaviour of deterministic transport methods based on the same
source tilt methodologies.

We focus on linear discontinuous spatial discretisations of the transport
equation, which are consistent with the linear treatment of the thermal emis-
sion term. In order to derive comparable expressions to those for the con-
tinuum transport equation we must perform an asymptotic diffusion limit
analysis, scaling the terms in the transport equations so that we reveal the
behaviour of the discrete equations as the mean free path becomes vanish-
ingly small (for finite cell sizes), which is analogous to the nearest neighbour
coupling assumption used previously.
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To discretize the transport equation with linear discontinuous finite ele-
ments, we first write the spatial variation of Ψ inside element i as

Ψ(x, µ, t) = Ψi,L(µ, t)b1(x) + Ψi,R(µ, t)b2(x) x ∈ [xi− 1
2
, xi+ 1

2
] (25)

In the subsequent derivation the µ and t dependence of these coefficients is
omitted. If we substitute this form for Ψ into the transport equation and
then multiply by [b1(x), b2(x)]t and integrate over cell i, we get

1

c

∂

∂t
Mi

~Ψi +
µ

2

(
Ψi,R + Ψi,L − 2Ψi− 1

2

−Ψi,R −Ψi,L + 2Ψi+ 1
2

)
+ σa,iMi

~Ψi (26)

= σa,iMi

(1− ci)~Φi +
ci
2

1∫
−1

~Ψidµ

 (27)

where ~Ψi = [Ψi,L,Ψi,R]t, ~Φi = [Φi,L,Φi,R]t, and

Mi =
∆xi

6

(
2 1
1 2

)
(28)

is the mass matrix for cell i. The values of Ψ at the boundary of the element,
Ψi± 1

2
= Ψ(xi± 1

2
, µ, t) are determined based on the value of µ:

Ψi+ 1
2

=

{
Ψi−1,R µ > 0

Ψi,L µ < 0

These values are chosen using the principle of upwinding: when µ is positive
information flows from the left to the right, and therefore we interpret the
value of Ψ at the interface as the value just to the left of the interface, Ψi−1,R.

Similarly, if we substitute the linear discontinuous forms of Ψ and Φ into
the material energy equation, Eq. (1b), we get

(ρCV)i
∂Ti
∂t

= 2π

1∫
−1

(1− ci)σa,i

(
Ψi − Φi

)
dµ (29)

here Ψi = 1
2
(Ψi,L + Ψi,R), and Φi = 1

2
(Φi,L + Φi,R). One characteristic of

the linear discontinuous finite element method is that we can derive a cell
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balance equation if we sum the rows of Eq. (26). Integrating the resulting
equation over particle direction we get

(ρCV)i
∂Ti
∂t

+
∂Ui
∂t

+
Fi+ 1

2
− Fi− 1

2

∆xi
= 0, (30)

where

Fi+ 1
2

= 2π

 0∫
−1

µΨi+1,L dµ+

1∫
0

µΨi,R dµ

 (31)

and this has the same form as Eq. (7).

4.1. Asymptotic diffusion limit

To investigate the asymptotic diffusion limit of this system we apply the
appropriate asymptotic scaling [15] to Eqs. (26) and (29)

ε

c

∂

∂t1
Mi

~Ψi +
ε2

c

∂

∂t2
Mi

~Ψi +
εµ

2

(
Ψi,R + Ψi,L − 2Ψi− 1

2

−Ψi,R −Ψi,L + 2Ψi+ 1
2

)
+ σa,iMi

~Ψi (32a)

= σa,iMi

(1− ci)~Φi +
ci
2

1∫
−1

~Ψidµ



ε(ρCV)i
∂Ti
∂t1

+ ε2(ρCV)i
∂Ti
∂t2

= 2π

1∫
−1

(1− ci)σa,i

(
Ψi − Φi

)
dµ (32b)

where the ε is the small (positive) asymptotic scaling parameter and we
have introduced two time variables t1 and t2 corresponding to the fast time
evolution which we associate with the presence of spurious large jump discon-
tinuities in the source tilt and a slow time-scale corresponding to the physical
evolution of the material temperature. We then expand Ψ in a power series
of the form

(·) =
∞∑
l=0

εl(·)(l) (33)

and equate like orders of ε.
We do not expand either Φ or T in terms of a power series, but instead

treat them both as O(1) quantities, as the aim is to focus on the proper-
ties of the transport solution for a given source tilt prescription and study
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the associated temperature evolution. Cancellations between terms in the
resulting expressions will determine the precise order of their contributions
to the cell energy balance expressions. f = 1 − c is assumed to be an O(1)
quantity which depends on the ratio of time-step used in the simulation to
the equilibration time of the medium; it is possible to repeat this analysis for
other cases such as f = O(ε) or f = O(ε2).

The O(1) equations give

Ψ
(0)
i,L = Φi,L, Ψ

(0)
i,R = Φi,R (34a)

and
Ψ

(0)

i = Φi (34b)

which are completely consistent. Continuing the expansion to O(ε), the semi-
discrete transport equation, Eq. (32a), can be written as

~Ψ
(1)
i =

ci
2

1∫
−1

~Ψ
(1)
i dµ− µ

σa,i

M−1
i

Φi −Ψ
(0)

i− 1
2

Ψ
(0)

i+ 1
2

− Φi

 (35)

where we have multiplied this equation by σ−1
a,iM

−1
i and

Ψ
(0)

i+ 1
2

=

{
Φi−1,R µ > 0

Φi,L µ < 0

For non-zero scattering ratios we have an additional isotropic contribu-
tion to the first order intensity which can be evaluated by integrating this
expression over angle and using the upwind values in the boundary terms.

ci
2

1∫
−1

~Ψ
(1)
i dµ =

ci
(1− ci)

1

4σa,i

M−1
i

(
−δΦi− 1

2

δΦi+ 1
2

)

=
ci

(1− ci)
1

2σa,i∆xi

(
2 −1
−1 2

)(−δΦi− 1
2

δΦi+ 1
2

)
(36)

which vanishes for continuous reconstructions. This can then be substituted
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in the following expressions for the first order intensity

Ψ
(1)
i,L =

ci
2

1∫
−1

Ψ
(1)
i,Ldµ+

µ

σa,i∆xi

(
4Φi− 1

2
+ 2Φi+ 1

2
− 6Φi

)
(37a)

Ψ
(1)
i,R =

ci
2

1∫
−1

Ψ
(1)
i,Rdµ+

µ

σa,i∆xi

(
−2Φi− 1

2
− 4Φi+ 1

2
+ 6Φi

)
(37b)

The corresponding material energy equation (retaining terms up to O(ε2))
is given by

ε(ρCV)i
∂Ti
∂t1

+ ε2(ρCV)i
∂Ti
∂t2

= 2πε

1∫
−1

(1− ci)σa,i

(
Ψ

(1)

i + εΨ
(2)

i

)
dµ (38)

which can be split into two equations corresponding to the two time-scales
introduced earlier

(ρCV)i
∂Ti
∂t1

= 2π

1∫
−1

(1− ci)σa,iΨ
(1)

i dµ (39)

(ρCV)i
∂Ti
∂t2

= 2π

1∫
−1

(1− ci)σa,iΨ
(2)

i dµ (40)

To eliminate the first equation we require the right-hand side to vanish,
which implies that the angular integral of the first order intensity integrates
to zero over the cell. Using the upwind definition of the boundary values
leads to the following solvability condition

δΦi+ 1
2
− δΦi− 1

2
= O(ε), (41)

The O(1) difference between the jump terms must vanish in the source tilt
scheme in order to eliminate the contribution from the fast time variable t1.
This ensures that the energy transport associated with discontinuities in the
reconstruction is of the same order as that due to the linearly anisotropic
component of the radiation field, a prerequisite for a valid asymptotic diffu-
sion limit. Reconstructions which fail to satisfy (41) have a spurious tem-
perature evolution on the fast time-scale t1, which artificially enhances the
propagation of thermal waves in optically thick cells.
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The solvability condition is automatically satisfied by continuous recon-
structions (as the left-hand side is zero), or discontinuous reconstructions
such as the frozen tilt scheme (discussed in section 3.2.1) where the discon-
tinuities are constrained to be O(ε). Another possibility is that the mesh
size scales with ε, but we already know that a piecewise constant treatment
of the material temperature provides sufficient accuracy in this intermediate
regime so long as the mesh resolution is sufficient to ensure that the cell
optical depths are much less than one.

We now continue the analysis up to O(ε2) in order to study the evolution
on the slow time-scale, leading to the following expressions for the radiation
field

Ψi,L = Φi,L + ε

ci
2

1∫
−1

Ψ
(1)
i,Ldµ+

µ

τi

(
4Φi− 1

2
+ 2Φi+ 1

2
− 6Φi

) (42a)

Ψi,R = Φi,R + ε

ci
2

1∫
−1

Ψ
(1)
i,Rdµ+

µ

τi

(
−2Φi− 1

2
− 4Φi+ 1

2
+ 6Φi

) (42b)

Using these equations we can compute the flux crossing the interface i + 1
2

(between cells i and i+ 1)

Fi+ 1
2

4π
= −1

4
δΦi+ 1

2
− ε

4

ci+1

2

1∫
−1

Ψ
(1)
i+1,Ldµ−

ci
2

1∫
−1

Ψ
(1)
i,Rdµ


− ε 1

6τi
(Φi,R − 3Φi,L + 2Φi−1,R)

− ε 1

6τi+1

(−2Φi+2,L + 3Φi+1,R − Φi+1,L) +O(ε2) (43)

which can be written in the following simplified form

Fi+ 1
2

4π
= −1

4
(Φ∗i+1,L − Φ∗i,R)

− ε 1

6τi
(Φi,R − 3Φi,L + 2Φi−1,R)

− ε 1

6τi+1

(−2Φi+2,L + 3Φi+1,R − Φi+1,L) +O(ε2) (44)
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where

~Φ∗i = ~Φi + ε
ci
2

1∫
−1

~Ψ
(1)
i dµ

= ~Φi +
ε

2τi

ci
(1− ci)

(
2 −1
−1 2

)(−δΦi− 1
2

δΦi+ 1
2

)
(45)

Using this relation in the scaled version of Eq. (30) gives

1

4π

[(
(ρCV)i

∂Ti
∂t1

+
∂U∗i
∂t1

)
+ ε

(
(ρCV)i

∂Ti
∂t2

+
∂U∗i
∂t2

)]
∆xi

= +
1

4
(Φ∗i+1,L − Φ∗i,R)− 1

4
(Φ∗i,L − Φ∗i−1,R)

+ ε
1

6τi+1

(−2Φi+2,L + 3Φi+1,R − Φi+1,L)

+ ε
1

6τi
(2Φi−1,R + Φi,R − 3Φi,L)

− ε 1

6τi−1

(Φi−1,R − 3Φi−1,L + 2Φi−2,R)

− ε 1

6τi
(−2Φi+1,L + 3Φi,R − Φi,L) +O(ε2) (46)

This equation is the deterministic analogue of the energy equation associ-
ated with the spatially continuous transport equation, for a linear discontin-
uous spatial discretisation. Here we have not discretised the angular variable,
but we expect similar results to hold for any angular discretisation applied
to the first order transport equation which allows us to upwind the boundary
fluxes and is able to accurately resolve independent linear variations in angle
over each half-space†.

For the Pn method (with odd n) we can decompose the solution into left
and right moving waves, prior to imposing the boundary conditions between
elements‡ and this technique has been used by one of the authors (McClar-
ren) to solve the Pn equations [16, 17]. A similar technique is used in the

†Full range expansion techniques have this property, but converge more slowly than
the equivalent half range expansions.
‡This demonstrates the well known equivalence between the Pn−1 method and an Sn

scheme with the corresponding Gauss-Legendre quadrature set.
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RADIANT code developed at Imperial College [18] in collaboration with the
other author (Smedley-Stevenson), which formulates the angularly discre-
tised transport equation in terms of the characteristic variables associated
with a particular angular discretisation and allows the same coding to be
used for both Sn, Pn and wavelet discretisations of the angular variable.

4.1.1. Mass lumping

A similar (but more localised) expression can be derived if we apply mass
lumping to the exchange terms

1

4π

[(
(ρCV)i

∂Ti
∂t1

+
∂U∗Li
∂t1

)
+ ε

(
(ρCV)i

∂Ti
∂t2

+
∂U∗Li
∂t2

)]
∆xi

= +
1

4
(Φ∗Li+1,L − Φ∗Li,R)− 1

4
(Φ∗Li,L − Φ∗Li−1,R)

− ε

8π
(Fi+1 + Fi) +

ε

8π
(Fi−1 + Fi) +O(ε2) (47)

This is identical to the unlumped results for continuous reconstructions§, but
there are subtle differences in the behaviour for discontinuous reconstructions
due to both the jump and flux terms. The definition of Φ∗L is consistent with
the application of mass lumping to Eq. (45)

~Φ∗Li = ~Φi +
ε

2τi

ci
(1− ci)

(
−δΦi− 1

2

δΦi+ 1
2

)
(48)

In the absence of scattering, if the spatial mesh for the unlumped trans-
port equations is refined by subdividing the cells (and duplicating the mate-
rial properties/interpolating the source term), the non-local coupling terms
disappear and the asymptotic behaviour matches the lumped expressions on
the original transport mesh. Mass lumping of the purely absorbing trans-
port problem can therefore be interpreted as being equivalent to an arbitrary
increase in the spatial resolution of the transport solution, for a fixed temper-
ature grid i.e. it is identical to that of the continuum problem (see Eq. (19)).

4.2. Implications

We now pursue the implications of the asymptotic analysis. Firstly, we see
that (as with the continuum transport problem) a continuous reconstruction

§Except at the problem boundaries, if the continuity is restricted to the problem inte-
rior.

22



will lead to the correct asymptotic behaviour corresponding to a particular
discretisation of the diffusion equation, which is unaffected by mass lumping
(except possibly at the problem boundaries).

4.2.1. Piecewise constant scheme

For a piecewise constant representation of Φ the solvability constraint
for the O(ε) equations implies the following relationship between the cell
temperatures

Φi+1 − 2Φi + Φi−1 = O(ε) (49)

The steady-state solution will satisfy this equation (with zero on the right-
hand side) i.e. Φ evolves towards a linear function of the mesh cell index,
which matches the left and right boundary values. This is the correct steady-
state solution for a constant opacity medium modelled with a uniform mesh,
but represents a spurious discretisation of the equilibrium problem for non-
uniform meshes/spatially varying opacities. For time dependent problems
this scheme does not have a valid diffusion limit, irrespective of the details
of the problem definition.

4.2.2. Discontinuous reconstructions

For general discontinuous reconstructions (which includes the piecewise
constant representation as a special case) we have

δΦi+ 1
2
− δΦi− 1

2
= O(1) (50)

which implies an incorrect O(ε−1) scaling of the time derivative terms i.e.
it results in the introduction of variations with respect to the spurious fast
time-scale t1. The total energy equation can now be written as

1

4π

[(
(ρCV)i

∂Ti
∂t1

+
∂U∗i
∂t1

)
+ ε

(
(ρCV)i

∂Ti
∂t2

+
∂U∗i
∂t2

)]
∆xi

= +
1

4
(Φ∗i+1,L − Φ∗i,R)− 1

4
(Φ∗i,L − Φ∗i−1,R) +O(ε) (51)

where the energy flow rate does not depend on either the mesh spacing or
the optical properties of the medium. This is the discrete equation satisfied
by reconstructions with unconstrained discontinuities, such as the traditional
gradient based source tilt schemes. We can include the O(ε) term (with or
without lumping) in order to increase the accuracy of the predicted asymp-
totic behaviour, noting that this term vanishes for the lumped treatment of
piecewise constant temperatures.
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5. Summary of the asymptotic analysis

In the preceding sections we have derived the corresponding total energy
equation for both SIMC and IMC based Monte Carlo transport schemes
which can be written in the following general form:

1

4π

[
(ρCV )i

∂Ti
∂t

+
∂Ui
∂t

]
∆xi =

+η(ci → ci+1)(1− ci)δΦi+ 1
2

−η(ci → ci−1)(1− ci)δΦi− 1
2

− 1

4π
((1− θ(ci → ci+1))Fi+1 + θ(ci → ci+1)Fi)

+
1

4π
((1− θ(ci → ci−1))Fi−1 + θ(ci → ci−1)Fi) (52)

and also for a linear discontinuous spatial discretisation:

1

4π

[
(ρCV)i

∂Ti
∂t

+
∂U∗i
∂t

]
∆xi = +

1

4
(Φ∗i+1,L − Φ∗i,R)− 1

4
(Φ∗i,L − Φ∗i−1,R)

+
1

6τi+1

(−2Φi+2,L + 3Φi+1,R − Φi+1,L)

+
1

6τi
(2Φi−1,R + Φi,R − 3Φi,L)

− 1

6τi−1

(Φi−1,R − 3Φi−1,L + 2Φi−2,R)

− 1

6τi
(−2Φi+1,L + 3Φi,R − Φi,L) (53)

which is the same except for the flux terms which now depend on the values of
the emission profile in cells i−2 and i+2 as well as in the direct neighbours; we
note that the lumped equations agree with the continuum transport results
for the no scattering problem. These equations predict the energy flow rate
for a given emission profile, showing how the source tilt scheme influences the
energy balance in the problem, for problems modelled with optically thick
cells.

We note that U∗i → (4π/c)Φi which is the value determined from the
source tilt rather than the value consistent with the cell centred tempera-
ture. Consequently, the source tilt may also affect the partitioning of energy
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between the material and the radiation field as well as the energy flow rate.
This value will generally be larger than the cell centred value derived from
(Ti)

4. For a linear reconstruction the additional variations introduced by
the tilt scheme bias the function so that it has a mean value up to 8 times
larger in the most extreme case, for schemes which preserve the cell average
temperature.

We note that similar results apply to schemes which subdivide the origi-
nal cells into sub-elements with a reconstruction which maintains continuity
within the element. These schemes have the benefit of reducing the size
of the stencil in the asymptotic limit equations, thereby avoiding problems
associated with the decoupling of the even and odd numbered cells in the
problem interior which can lead to oscillatory solutions.

5.1. Discussion

It is immediately apparent from the form of the energy equations in the
previous section that the source tilt function should be continuous across the
cell boundaries, as otherwise energy will flow between the cells at a rate which
depends only on the cell size rather than on the properties of the material.
This is the behaviour exhibited by piecewise constant treatments of the emis-
sivity often referred to as teleportation error [19]; here we are excluding the
effect which can occur in optically thin cells, due to the possibility of a large
physical separation between where a photon is absorbed and the sampled
re-emission location, which is not addressed by the source tilt schemes, and
can be thought of as a temporal discretisation error arising from the coarse
spatial mesh.

SIMC schemes are more prone to teleportation error due to the larger
coefficient in these jump terms, whereas for IMC schemes this excess energy
flux is scaled down by a factor

√
fi. Provided the Fleck parameter can be

chosen to scale as ε2, it can be shown that the IMC method with a piecewise
constant representation of temperature has a valid asymptotic diffusion limit
[9]; the energy transport is no longer localised to nearest neighbour cells as√
fτ is now an 0(1) quantity.

This behaviour is a consequence of the extended lifetime of the Monte
Carlo particles, which ensures that the contribution to the particle field from
particles created by the residual thermal emission source term (which scales
as f) during the time-step is small enough relative to the contribution from
the pseudo-scattering term (which scales as 1 − f) to the thermal emission
from the material that any excess flow associated with the boundary layer
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caused by jumps in this function is of order ε relative to the energy flow due
to the ambient radiation field.

We have not discussed the time discretisation of the deterministic scheme,
but similar procedures to the SIMC and IMC time discretisations can be em-
ployed in order to treat the time evolution of these equations. Typically, we
follow the approach of the IMC method in order to derive a set of linearised
discrete transport equations for the radiation field [20]. This semi-implicit
approach leads to similar modifications to the terms in the total energy equa-
tion, although we use smaller time-steps than are typically used with the
IMC method as we attempt to accurately capture the details of the time-
dependent evolution i.e. we do not rely on time-stepping to help reduce the
discretisation errors and instead focus on achieving accurate results in the
limit of small time-steps where the form of the equations is unchanged.

6. The Reconstruction Process

The source tilt problem can be stated as follows. Given a set of cell
centred temperatures, Ti, reconstruct nodal and cell average values of Φ
such that the total energy equation corresponds to an accurate discretisation
of the associated diffusion problem while maintaining a level of consistency
between the cell average Φ value, Φi, and the value derived from the cell
averaged temperatures Φi = acT 4

i /(4π).
We note that it is also possible to derive sub-cell schemes where the

emissions are localised to a smaller sub-domain than the entire cell. These
schemes can also be analysed using the current methodology by treating
these sub-domains as additional cells in the problem, but combining the
results in these sub-cells in order to derive the corresponding cell centred
energy equation.

Several approaches can be followed in order to derive an improved spatial
variation for the emissivity. An alternative to using the cell temperatures
to derive the emission profiles is to include extra tallies when solving the
transport problem and determine the spatial gradients from these tallies [21].
This approach can lead to the introduction of significant additional noise
into the simulations, especially in 2 and 3 dimensions for problems where
the number of particles passing through the cells is insufficient to generate
meaningful statistics for these gradient tallies.

Consequently, we focus on schemes based solely on the cell centred tem-
perature information. Rather than undertake an exhaustive study of different
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source tilt schemes, this paper focuses on results from the asymptotic anal-
ysis for the slope based tilt scheme described by Fleck and Canfield [22].
Future work will focus on the accuracy of various source tilt schemes based
on the analysis contained in this paper.

6.1. Gradient based approach

Fleck and Canfield proposed a source tilt scheme based on reconstructing
the cell averaged gradients of Φ, ∇Φi, assuming Φi = Φi. These slopes
are used to bias the distribution of the emission locations, but (as with the
piecewise constant formulation) the magnitude of the emission is determined
directly from the cell averaged Φ values, which means that the reconstructed
Φ function changes discontinuously from cell to cell. In slab geometry we
have

Φi,L = Φi −
1

2
∆Φi, Φi,R = Φi +

1

2
∆Φi (54)

where ∆Φi = 〈∂Φ
∂x
〉i∆xi is the difference between the right and left Φ values

in cell i.
One of the authors (McClarren) has previously investigated the behaviour

of these schemes in slab geometry, for a Pn angular discretisation [23]; to
the authors’ knowledge this is the first time that a source tilt scheme has
been applied in the context of a deterministic approach for solving thermal
radiation transport problems.

Using this slope based formulation of the tilt, we can derive results for
both continuous and discrete forms of the transport equation in terms of the
slopes and the cell average values of Φ. The equations are:

1

4π

[
(ρCV )i

∂Ti
∂t

+
∂Ui
∂t

]
∆xi =

+η(ci → ci+1)(1− ci)δΦi+ 1
2
− η(ci → ci−1)(1− ci)δΦi− 1

2

+(1− θ(ci → ci+1))
∆Φi+1

3τi+1

+ θ(ci → ci+1)
∆Φi

3τi

−(1− θ(ci → ci−1))
∆Φi−1

3τi−1

− θ(ci → ci−1)
∆Φi

3τi
(55)
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for the continuous transport equation and:

1

4π

[
(ρCV)i

∂Ti
∂t

+
∂U∗i
∂t

]
∆xi = +

1

4
δΦ∗

i+ 1
2
− 1

4
δΦ∗

i− 1
2

+
1

6τi+1

(
∆Φi+1 − 2δΦi+ 3

2

)
+

1

6τi

(
∆Φi − 2δΦi− 1

2

)
− 1

6τi−1

(
∆Φi−1 − 2δΦi− 3

2

)
− 1

6τi

(
∆Φi − 2δΦi+ 1

2

)
(56)

for the linear discontinuous form of the equations. Here δΦi+ 1
2

= (Φi+1 −
Φi) − 1

2
(∆Φi + ∆Φi+1) is the jump in Φ across the interface between cells i

and i+ 1 and δΦ∗
i+ 1

2

= (Φ∗i+1,L −Φ∗i,R)→ δΦi+ 1
2

in the absence of scattering.

6.1.1. Slope reconstruction

One of the simplest schemes for constructing the slopes makes use of a
central difference approximation for the gradient derived from the cell average
values of Φ its direct neighbours,

∆Φi = ∆xi(Φi+1 − Φi−1)/(xi+1 − xi−1) (57)

This provides a second order accurate approximation of the derivative on
uniform meshes, which is equivalent to performing a least squares fit for the
gradient. For the cells on the problem boundaries we use first order gradients
calculated in the interior.

This could be supplemented by first order gradients calculated at the
left and right boundaries of the cell. Using this information, a strategy
could be devised for combining these various different approximations for
the derivatives in order to compute a slope within the element which satisfies
local monotonicity conditions. In this paper we do not explore the issue of
employing slope limiters to improve the behaviour in the vicinity of local
extrema any further. Instead, we restrict the magnitude of the slope so that
the reconstruction remains positive throughout the cell, |∆Φi| ≤ 2Φi. This is
the simplest source tilt scheme and it will be shown to significantly improve
the spatial convergence of the transport calculations.

However, it still leaves discontinuities in the reconstruction of the Φ func-
tion at cell boundaries. The magnitude of these jump terms is controlled
by both the cell size and the smoothness of the function, but they are in
general much larger than the gradient terms in significantly opaque cells as
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they do not involve the reciprocal of the cell optical depth. Consequently,
these schemes require much finer meshes than the equivalent finite difference
diffusion schemes due to the presence of these additional error terms, which
will the dominate the spatial convergence behaviour.

6.2. Continuous variants

A more accurate alternative to the slope based tilt scheme described
above can be obtained by simply replacing the discontinuous nodal values
by a continuous set of values in the problem interior, obtained by a simple
averaging scheme,

Φi,R = Φi+1,L =
1

2
(Φi + Φi+1) +

1

4
(∆Φi −∆Φi+1) = Φi+1/2 (58)

The jumps persist at the problem boundaries, as we apply a separate treat-
ment of the incident and exiting radiation field i.e. the boundary conditions
are weakly enforced in order to avoid seeding oscillations in the problem
interior.

However, this simplest of continuous tilt schemes suffers from a saw-
tooth instability mode on a uniform mesh (in the absence of scattering), as
the corresponding discrete equilibrium diffusion equation for cell i depends
only on Φi−2, Φi and Φi+2. The energy equations for even and odd cells are
decoupled, leading to two independent temperature profiles that are coupled
only at the problem boundaries. This manifests itself as a lack of smoothness
in the cell-wise profile, although the separate profiles constructed from the
odd and even points both converge point-wise towards the correct solution
as the mesh is refined.

This difficulty can be overcome by subdividing each cell i into two parts
(at x = xi) and changing the interpolation so that the reconstructed profile
passes through the element average value at this point:

Φ(x) =

Φi−1/2
(xi−x)

(xi−xi−1/2)
+ Φi

(x−xi−1/2)

(xi−xi−1/2)
x < xi

Φi
(xi+1/2−x)

(xi+1/2−xi)
+ Φi+1/2

(x−xi)
(xi+1/2−xi)

x > xi
(59)

We locate the cut at the midpoint xi = (xi−1/2 + xi+1/2)/2 and refer to this
scheme as the sub-cell continuous variant. Neither of these schemes matches
the cell average value i.e. Φi 6= Φi for cell i. It would be possible to vary
the location of the inflection point so as to match the cell average value,
provided this average lies in-between the two nodal values[24]; unfortunately
this would be difficult to generalise to multi-dimensions.
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7. Results

In order to generate numerical results for comparison with the asymptotic
expressions derived in this paper we solve the following transport problem
using a linear discontinuous discretisation of the Sn equations:

1

c

∂Ψ(µ, x, t)

∂t
+ µ

∂

∂x
Ψ + σiΨ

= σiΦ(x, t) = σi (Φi,L(t)b1(x) + Φi,R(t)b2(x)) , (60)

where the transport mesh may be chosen to be considerably finer than the
temperature mesh. This is coupled to the set of cell material energy equa-
tions:

(ρCV )i
∂Ti
∂t

∆xi = 2π

∫ x
i+1

2

x
i− 1

2

∫ 1

−1

σi(Ψ(µ, x, t)− Φ(x, t))dµdx. (61)

Fine mesh transport solutions are used as an alternative to generating a
converged Monte Carlo solution to validate the continuum transport results.

For discontinuous reconstructions with large discontinuities, converging
the transport solution may require meshes fine enough to resolve the bound-
ary layers associated with the jumps at the interface. However, the temper-
ature mesh must remain sufficiently coarse that the local coupling approxi-
mation remains valid, otherwise the predictions from the expressions in this
paper will not match the transport results.

We note that the results from the asymptotic analysis are computed as-
suming that the cells are in thermal equilibrium i.e. we compute the total
cell energy change and then use this to compute an updated equilibrium ma-
terial temperature in each cell, rather than evaluating the radiation energy
contribution to the time derivative consistently with the source tilt. This
slight inconsistency with the detailed analysis does not adversely affect the
accuracy of the predictions, as the material energy is always significantly
larger than the radiation energy density for the Marshak wave problem.

7.1. Piecewise constant results

We begin by considering the effects of resolution on the results for a
piecewise constant treatment of the emissivity. All the results presented
in this paper are generated for the temperature dependent Marshak wave
problem considered by McClarren and Lowrie [25], which provides a stringent
test of the diffusion limit behaviour.
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This problem is driven by a constant 1 keV temperature source on the left
boundary. The material properties are σ = 300 T−3 cm−1 with T measured in
keV; the heat capacity is CV = 0.3×1016 erg/cm3/keV. The initial condition
is T = 1.0×10−6 keV with the radiation in equilibrium with the material. In
order to include coarse meshes the length of the slab is doubled from 0.6 cm
to 1.2 cm and although the original problem was defined to have a reflecting
boundary on the right, we perform these calculations by setting ΦR = 0 and
allowing radiation to escape from both ends of the domain.

7.1.1. Pure absorber (f = 1)

We begin by plotting the results for the no-scattering case, i.e., where we
are not relying on the scattering process to improve the accuracy of the piece-
wise constant treatment of material temperature. Figures 2 and 3 show the
results from time-converged solutions of both the asymptotic limit equations
(46), (47) and also from Sn calculations, for a variety of mesh resolutions at
10 shakes (1 shake = 10 ns) after the drive is imposed. High resolution sim-
ulations indicate that the wave should have propagated distance of 0.15 cm,
so even with the finer meshes there is significant excess numerical diffusion.

There is excellent agreement between the asymptotic limit of the lumped
equations (47) and the solution of the lumped Sn equations coupled to the
material energy equations for optically thick meshes; note that the asymp-
totic limit reduces to (51) for a piecewise constant variation. Furthermore,
refining the transport mesh (for a fixed temperature grid) has little effect on
these results except on the finest meshes, as predicted from the asymptotic
analysis of the continuum transport problem (see Figure 3).

The agreement between the asymptotic limit of the un-lumped equations
and the solution of the un-lumped Sn equations is also excellent on the coarse
meshes, however it degrades at finer mesh resolutions due to the presence of
the extra O(ε) terms in (46). As observed previously, simply doubling the
resolution of the transport mesh in the Sn equations (but keeping the tem-
perature mesh unchanged) eliminates these extra terms and yields solutions
which closely match the lumped asymptotic limit.

At finer resolutions the transport solutions begin to deviate from the
asymptotic behaviour as shown in figure 4. Both lumped and un-lumped so-
lutions converge to the same continuum transport limit, with the lumped so-
lutions exhibiting significantly greater accuracy for the same transport mesh
resolution. This behaviour is in sharp contrast to the convergence of the
equations for a linear source term (or as we will see in the next section for
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Figure 2: Plot of temperature at 10 shakes using a piecewise constant representation of
temperature (f = 1), for mesh resolutions of 0.12, 0.06, and 0.01 cm. Here the asymptotic
limit predictions are compared with S4 transport results. Note that even the fine mesh
simulations have significantly overestimated the wave speed, as the wave should only have
propagated a distance 0.15 cm.

problems with significant scattering), where mass lumping degrades the con-
vergence rate.

7.1.2. Scattering problem with f = 0.1

We now consider the behaviour of the transport problem for a lower value
of the Fleck parameter, in order to understand the behaviour of the pseudo-
scattering term on the discretised transport equation. The mesh must be
sufficiently coarse that the constraints on the asymptotic analysis remain
valid, so we are limited to considering only modest scattering ratios. The
spatial convergence of the transport solutions is compared in figure 5 for
lumped solutions and figure 6 for unlumped solutions (the temperature mesh
is unchanged), to illustrate how the results transition from the discretised
asymptotic limit to the continuum limit.

The asymptotic limit of the continuum transport equations shows a re-
duction in the amount of excess numerical diffusion (but by less than the
factor 3 ≈ 1/

√
f inferred from the scaling of the jump terms). This pre-

diction is closely matched by the solution of the discrete equations as the
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Figure 3: Plot of temperature at 10 shakes using a piecewise constant representation of
temperature (f = 1), for mesh resolutions of 0.06, and 0.01 cm. Here the asymptotic limit
predictions and S4 transport results from Figure 2 are compared with S8 unlumped solu-
tions and S4 unlumped solutions with a refined radiation grid. Here we see no discernible
difference between the S4 and S8 unlumped solutions; the S4 unlumped 2x mesh solutions
and the asymptotic lumped solutions also agree, as predicted by our analysis.

transport mesh is refined. However, for the coarser transport meshes, the
solution is much closer to the results for zero scattering, illustrating that the
linear discontinuous discretisation does not accurately represent the effect of
scattering on coarse meshes.

This lack of accuracy is a consequence of the inability of the spatial dis-
cretisation of the transport problem to model the localised boundary layers
which develop in the vicinity of the discontinuities in the source term [9], for
non-zero scattering ratios. Furthermore, this illustrates that the introduc-
tion of scattering into the discrete transport equation does not have the same
dramatic effect, in terms of reducing the excess energy flow, as for the con-
tinuum transport equation. This explains why the relative success of the use
of a lower order representation of the material temperature, for Monte Carlo
thermal radiation transport, does not carry over to deterministic methods
based on similar semi-implicit linearisation techniques applied to the time
evolution.

Indeed, this helps to explain the significant differences in the histories of
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Figure 4: Plot of temperature at 10 shakes using a piecewise constant representation
of temperature (f = 1), for a mesh resolution of 0.01 cm. Here the asymptotic limit
predictions are compared with Sn transport results at increased spatial resolutions (for
the same fixed temperature grid). Inset is a blow-up of the region close to the calculated
wavefront which illustrates that (as expected) the transport results are converging to a
result close to the asymptotic lumped solution i.e. the limit corresponding to the continuum
transport problem.

the developments of the two approaches, with the importance of a consistent
linear treatment of the material temperature (underwritten by an analysis
of the behaviour in the asymptotic diffusion limit) being fundamental to the
success of deterministic methods applied to solve thermal radiation transport
problems on coarse (optically thick) meshes.

7.2. Slope reconstruction

We repeat the Marshak wave problem with different mesh resolutions to
illustrate the spatial convergence of the slope reconstruction approaches. We
compare the asymptotic limit predictions and Sn transport solutions in figure
7. As expected the results are a significant improvement on the convergence
of the piecewise constant results, but there is still a significant variation in
the results for resolutions where the mesh cells remain optically thick. We
also note the similarities between these results and the analysis of the slope
limiters applied to LD methods with a consistent linear temperature variation
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Figure 5: Plot of temperature at 10 shakes using a piecewise constant representation of
temperature (f = 0.1), for a temperature mesh resolution of 0.12 cm. Here the asymptotic
limit predictions are compared with lumped Sn transport results at increased spatial res-
olutions (for the same fixed temperature grid) illustrating the transition from the discrete
to the continuum asymptotic limits for lumped solutions. Note ”LLD” refers to a lumped,
linear-discontinuous discretization.

by McClarren and Lowrie [25]. In those previous results, the use of a slope
limiter that does not preserve continuity of the material temperature led to
the solution moving too fast on coarse grids.

7.3. Continuous variant

Our final results illustrate the behaviour of the continuous variant of the
slope scheme. The benefits obtained from employing the sub-cell scheme
are explored, this scheme generating smoother temperature profiles due to
the superior properties of the corresponding discrete diffusion equation. We
note however that the temperature profile has advanced a similar distance
in both cases. The lumped and un-lumped asymptotic limits are identical
except at the boundaries, but this again leads to the un-lumped solutions
lagging behind the lumped/continuous transport limit.

The behaviour of the asymptotic limits is similar to the results for slope
scheme discussed in the previous section, so rather than presenting these
results we focus on comparing the continuous tilt and its sub-cell variant
at two different mesh resolutions. We restrict ourselves to presenting the
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Figure 6: Plot of temperature at 10 shakes using a piecewise constant representation of
temperature (f = 0.1), for a temperature mesh resolution of 0.12 cm. The unlumped
linear-discontinuous (LD) transport solutions converge much faster than the equivalent
lumped results as we refine the transport mesh for this scattering dominated problem.
The discrete asymptotic limit for the unlumped discretisation is also significantly less
accurate than for the lumped discretisation at the same mesh resolution.

lumped S4 transport results in figure 8, where the discrete transport solution
is already mesh converged for a given linear variation of Φ; the systematic
behaviour would be similar for both the un-lumped transport scheme and
also for the corresponding asymptotic limits.

From these results we see that even these simplest of continuous tilt
schemes are notable in having completely removed the spurious numerical
diffusion observed in the previous results, the Marshak wave structure being
remarkably well resolved especially for the sub-cell scheme. This is consistent
with the predictions of our asymptotic analysis, which indicates the neces-
sary requirements for the tilt scheme in order to produce accurate results
for diffuse problems; the continuous tilt variants are designed to meet these
requirements.

8. Conclusions

In this paper we have presented a unified analysis of both continuum
e.g. Monte Carlo and linear discontinuous spatial treatments applied to the
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Figure 7: Plot of temperature at 10 shakes using the slope based reconstruction scheme
for mesh resolutions of 0.06, 0.04, 0.02, 0.01 and 0.0025 cm. Here the asymptotic limit
predictions are compared with Sn transport results for a range of resolutions. On coarse
meshes the asymptotic limits correctly predict the differences between the two sets of
transport solutions, whereas on fine meshes the transport solutions coincide with the
more accurate lumped asymptotic limit.

thermal radiation transport equation, for a linear treatment of the emissiv-
ity coupled to a cell centred energy equation. Both purely absorbing and
scattering dominated media are considered, the scattering assumed to be a
consequence of the temporal discretisation schemes used to ensure stabil-
ity for time-steps larger than the relaxation time of the medium; Thomson
scattering is generally insignificant for laser fusion targets due to their small
size.

The results of this analysis are supported by numerical predictions for
both no scattering and scattering dominated problems, illustrating the effect
of scattering on the asymptotic behaviour of the transport problem. These
results illustrate the poor convergence of the piecewise constant treatment
of the emissivity and confirm that this is diminished by the presence of the
scattering term in the continuum transport equation, an effect which is not
reproduced by the linear discontinuous spatial discretisation.

The introduction of a linear variation into the emissivity significantly
improves the accuracy of the results and is to be preferred over the abuse of
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Figure 8: Plots of temperature at 10, 50, and 100 shakes using the continuous tilt scheme
and its sub-cell variant for mesh resolutions of 0.04 and 0.01 cm. Here the results from S4

transport simulations are presented at the two different resolutions. The continuous tilt
schemes accurately predict the distance of the wave propagation even for the coarse mesh,
the profile being as well resolved as could be anticipated for such a coarse mesh.

the temporal stabilisation mechanism (by using artificially large time-steps)
in order to reduce teleportation errors. However, despite the improvements
to the convergence, this does not provide a tractable solution for under-
resolved optically thick regions such as the gold wall in a 3D simulation of a
laser hohlraum. Enforcing continuity in the tilt scheme potentially overcomes
these limitations, permitting the use of coarser meshes which are sufficient
to represent the temperature variation but without the need to resolve the
radiation mean free path.

The results presented in this paper are focused on the discontinuous re-
constructions most commonly used by IMC codes in slab geometry. Signifi-
cant scope remains for a more detailed study of improvements to tilt schemes
based on the results of this analysis, focused on retaining continuity between
cells in order to improve the spatial convergence behaviour for optically thick
problems. Early results indicate that this approach is effective at improv-
ing the spatial convergence behaviour not only in slab geometry but also for
multi-dimensional problems.
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Appendix A. Further details on the coupling coefficients

In addition to the purely absorbing limits, the η coefficient has the fol-
lowing closed form expression [26].

η(c1 → c2)(1− c1) =
1

2
(1− c1)(1− c2)

[
c2h1(c2)√

1−c2
− c1h1(c1)√

1−c1
c2 − c1

]
(A.1)

where

h1(c) =

∫ 1

µ=0

µH(µ, c)dµ (A.2)

is the first moment of Chandrasekhar’sH-function [27] for isotropic scattering
in a medium with single scattering albedo c. It is a monotonically increasing
function of c which varies from h1(0) = 1

2
to h1(1) = 2/

√
3; Stibbs and Weir

[28] contains a set of polynomial fits to this function over the entire range of
c values.

For c2 → 0 and c1 6= c2 we have:

η(c1 → 0)(1− c1) = η(0→ c1) =
1

4
(1− α(c1))

=
1

2

√
1− c1h1(c1) (A.3)

As c2 → c1 we have

η(c1 → c2)(1− c1) =
1

2

√
1− c1

[(
1− c1

2

)
h1(c1) + c1(1− c1)h′1(c1)

]
(A.4)
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η(c1 → c2)
c1/c2 0.0 0.5 0.9

0.0 0.25 0.21 0.13
0.5 0.43 0.37 0.24
0.9 1.30 1.20 0.89

θ(c1 → c2)
c1/c2 0.0 0.5 0.9

0.0 0.50 0.43 0.27
0.5 0.57 0.50 0.31
0.9 0.73 0.69 0.50

Table A.1: Sample values of the η and θ coefficients for c=0, 0.5 and 0.9

where the term in square brackets in the first expression is a slowly varying
function that monotonically increases from 1/2 for c1 = 0 to 1/

√
3 for c1 = 1.

These derivatives have been tabulated by Viik [29].
A similar approach can be used to derive an analytic expression the θ

coefficient [13]

θ(c1, c2) =
1

2
− 3

8

(1− c1)(1− c2)

(c2 − c1)

{
c2h1(c2)√

1− c2

− c1h1(c1)√
1− c1

}2

= 1− θ(c2, c1) (A.5)

In table A.1 we have tabulated these coefficients for three different values
of the scattering ratio. It is possible to design an efficient procedure for
evaluating these functions for arbitary values of c1 and c2 [13], although this
is not required in order to reproduce the results presented in this paper.
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and symbolic implicit Monte Carlo line transport with frequency weight
vector extension, Journal of Computational Physics 189 (1) (2003) 330
– 349. doi:10.1016/S0021-9991(03)00213-4.
URL http://www.sciencedirect.com/science/article/pii/S0021999103002134

[20] J. Morel, T. A. Wareing, K. Smith, A linear-discontinuous spatial dif-
ferencing scheme for Sn radiative transfer calculations, Journal of Com-
putational Physics 128 (2) (1996) 445 – 462. doi:10.1006/jcph.1996.0223.
URL http://www.sciencedirect.com/science/article/pii/S0021999196902235

[21] J. R. Cheatham, Truncation analysis and numerical method improve-
ments for the thermal radiative transfer equations, Ph.D. thesis, Uni-
versity of Michigan (2010).
URL http://hdl.handle.net/2027.42/75852

[22] J. A. Fleck, Jr., E. H. Canfield, A random walk procedure for improv-
ing the computational efficiency of the Implicit Monte Carlo method
for nonlinear radiation transport, Journal of Computational Physics 54
(1984) 508–523.

[23] R. G. McClarren, R. B. Lowrie, Effects of the temperature discretization
on numerical methods for thermal radiation transport, in: International
Conference on Mathematics, Computational Methods & Reactor Physics
(M&C 2009), American Nuclear Society, LaGrange Park, IL, 2009, on
CD-ROM.

[24] R. T. Wollaeger, T. J. Urbatsch, A. B. Wollaber, J. D. Densmore, An
analysis of source tilting and sub-cell opacity sampling for IMC, Tech.

43



Rep. LA-UR-12-23258, LANL, LANL Student Symposium August 8
(2012).

[25] R. G. McClarren, R. B. Lowrie, The effects of slope limiting on
asymptotic-preserving numerical methods for hyperbolic conservation
laws, Journal of Computational Physics 227 (23) (2008) 9711 – 9726.
doi:10.1016/j.jcp.2008.07.012.
URL http://www.sciencedirect.com/science/article/B6WHY-4T542KX-1/2/b2b25e0b0e9039b82e7c794d32ae489a

[26] T. Auerbach, Some applications of Chandrasekhar’s method to reactor
theory, Tech. Rep. BNL 676 (T-255), Brookhaven National Laboratory
(1961).

[27] S. Chandrasekhar, Radiative Transfer, Dover, New York, 1960.

[28] D. W. N. Stibbs, R. E. Weir, On the H-functions for isotropic scattering,
Monthly Notices of the Royal Astronomical Society 119 (5) (1959) 512–
525.

[29] T. Viik, Derivatives of the H-function, Astrophysics and Space Science
204 (1993) 213 – 231.

44


