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In my beginning is my end. Now the light falls
Across the open field, leaving the deep lane
Shuttered with branches, dark in the afternoon,
Where you lean against a bank while a van passes,
And the deep lane insists on the direction
Into the village, in the elctric heat
Hypnotised. In a warm haze the sultry light
Is absorbed, not refracted, by grey stone.
The dahlias sleep in the empty silence.

– from T.S. Eliot’s “Four Quartets”
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CHAPTER I

Introduction

The work in this thesis could be considered thermal radiation transport a rebours1

because the spherical harmonics approach to solving time dependent transport prob-

lems has been an also ran. This is in part due to some known drawbacks of the spherical

harmonics methods and the rich body of research characterizing the discrete ordinates

method and its efficient implementation. Of late there as been somewhat of a risorgi-

mento of the spherical harmonics method. An impetus for this resurgence is the work

of Brunner and Holloway [1, 2] who developed robust methods for solving problems

of linear transport with spherical harmonics. The work in this thesis stands on the

shoulders of that work to show how spherical harmonics methods could be applied

to the nonlinear problem of thermal radiation transport. Specifically this thesis will

illuminate the following novel research into using Pn methods

• An implicit, high resolution upwind scheme for the Pn equations

• A quasi-linear method for solving the nonlinear equations from the high resolu-

tion scheme

• The first analytic results for the P1 thermal radiative transfer equations

1French for against the grain and the title of a novel by J.K. Huysmans.
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• A proof that the standard Riemann solver fails in the asymptotic diffusion limit

• A proof that the negatives in Pn solutions arises from the equations’ linearity,

hyperbolicity, and rotational invariance

• A high resolution implicit time integration scheme that gives better than first

order time integration for arbitrarily large time steps

• Reflecting boundary conditions implemented using ghost cells

• Non-operator split results from coupled nonlinear radiation/material energy sim-

ulations

1.1 Radiation Transport Methods

Radiation transport methods are divided into two approaches: deterministic meth-

ods which attempt to solve the partial differential equations governing the physics of

transport, and stochastic or Monte Carlo methods that simulate populations of particles

(e.g. photons, neutrons, etc.) to find how radiation moves through the system. De-

terministic methods are classified by how they treat the direction of flight dependence

of the particles in the radiation field. This type of classification is natural because the

direction of flight variable is continuous but does not appear inside a derivative. This

makes the choice of how to handle these angular variables less like a choice is discretiza-

tion such as whether to use finite element or finite difference and more a choice in

model. For each method for treating the angular variables there is a different system of

spatio-temporal partial differential equations to solve. Moreover, these models with a

finite discretization of the angular variable do not limit to the same results except for

problems with simple dependence on the direction of flight.
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One of the best known and understood method for deterministic thermal radiation

transport is the discrete ordinates (Sn) method. This relies on solving the transport

equation along particular directions and using a quadrature rule to reconstruct the en-

ergy density. This method has been studied for many years [3] and there is a large body

of literature on how to efficiently solve the systems of equations that arise using the Sn

method. These methods have problems, however, in situations where the radiation field

is highly anisotropic. For example a source radiating into a vacuum will give a solution

of rays emanating out from the source rather than the correct solution of a smooth field

of radiation streaming out from the source. These rays can cause problems in thermal

radiation transport simulations coupled to other physical processes such as hydrody-

namics. These rays can cause “hot spots” to develop in materials and wrongly influence

the dynamics of the simulations. These rays cannot be totally eliminated except in the

limit of an infinite number of discrete ordinates.

Another deterministic method is flux-limited diffusion which is based on an approx-

imation of the form of the angular dependence of the radiation field. This diffusion

approximation is incorrect most cases, and through the use of a flux limiter the diffu-

sion coefficient is fixed up to compensate. The nature of this approximation is such

that it turns the hyperbolic transport equation into a parabolic equation. In effect, this

allows the radiation to travel at infinite speeds. Beyond this drawback there is the prob-

lem that for general cases the angular dependence of a radiation field cannot be modeled

by a diffusion approximation corrected by a (generally ad hoc) flux limiter. This infi-

nite radiation propagation velocity and poor angular resolution can lead to difficulties

in simulations where the radiation is coupled to another physical process. For instance

in a simulation where radiation was heating an object across a vacuum, a diffusion ap-

proach will allow light to heat the back of the object that should be dark and cold. This
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could lead to an incorrect evolution of the system2.

Implicit Monte Carlo (IMC) methods are the stochastic approach to solving thermal

radiative transfer problems. These methods sample photons to find where radiation

energy is deposited in the system and use a linearized equation to model the material

temperature evolution. Since this is a stochastic method, IMC has noise in the solution.

This noise is hard to squelch because the error in the solution decreases as the number of

particles simulated raised to the negative one-half power. The problem with this noise is

in simulations where the radiation is coupled to another physical process that is prone

to instability. In this case the noise can seed an instability such as the Rayleigh-Taylor

instability. Beyond this issue, IMC methods are the most computationally intensive

approach to solving thermal radiation transport problems.

This leads us to spherical harmonics (Pn ) methods. This deterministic approach uses

a truncated expansion of the angular variables to arrive at a finite, hyperbolic system of

equations. In multiple dimensions these equations give very different solutions than

the Sn method. The Pn equations model radiation propagation as a series of waves

whereas the Sn method moves photons in rays. This difference leads to Pn methods not

having ray effects, rather it has wave effects. The main drawback to these wave effects

is that the trough of a given wave can be negative, that is the amount of energy at a

given point in the problem can be unphysically less than zero. This shortcoming of

the Pn approach is a large reason such methods have not been thoroughly researched

for large scale simulation. Yet, there may be an upside to method; in steady-state the

Pn equations give positive solutions and in many applications the time scale of interest is

very long compared the time scale of radiation propagation and the radiation field may

2In fact a very similar situation occurs in some radiation hydrodynamic simulations of z-pinch wire
arrays. When the wires are mutually heating each other and flux-limited diffusion is used, the outside of
the array can be heated and cause the wires to ablate wrongly [4].
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be near steady state.

1.2 Numerical Methods for the Pn Equations

In this thesis we will see how the thermal radiation transport equations can be solved

in one and two dimensions using an upwind method (based on a Riemann solver ap-

proach). This approach was first put forward by Brunner and Holloway for explicit time

integration [5] and later by Eaton, Pain, and Oliveira for steady state problems [6, 7].

This thesis details the use of an implicit time integration scheme. The use of an implicit

upwind method for radiation transport is the first of its kind.

These implicit methods in general require using a nonlinear solver to advance the

solution to the next time step. We have developed a method for doing this using only

two linear solves instead of employing a Newton based method. We call this approach

the quasi-linear method. This innovation had a direct impact on the computational cost

of the Pn methods and could be the goad to the use of high resolution methods for Sn

methods or for other linear hyperbolic systems.

Below we will also discuss how to use the quasi-linear method to implement a high

resolution time integration method [8]. This approach uses the same principles of the

high resolution spatial scheme to use a second order method in smooth regions of the

problem and a first order scheme where the second order method would create artificial

oscillations in the solution.

1.3 Analysis of the Pn Equations

Along with the work on the numerical solution of the Pn equations we will present

some analysis of the Pn equations in both discrete and continuous form. Part of this

analysis shows that the Pn equations asymptotically limit to the diffusion equation in
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diffusive problems but the Riemann solver based Pn equations do not limit to a discrete

diffusion equation when only a diffusion length is resolved. This is a drawback because

in many thermal transport problems there are regions where a mean free path of a

photon is so short that resolving this distance is prohibitive.

In the other limit, the free streaming limit, we will show why the Pn equations give

negative solutions in multi-dimensional problems. It turns out that this is a consequence

of discretizing the transport equation in a way that is hyperbolic, rotationally invariant,

and linear. We then point out how other methods forsake one of these properties to get

positivity.

To test our numerical method we develop an analytic benchmark for the P1 equa-

tions of time dependent thermal transport. Using a common form of the heat capacity

we are able to obtain the Green’s function of the P1 equations and we then use this

approach to build up the solution to a common one-dimensional benchmark problem

and a two-dimensional problem.

Finally, to aid in the simulation of problems with an axis of symmetry we have devel-

oped the reflecting boundary conditions for the Pn equations. These boundary condi-

tions in three-dimensions are not well disseminated. We show how to implement them

with ghost cells, the most natural boundary condition type for an upwinded method.

1.4 Results

Our results show that using an implicit method allows us to obtain quality solutions

with time steps larger than we could use with an explicit method. Furthermore, the use

of the quasi-linear method does indeed provide a speed-up in terms of computational

cost without sacrificing accuracy. In one dimension we tried our method on various

benchmark problems and achieved propitious results. We were able to get good agree-



7

ment with an analytic transport solution to a benchmark problem using P7 and solved

a problem involving nonlinear opacities with large time steps while remaining stable.

In two dimensions the results were mixed. The energy density was negative in the

solution to some problems. These negative energy densities did cause the problem to

have negative material temperatures. However, despite these predictable results we were

able to show that our solutions were converged in terms of time discretization error for

time steps that were much larger than the radiation propagation time but smaller than

the material temperature time scale.

We also presented some results from the high resolution time integration scheme.

Therein we show why the Crank-Nicolson method, although stable, can give oscillatory

solutions whereas the backward Euler method is too dissipative. The high resolution

time integration method avoids the oscillations of the Crank-Nicolsono method while

minimizing the smoothing of the backward Euler method.

1.5 Outline

This thesis is structured to begin with an introduction to thermal radiation trans-

port and the Pn equations in Chapter II. Thermal transport is introduced in a way that is

translatable to the notation and terminology of nuclear engineering – something I hope

will benefit students from this discipline who are drawn to thermal transport. Chap-

ters III and IV present the spatial and temporal discretizations of the Pn equations. The

implementation of these methods using a quasi-linear approach is discussed in Chap-

ter V which is followed by the development of boundary conditions in Chapter VI.

In Chapter VII the Pn equations in their continuous and discrete forms are analyzed to

present important behavior in both the diffusion and free-streaming limit. The P1 ther-

mal transport equations are solved exactly in Chapter VIII and some other test problems
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are detailed.The results from numerical calculations are shown in Chapter IX which is

followed by conclusions and directions for future work in Chapter X.



CHAPTER II

The Transport Equation and its Approximations

2.1 The Transport Equation for Thermal Photons

The linear Boltzmann transport equation is a special case of the Boltzmann equation

[9] that describes the flow of point particles moving in a straight line (i.e. linearly) and

potentially colliding with a background medium. When the particles are photons, they

are often referred to as radiation and the transport equation is written in terms of the

specific intensity of the radiation. The specific intensity, I(~r, ν, Ω̂, t) is a function of

position, ~r, frequency of the photons, ν, direction of flight, Ω̂ (the hat denotes that this

is a unit vector), and time, t. To be more precise I(~r, ν, Ω̂, t)d~rdΩ̂dν = the expected

amount of energy in the volume element d~r about ~r with direction of flight in dΩ̂ about

Ω̂ with frequency in dν about ν. The unit vector Ω̂ is a three-dimensional vector that

describes the direction of flight of a photon in terms of the cosine of the polar angle,

θ, and the azimuthal angle, ϕ. Note that the specific intensity is a function that maps

seven dimensions to a scalar: three dimensions for space, one for time, two for direction

of flight (θ, ϕ), and one for frequency. The units of the specific intensity are energy per

unit area per unit time per unit solid angle per unit frequency.

The transport equation that describes the evolution of a radiation field is given by

1

c

∂I

∂t
+ Ω̂ · ∇I + σtI =

∫ ∞

0

dν ′
∫

4π

dΩ̂′ ν

ν ′
σs(ν

′ → ν,Ω′ · Ω)I(·, ν ′, Ω̂′) + S. (2.1)

9
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In this equation, the photons are moving through a background material and we have

written the differential scattering cross-section as σs(ν
′ → ν,Ω′ · Ω). Also, we will

refer to the scattering cross-section as σs =
∫
dν ′
∫
dΩ′σs(ν

′ → ν,Ω′ · Ω); the total

cross-section, σt is the sum of σs and the absorption cross-section, σa (σt = σs + σa). .

These quantities have units of inverse distance and represent the inverse of an interaction

mean free path for a photon moving through the background material. All of these

cross-sections can be a function of space, time, frequency, and direction of flight. These

cross-sections are often called opacities in the context of thermal transport. In Eq. (2.1)

we have also denoted the speed of light as c and a prescribed source as S.

The transport equation is an integro-differential equation and has been derived by

many authors. In fact one can find a derivation in almost any flavor desired in the

standard transport monographs: Refs. 3, 10–15 carry out a fairly standard derivation

by taking a general piece of phase space and performing an exercise in bookkeeping

by accounting for how particles could enter or leave that phase space. Pomraning [16]

derives the equation in this fashion but also uses a Lagrangian and variational approach

to derive Eq. (2.1) .

2.1.1 Isotropic Scattering

For our purposes we will only consider isotropic scattering. This means that any

outgoing direction of flight is equally likely for the photon leaving a scattering event.

This is manifest in the differential scattering cross-section: in isotropic scattering∫ ∞

0

dν ′
∫

4π

dΩ̂′ ν

ν ′
σs(ν

′ → ν, Ω̂′·Ω̂)I(·, ν ′, Ω̂′) =
1

4π

∫ ∞

0

dν ′
∫

4π

dΩ̂′ ν

ν ′
σs(ν

′ → ν)I(·, ν ′, Ω̂′).

(2.2)

In general isotropic scattering is not a valid assumption, however, it can be relaxed

without much difficulty (for instance the neutron transport community ths is often
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handled by expanding the direction of flight dependence of the differential scattering

cross-section in spherical harmonics [13]).

2.1.2 Grey Radiation Transport

The specific radiation intensity integrated over all frequencies,

Ī(~r, Ω̂, t) =

∫ ∞

0

I(~r, ν, Ω̂, t)dν, (2.3)

is called the radiation intensity. The radiation intensity has units of energy per unit

area per unit time per unit solid angle. If we define similarly averaged cross-sections and

assume isotropic scattering

σ̄t =

∫∞
0
σtI(~r, ν, Ω̂, t)dν∫∞

0
I(~r, ν, Ω̂, t)dν

, (2.4)

σ̄s =

∫∞
0
dν
∫∞

0
dν ′ ν

ν′
σs(ν

′ → ν)I(·, ν ′, Ω̂′)∫∞
0
I(~r, ν, Ω̂′, t)dν

, (2.5)

we can define the transport equation for grey radiation as

1

c

∂Ī

∂t
+ Ω̂ · ∇Ī + σ̄tĪ =

1

4π

∫
4π

dΩ̂′σ̄sĪ(·, Ω̂′) + S. (2.6)

From this point on we will drop the bar from the radiation intensity and the average

over frequency will be understood.

2.1.3 Blackbody Source

In thermal radiation transport the source term in Eq. (2.1) is a related to the thermal

emission of photons by the background media. In most cases this source is given using

an approximation known as local thermodynamic equilibrium (LTE). LTE basically

means that we can define a temperature for the background media and that we can treat

the media as a blackbody source at this temperature, even though the photons are not in
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equilibrium with the material. This requires a physical mechanism to keep the material

radiating in a blackbody spectrum. In high-energy density physics this mechanism is

collisions between the constituent particles of the material [17], or a dense, optically

thick material where photons are absorbed in a region with a similar temperature to

that where they were emitted [18].

A blackbody source was properly described by Planck [16, 19] as

B(ν, T ) =
2hν3

c2
1

ehν/kT − 1
, (2.7)

where k is the Boltzmann constant, h is Planck’s constant, and T is the temperature

of the blackbody. If we integrate the blackbody source over all directions of flight and

frequencies, we arrive at the mean radiation intensity from a blackbody at temperature

T : ∫ ∞

0

dν

∫
4π

dΩ̂
2hν3

c2
1

ehν/kT − 1
=

8π5k4

15h3c2
T 4 ≡ acT 4, (2.8)

where

a =
8π5k4

15h3c3
. (2.9)

The source in Eq. (2.6) is given by Kirchoffs law [20], which states that the emission

and absorption of radiation must be equal in equilibrium. The intensity of a blackbody,

Eq. (2.8), gives the amount of radiation emitted into 4π directions. Hence, the specific

intensity acT 4/4π. This intensity times the absorption opacity is the rate of absorption

, and hence also the rate of emission, giving the emission source source,

S =
σaacT

4

4π
(2.10)

.
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2.1.4 Material Energy Equation

The temperature in the background material changes based on the first law of ther-

modynamics. This law is a simple energy balance; the change in internal energy is the

energy added to the material minus the energy lost by the material. The energy gained

by the material is the amount of photon energy absorbed by the material. The energy

lost by the material is the blackbody source. There could possibly other sources (or

sinks) of energy if the background material is moving, but we do not consider this here.

The material internal energy is defined by

U(~r, t) =

∫ T

0

Cv(T
′)dT ′, (2.11)

where Cv is the heat capacity, which is related to material density, ρ, and the specific

heat, cv, by Cv = ρcv. By Eq. (2.11) the time rate of change of the material energy is

∂U

∂t
=
∂U

∂T

∂T

∂t
= Cv

∂T

∂t
. (2.12)

To calculate the amount of energy absorbed in the material we will define the radia-

tion energy density, E, as

E(~r, t) =
1

c

∫
4π

I(~r, Ω̂, t)dΩ. (2.13)

The units of the energy density are what one should expect (energy per unit volume).

Using this definition we discover that the energy density of a blackbody source is aT 4.

The time scale of radiation absorption and emission is the mean free time, 1/cσa. This

makes the net amount of radiation energy absorbed per second

radiation energy absorbed
unit time

= cσa(E − aT 4). (2.14)

If we assume this is the only important mechanism for energy transfer in the material,

then the amount of radiation absorbed, Eq. (2.14), should balance the time rate of change
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in material energy, Eq. (2.12), giving the material energy equation:

Cv(T )
∂T

∂t
= cσa(E(~r, t)− aT 4). (2.15)

This equation will govern the blackbody source in the transport equation. When the

radiation field and the blackbody source are out of equilibrium this equation drives

them toward equilibrium. It is also apparent that this equation is nonlinear in the tem-

perature both in the fourth power found in the blackbody source and possibly even in

the temperature dependence of the heat capacity and opacities.

Eqs. 2.1 and 2.15 have two different time scales. The transport equation has is the

photon mean free time as an important time scale, 1/cσa. In vacuum regions, the time

scale would be some reference distance divided by the speed of light. For the material

energy equation, Eq. (2.15) the important time scale is the e-folding time for T 4. This

time scale can be found by writing Eq. (2.15) in terms of T 4,

Cv

4acσaT 3

∂T 4

∂t
=
E

a
− T 4. (2.16)

Therefore the material energy time scale is

τmaterial =
Cv

4acσaT 3
. (2.17)

This quantity is a positive constant times the mean free time for radiation. For most

values of Cv and T of importance in thermal radiation transport the value of Eq. (2.17)

is much longer than the mean free time for radiation.

2.1.5 The thermal transport equation in neutron transport notation

The notation used above is the standard notation in the astrophysical and high-

energy density physics community. But, the equations above can also be cast in a nota-

tion similar to that used in neutron transport. It is my hope that by bridging the nota-
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tion gap, nuclear engineering students after me can avoid feeling like Kaspar Hauser in

the notation of thermal transport1

The thermal transport equation system (including the ODE describing the evolution

of the temperature) is written as

1

c

∂I

∂t
+ Ω̂ · ∇I + σsI =

1

4π

∫
4π

dΩ̂′σsI(·, Ω̂′) + σa

(
acT 4

4π
− I

)
(2.18)

Cv(T )
∂T

∂t
= cσa(E(~r, t)− aT 4). (2.19)

Commonly, in applications of linear transport to nuclear engineering the variable

used is the angular flux ψ(~r, Ω̂, E, t). The angular flux is the product of the particle

speed and the density of particles in a piece of phase space. The units of the specific

intensity, I , are similar; the intensity is the particle speed (the speed of light) times the

energy per particle (hν) times the phase space density of photons. More simply put the

specific intensity is the angular flux times the energy per particle (ψ = I/hν).

Due to this simple relation some authors use the angular flux notation instead of the

specific intensity notation [23]. This is done simply by swapping I → ψ in the trans-

port equation. However, confusion can arise because by doing this change in notation,

ψ loses its common meaning. The upside to this switch is that some other nice defini-

tions “pop out”. The scalar flux, ϕ, often used in nuclear engineering is the integral of

the angular flux over all directions of flight. After swapping variables the “scalar flux”

becomes related to the energy density

cE =

∫
4π

IdΩ̂ → ϕ =

∫
4π

ψdΩ̂ = cE. (2.20)

1Kaspar Hauser was a foundling who appeared in Nuremberg in the 19th century. He had previously
been kept in solitary confinement for his entire life, and he was bewildered by the sites of a bustling city.
His life and appearance was one of the biggest mysteries of that century and the enigma of his appearance
has never been solved [21, 22].
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Using the nuclear engineering notation the thermal transport system becomes

1

c

∂ψ

∂t
+ Ω̂ · ∇ψ + σsψ =

1

4π

∫
4π

dΩ̂′σsψ(·, Ω̂′) + σa

(
acT 4

4π
− ϕ

)
(2.21)

Cv(T )
∂T

∂t
= σa(ϕ− acT 4). (2.22)

However, it must be remembered that when using this notation the meaning and units

of ψ and ϕ are not those of neutron transport. The silver lining on this whole discussion

is that a nuclear engineer, upon seeing the thermal transport equations, can pell-mell

replace I with ψ and E with ϕ/c as long as the change in meaning is understood.

2.2 Thermal Spherical Harmonics Equations

Methods of numerically solving the transport equation are generally grouped in

terms of how they treat the angular varible Ω̂. The approach that we will be pursuing

in this thesis is the spherical harmonics method (also known as the Pn method2). In

this approach the dependence of I on th direction of flight is expanded in a finite series

of spherical harmonics. The derivation of the three-dimensional spherical harmonics

equations has been carried out in detail by Brunner [1] for neutron transport and here

we will mostly just sketch the derivation and point to other sources for any metutials.

2.2.1 Spherical harmonics functions

The spherical harmonics are a set of complex-valued transcendental functions that

take as input a point on the unit sphere. A point on the unit sphere can be described by

a polar angle θ and an azimuthal angle ϕ, which take values θ ∈ [0, π], ϕ ∈ [0, 2π], as

diagrammed in Fig. 2.1. Using these angles the spherical harmonics have the form

Y m
l (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm

l (cos θ)eimϕ. (2.23)

2This has also been called the Pl method [10]
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θ

ϕ

x

y

z

u

Figure 2.1: A general unit vector ~u defined by (θ, φ). The polar angle, θ is the angle be-
tween the z axis and the vector and the azimuthal angle is the angle between
the x axis and the projection of ~u in the x− y plane.

In this equation l,m are integers that specify the order of the spherical harmonic. The

associated Legendre functions are denoted by Pm
l , these are defined as [13]

Pm
l (x) = (−1)m(1− x2)m/2∂

mPl(x)

∂xm
m ∈ [0, l] (2.24)

Pm
l (x) = (−1)m (l − |m|)!

(l + |m|)!
P
|m|
l m ∈ [−l, 0), (2.25)

which uses the definition of the Legendre polynomials

P0 = 1 (2.26)

Pl =
1

2ll!

∂l

∂xl
(x2 − 1)l. (2.27)

It is often beneficial from a notation standpoint to write the spherical harmonics in

terms of µ = cos θ,

Y m
l (µ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm

l (µ)eimϕ. (2.28)

The spherical harmonics form a complete set of orthonormal basis functions [24] so∫ 1

−1

dµ

∫ 2π

0

dϕY m
l Y ∗m′

l′ = δmm′δll′ . (2.29)
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Hence, the intensity can be expanded in terms of spherical harmonics

I(~r, Ω̂, t) =
∞∑
l=0

l∑
m=−l

Im
l (~r, t)Y l

m(µ, ϕ), (2.30)

with expansion coefficients

Im
l (~r, t) =

∫ 1

−1

dµ

∫ 2π

0

dϕI(~r, µ, ϕ, t)Y ∗m
l (µ, ϕ). (2.31)

At this point we note that the I0
0 coefficient is related to the energy density of the

radiation field by

E =
I0
0

2c
√
π
. (2.32)

The 2
√
π factor arises from the normalization constant in the spherical harmonics

definition.

2.2.2 Spherical harmonics moments of the grey transport equation

The Pn equations are found by taking spherical harmonics moments of the transport

equation, Eq. (2.6). Many of the resulting terms are easy to integrate∫ 1

−1

dµ

∫ 2π

0

dϕY ∗m
l (µ, ϕ)

∂I

∂t
=
∂Im

l

∂t
(2.33)∫ 1

−1

dµ

∫ 2π

0

dϕY ∗m
l (µ, ϕ)σaI = σaI

m
l (2.34)∫ 1

−1

dµ

∫ 2π

0

dϕY ∗m
l (µ, ϕ)

acT 4

4π
= δl0δm0

acT 4

2
√
π

(2.35)∫ 1

−1

dµ

∫ 2π

0

dϕY ∗m
l (µ, ϕ)

∫ 1

−1

dµ′
∫ 2π

0

dϕ′σsI(·, µ′, ϕ′) = σsI
0
0δl0δm0. (2.36)

The term that is difficult to integrate is the streaming term, Ω̂ · ∇I , and will require

some cagey use of the spherical harmonics.

There are many nice properties of the spherical harmonics functions, including the

addition theorem and a host of useful recursion relationships [24, 25]. The properties
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that we will need are the following recursion relations

µY m
l = Am

l Y
m
l+1 +Bm

l Y
m
l−1 (2.37)√

1− µ2eiϕ = −Cm
l Y

m+1
l+1 +Dm

l Y
m+1
l−1 (2.38)√

1− µ2e−iϕ = Em
l Y

m−1
l+1 − Fm

l Y
m−1
l−1 , (2.39)

where

Am
l =

√
(l −m+ 1)(l +m+ 1)

(2l + 3)(2l + 1)
Bm

l =

√
(l −m)(l +m)

(2l + 1)(2l − 1)
(2.40)

Cm
l =

√
(l +m+ 1)(l +m+ 2)

(2l + 3)(2l + 1)
Dm

l =

√
(l −m)(l +m− 1)

(2l + 1)(2l − 1)
(2.41)

Em
l =

√
(l −m+ 1)(l −m+ 2)

(2l + 3)(2l + 1)
Fm

l =

√
(l +m)(l +m− 1)

(2l + 1)(2l − 1)
. (2.42)

Using these recurrence relations we arrive at the spherical harmonics equations [1]

1

c

∂Im
l

∂t
+

1

2

∂

∂x

(
−Cm−1

l−1 Im−1
l−1 +Dm−1

l+1 I
m−1
l+1 + Em+1

l−1 Im+1
l−1 − Fm+1

l+1 Im+1
l+1

)
+ i

1

2

∂

∂y

(
−Cm−1

l−1 Im−1
l−1 +Dm−1

l+1 I
m−1
l+1 + Em+1

l−1 Im+1
l−1 − Fm+1

l+1 Im+1
l+1

)
(2.43)

+
∂

∂z

(
Am

l−1I
m
l−1 +Bm

l+1I
m
l+1

)
+ σsI

m
l = σa

(
acT 4

2
√
π
δl0δm0 − Im

l

)
+ σsI

0
0δl0δm0.

The material temperature equation only involves the I0
0 , due to the fact that the

energy density is a constant times the I0
0 moment. This equation is thus

Cv(T )
∂T

∂t
= σa

(
2
√
πI0

0 − acT 4
)
. (2.44)

2.2.3 Truncating the Expansion: the closure issue

In Eqs. 2.43 we have left the expansion of I in spherical harmonics as an infinite

series expansion. Obviously, that expansion must be made finite to arrive at a discretiza-

tion of the angular variables. The simplest closure is the Pn closure3 which sets the Im
n+1

3This terminology comes from transport theory in one dimension where the intensity can be ex-
panded simply in Legendre polynomials (rather than the spherical harmonics) [10, 16]. In multiple di-
mensions this terminology is somewhat of a misnomer, however, in calling Eqs. 2.43 the Pn equations it
is understood that we mean a spherical harmonics expansion.
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moment (and all greater moments) equal to zero. This makes the sum in Eq. (2.30)

n∑
l=0

l∑
m=−l

= n2 + 2n+ 1, (2.45)

and there are this many expansion coefficients, Im
l . These expansion coefficients with

m 6= 0 each have a real and imaginary part because the spherical harmonics functions

do, and this nearly doubles the number of unknowns. But, there is a trick to reduce this

amount by using the fact that the intensity is a real quantity [1]. Since this is the case,

we can use the property of the spherical harmonics Ȳ m
l = (−1)mY −m

l . These means

that we can eliminate the m < 0 coefficients and have only

2
n∑

l=0

l∑
m=1

+
n∑

l=0

= n2 + 2n+ 1 (2.46)

unknowns.

Table 2.2.3 gives the number of unknowns for various expansion orders. Those listed

all have n odd. This is because even-order expansions have a peculiar zero-eigenvalue

that prevents particles from moving (this zero eigenvalue has an eigenvector that con-

tains I0
0 and therefore prevents part of the energy density to be advected throught the

problem) [1, 2]. Other authors while looking at steady state problems have attributed

the poor performance of even-order expansions to the requirement of an odd number of

boundary conditions which would require the introduction of an asymmetry [12] and

the notion that an even-order expansion supposes that I is continuous at µ = 0 [10]. It

has also been noted that even-order expansions do worse than there one ordinate lower

odd counterpart (i.e. P2 is worse than P1) [10,16]. The existence of this zero eigenvalue,

though, is probably the most salient argument why even-order expansions should be

shunned for time dependent problems.

Other types of closures suppose some form for the Im
n+1 moment and use this pos-

tulated form to close the equations. Pomraning derived a closure for the Pn equations
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Table 2.1: Number of Unknowns for various 3D Pn expansions
P1 4
P3 16
P5 36
P7 64
P9 100
P19 400

where the qualitative shape of the angular dependence was assumed [26]. For example,

in problems where beam-like distrbutions are likely, the closure can be developed to

model such a distribution. This work also shows how a closure can be developed that

exactly captures the Case discrete modes [10]. Su and Pomraning revisted this work and

found that in multi-material problems, thin materials can degrade the performance of a

P3-like closure that captures the Case modes [27].

These types of closures are linear in the sense that the equations are closed in a way

that does not depend on the solution. Various nonlinear closures exist that choose a

closure based on the values of the Pn moments [1, 5, 28]. Most times these closures are

used as two-moment closures (i.e. to close the P1 equations). One problem with non-

linear closures is that they make the eigenvalues of the Pn equations solution dependent

and therefore allow shocks in the radiation field – a clearly unphysical phenomenon.

However, such closures can avoid some drawbacks in the spherical harmonics approach

as will be discussed later.

In this thesis we will only deal with the classical Pn closure. The methods developed

throughout will be applicable to any hyperbolic, linear closure of the spherical harmon-

ics equations. Furthermore, with proper consideration, the methods could be extended

to the nonlinear closures as was done by Brunner [1].
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2.2.4 Two-Dimensional Pn Equations

In two-dimensional problems we can drop the dependence of the flux any one of

the (x, y, z) variables. Inspecting Eq. (2.43) we notice that dropping the y-dependence

decouples the imaginary and real parts of the spherical harmonics expansion and we

only solve for the real unknowns. This nearly halves the number of unknowns to

unknowns =
1

2
(n2 + 3n) + 1. (2.47)

We can write the 2D Pn equations using matrices to contain the streaming terms;

these matrices are the Jacobians of the 2D equations. These matrices will not be sym-

metric because of the trick we used to eliminate the negative m unknowns. The 2D

equations in matrix form are

1

c

∂~I

∂t
+ Ax

∂~I

∂x
+ Az

∂~I

∂z
+ σs

~I = σa

(
acT 4

2
√
π
δl0δm0 − ~I

)
+ σs

~Iδl0δm0. (2.48)

We have written ~I as a vector of spherical harmonics moments of I grouped in blocks

of constant m

~I =
(
I0
0 , I

0
1 , . . . , I

0
n, I

1
1 , . . . , I

1
n, . . . , I

n
n

)t
, (2.49)

and Ax, Az are the Jacobian matrices. In P1 these matrices are

Ax =


0 0 −

√
2
3

0 0 0

−
√

1
6

0 0

 , (2.50)

Az =


0

√
1
3

0√
1
3

0 0

0 0 0

 . (2.51)

For the sake of expediency we can also write Eq. (2.48) using the form

∇ · F(~I) = Ax
∂~I

∂x
+ Az

∂~I

∂z
. (2.52)
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This reinforces the notion that this term is the flux of information out of a given point.

2.2.5 One-Dimensional Pn Equations

For problems in slab geometry we can drop another spatial variable. Also, in one

dimension, the intensity can be azimuthally symmetric. In this case we can drop all

moments with m 6= 0. Hence, we choose to solve the Pn equations only in the z-

direction and there are only n+ 1 moments to solve for. This makes the P1 Jacobian

Az =

 0
√

1
3√

1
3

0

 . (2.53)

2.3 Other Methods

The spherical harmonics equations are not the only way to discretize the direction

of flight variables. The other important approaches are the discrete ordinates method

(Sn), flux-limited diffusion, and implicit Monte Carlo.

2.3.1 Discrete ordinates methods

The discrete ordinates methods discretize the angular variables by asserting that

Eq. (2.1) holds for specific directions, {Ω̂m}, and using a quadrature rule to approxi-

mate the integral of the intensity [12,13]. In the case of isotropic scattering, this method

is

1

c

∂Im
∂t

+ Ω̂m · ∇Im + σsIm =
1

4π

∫
4π

dΩ̂′σsI(·, Ω̂′) + σa

(
acT 4

4π
− Im

)
(2.54)∫

4π

dΩ̂′I(·, Ω̂′) ≈
M∑

m=1

wmIm. (2.55)

This method has been very popular in steady-state nuclear reactor calculations and

it has also been applied to thermal photon transport. One drawback to this method

is the existence of ray effects in multi-dimensional problems. These ray effects are the
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result of only using the intensity at discrete angles in the quadrature to find the energy

density [12]. This can allow the energy density to have oscillations. These oscillations

can have deleterious effects in coupled radiation hydrodynamics simulations where the

radiation field influences the dynamics of material motion. These oscillations can cause

material to develop “hot spots” where the peak of the oscillation is high, and hence

cause the system to evolve incorrectly. Sn methods can also be troublesome in how the

spatial variables are discretized. It is possible in many popular spatial discretizations to

have negative energy densities or even have the method become unstable [29].

2.3.2 Flux-limited Diffusion

The diffusion method in 1D is derived by starting with the P1 equations

1

c

∂I0
∂t

+
1√
3

∂I1
∂z

= σa

(
acT 4

2
√
π
− I0

)
(2.56)

1

c

∂I1
∂t

+
1√
3

∂I0
∂z

= −σtI1. (2.57)

Next, we make an assumption on the I1 moment, namely that ∂I1/∂t is small

∂I1
∂t

≈ 0. (2.58)

This assumption has been shown to be accurate to leading order in an asymptotic expan-

sion of the transport equation [30,31]. The expansion is valid when collisions dominate

the streaming of particles. Upon making this assumption we get Fick’s law

I1 = − 1

σt

√
3

∂I0
∂z

, (2.59)

and this leads to the diffusion equation

1

c

∂I0
∂t
− 1

3

∂

∂z

1

σt

∂I0
∂z

= σa

(
acT 4

2
√
π
− I0

)
. (2.60)

Oftentimes, the quantity 1/3σt is called the diffusion coefficient D.
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This equation has a singular streaming term in vacuum. This is quite a shortcoming

in photon transport where voids are often a part of the problem domain – in neutron

transport in traditional nuclear reactors generally there are few vacuum regions. Even

without voids, problems can arise. The diffusion equation allows the first moment of

the intensity to be greater than the zeroth moment

I0 < I1 = −D∂I0
∂z

. (2.61)

This is unphysical because it implies that the number of moving particles is greater than

the number of particles that exist. This can be corrected by the use of a flux limiter.

This method limits the size of D to keep the first moment smaller than the zeroth. In

general most flux limiters cause D to be a function of I0 and ∂I0/∂z, and therefore also

make the problem nonlinear. There are a number of variations on this theme and the

performance of a particular flux limiter is problem dependent [28, 32].

2.3.3 Implicit Monte Carlo

The implicit Monte Carlo (IMC) method is a stochastic method of solving the cou-

pled transport and material energy system. It is built on the foundation of the Monte

Carlo method for linear transport [12]. Implicit Monte Carlo simulates sets of sample

particles moving through the problem domain. By sampling more and more photons

the correct intensity can found. However, the material temperature equation is nonlin-

ear, and some approximation must be made to handle the absorption and reëmission of

photons during a time step. There are various approaches to stochastically simulating

the material temperature equation [23]. One marked difference between IMC and linear

Monte Carlo is the need for a spatial grid (to handle the variation of temperature) and a

time step dependent error term. In linear transport Monte Carlo solutions are generally

considered “truth” (modulo the sampling noise); in nonlinear problems the introduc-
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tion of a grid and temporal truncation error makes such an assertion dubious, however,

IMC results are often considered authorative faute de mieux4.

An important issue with IMC methods is the noise in the solution due to the sam-

pling of a finite number of particles. Such noise can seed instabilities in radiation hydro-

dynamics simulations. Specifically, in problems where magnetohydramics is involved,

the noise can initiate a Rayleigh-Taylor instability in the simulation [4].

4This phrase comes from the French “for want of something better”. IMC may not be perfect, but it
is a common feeling that it is the best method available when computational cost is no object.



CHAPTER III

Upwind Finite Volume Discretization

A numerical method for hyperbolic partial differential equations can be said to be

upwind if the discrete equations only allow information to propagate in the same direc-

tions as the underlying continuous differential equations. For example, in one dimen-

sional scalar advection with positive speed of propagation an upwind method moves

information from left to right and does not use information from the downstream di-

rection1. In a system of conservation laws, upwinding is done in regards to the directions

of the characteristic variables.

The principle of upwinding is commonly applied in numerical methods for radiation

transport - even if that term is not often used [33]. Transport sweeps in discrete ordinates

(Sn) methods move information in an upwind direction and the characteristic directions

are obvious in the Sn formulation. For the spherical harmonics equations, the process

of upwinding is not so obvious.

We will now proceed to describe the numerical method for the two dimensional

Pn equations. This discretization falls into the category of a finite volume scheme (al-

though in 2D perhaps finite area would be more apropos). These types of schemes

average the underlying equations over a computational cell and work in terms of these

1High resolution schemes do use information from the downstream direction but only to reconstruct
the slope inside a cell.

27
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averaged quantities. On regular grids these methods become finite difference methods.

3.1 Cell-Averaged Pn Equations

To begin we take a generic two-dimensional spatial cell denoted by i and aver-

age the Pn equations (Eqs. (2.43-2.44)) over that cell. Performing this average on the

Pn equations gives

1

∆V

∫
∆V

dV

(
1

c

∂~I

∂t
+∇ · F(~I) + σt

~I = σs
~Iδl0δm0 + σaδl0δm0acT

4

)
, (3.1)

where in two dimensions the streaming term is

∇ · F(~I) = Ax
∂~I

∂x
+ Az

∂~I

∂z
. (3.2)

If we define the cell-averaged moments of the intensity,

~Ii ≡
1

∆V

∫
∆V

~IdV, (3.3)

and assume T has a constant value in each cell, Ti, Eq. (3.1) becomes

1

c

∂~Ii
∂t

+
1

∆V

∮
∂∆V

F(~I) · n̂ds+ σt
~Ii = σs

~Iiδl0δm0 + σaδl0δm0acT
4
i . (3.4)

We have used the divergence theorem [34] to convert the volume integral over the

streaming term in Eq. (3.1) to a surface integral. To treat the surface integral we break

the surface into a series of faces and sum over each face given by∮
∂∆V

F(~I) · n̂ds =
∑

γ

Fi,γ∆s · n̂γ, (3.5)

where Fi,j is the numerical approximation for the flux at cell interface γ, ∆s is the

length of the cell face, and n̂γ is the unit outward normal at interface γ. In the case of

curved faces, this outward normal would be an average normal.

Eq. (3.4) is not complete because the flux terms are in terms of cell-edge quantities.

We need a way to relate the cell-edge quantities to the cell-averaged quantities in the
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other terms. A method of doing this in a physical way is the heart of the Riemann

solver approach.

3.2 Upwinding The Equations Using A Riemann Solver

3.2.1 The flux between cells

Finding the flux at a given cell interface in terms of cell-averaged quantities can be

done in various ways. One possible way would be to treat the cell interface as a Marshak

boundary and write incoming/outgoing fluxes in terms of half-range integrals of the

angular flux. This has been done in steady-state problems to with the P1 equations to

be used as a accelerator for Sn methods [35].

The method we will explore here is a Riemann solver based method. In this ap-

proach we exactly solve the the free-streaming Pn equations with a step-function initial

condition. This problem is called a Riemann problem and we will now use it to finish

our spatial discretization.

The flux at a particular cell interface in is given by

n̂γ · Fi,γ = nxAx
~Ii,γ + nzAz

~Ii,γ. (3.6)

Notice ~Ii,γ is a cell-edge value, and the rest of the variables in Eq. (3.4) are cell-centered

quantities. Finding these cell-edge values in terms of cell-centered quantities in an up-

winded fashion is the pith of the Riemann solver. If we define a coordinate χ, that is

along the normal to a generic cell interface, the flux across that interface becomes

Fi,γ = Aχ
~Ii,γ, (3.7)

where we have defined Aχ ≡ nxAx + nzAz.

The problem we will now solve is the free-streaming problem in this direction

∂~I

∂t
+Aχ

∂~I

∂χ
= 0, (3.8)
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I
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I
r

χ

Figure 3.1: The initial conditions for the Riemann problem has two flat solutions dis-
continuously joined at χ = 0. This effectively models the boundary between
two cells.

with initial condition, as shown Fig. 3.1, given by

~I(χ, 0) =


~Il χ < 0,

~Ir χ > 0.

(3.9)

There is an exact solution to this problem which can be found in Refs. [1,2,5,36–38].

The solution gives the flux at χ = 0 as

Aχ
~I
∣∣∣
χ=0

=
1

2
Aχ

(
~Il + ~Ir

)
− 1

2
|Aχ|

(
~Ir − ~Il

)
. (3.10)

In Eq. 3.10, the absolute value signs around a matrix signify that the matrix was evalu-

ated using the absolute values of its eigenvalues – specifically

|Aχ| =
∑

k

~rk|λk|~lk, (3.11)

where ~rk, ~lk, and λk are the kth right and left eigenvectors and eigenvalues of Aχ. This

solution is an upwind solution in the sense that positive eigenvalues move information

from the left to right. The idea of left and right loses its standard meaning on an unstruc-

tured mesh, but the idea is that moving in the positive direction – towards increasing χ –

is moving from left to right. Eq. (3.10) can be thought of as a centered-difference scheme

– the first term on the RHS in Eq. (3.10) – plus just the right amount of dissipation to

make the centered difference scheme stable.
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x

z

(i,j) (i+1,j)(i-1,j)

(i,j-1)

(i,j+1)

∆x ∆z

Figure 3.2: The two-dimensional Cartesian grid. A generic cell (i, j) is shaded in grey.

Now using Eq. (3.10) we have discretized the Pn equations in space. This gives a first

order spatial method because the solution in each cell is assumed to be flat in the solution

of the Riemann problem. We will now specialize this result to further illuminate the

method.

3.2.2 Example: Two-dimensional Cartesian Grid

We take a Cartesian grid where we denote each cell and cell averaged quantities by

an ordered pair (i, j). Furthermore, we will use half ordinates to reference cell edges

(e.g. the right boundary of cell (i, j) would be given by (i + 1/2, j)). For a graphical

depiction of this grid see Fig. 3.2. Note that ∆x 6= ∆z, nor does the mesh need to be

uniform.
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For this geometry the fluxes across each face of cell (i, j) are given by

Fi+1/2,j =
1

2
Ax

(
~I(i,j) + ~I(i+1,j)

)
− 1

2
|Ax|

(
~I(i+1,j) − ~I(i,j)

)
(3.12)

Fi−1/2,j = −1

2
Ax

(
~I(i−1,j) + ~I(i,j)

)
+

1

2
|Ax|

(
~I(i,j) − ~I(i−1,j)

)
(3.13)

Fi,j+1/2 =
1

2
Az

(
~I(i,j) + ~I(i,j+1)

)
− 1

2
|Az|

(
~I(i,j+1) − ~I(i,j)

)
(3.14)

Fi,j−1/2 = −1

2
Az

(
~I(i,j−1) + ~I(i,j)

)
+

1

2
|Az|

(
~I(i,j) − ~I(i,j−1)

)
. (3.15)

(3.16)

Given these fluxes, the net flux for cell (i, j) becomes

∑
γ

n̂γ · Fi,j∆s =
∆z

2

(
Ax

(
~I(i+1,j) − ~I(i−1,j)

)
− |Ax|

(
~I(i+1,j) − 2~I(i,j) + ~I(i−1,j)

))
(3.17)

+
∆x

2

(
Az

(
~I(i,j+1) − ~I(i,j−1)

)
− |Az|

(
~I(i,j+1) − 2~I(i,j) + ~I(i,j−1)

))
.

Using this net flux we can write the original cell-averaged thermal radiation Pn Eqs. (3.4)

as

1

c

∂~I(i,j)
∂t

+
1

2∆x

(
Ax

(
~I(i+1,j) − ~I(i−1,j)

)
− |Ax|

(
~I(i+1,j) − 2~I(i,j) + ~I(i−1,j)

))
+

1

2∆z

(
Az

(
~I(i,j+1) − ~I(i,j−1)

)
− |Az|

(
~I(i,j+1) − 2~I(i,j) + ~I(i,j−1)

))
(3.18)

+σt
~I(i,j) = σs

~I(i,j)δl0δm0 + σaδl0δm0acT
4
(i,j).

One aspect of these equations is that the x and z directions are decoupled; there is

no flow in the x− z direction. This could contribute some grid effects for flows that are

not aligned to the grid.
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3.2.3 Example: One-dimensional Equations

In one dimension we can simply use Eq. (3.18) and drop the flow in the x direction.

Then we have the equations

1

c

∂~Ij
∂t

+
1

2∆z

(
Az

(
~Ij+1 − ~Ij−1

)
− |Az|

(
~Ij+1 − 2~Ij + ~Ij−1

))
+ σt

~Ij) (3.19)

= σs
~Ijδl0δm0 + σaδl0δm0acT

4
j . (3.20)

3.2.4 Extra Dissipation

The flux between cells given by the Riemann solver in Eq. (3.10) has an issue for

characteristics that have an eigenvalue of zero. Such modes are treated using a centered-

difference approach, which can be unstable. To handle this phenomenon, Brunner [1]

suggested that these zero eigenvalues be replaced by the smallest nonzero eigenvalue

when |Aχ| is constructed. This adds extra dissipation to these modes which adds extra-

dissipation, and is equivalent to treating these modes using a Lax-Friedrichs solver.

3.2.5 Direction Splitting Issues

This method of upwinding the finite volume Pn equations does have a drawback in

terms of how it treats the inherent multidimensionality of the underlying equations.

The direction perpendicular to each face is split from the other directions in the system.

This could cause effects of the grid to appear in the solution. The easiest way to see

this is to think of a Cartesian grid with a wave traveling diagonally to the grid. In the

set up we have described the wave has to travel across two cells to move in its diagonal

direction, causing the wave to be smeared out transverse to the direction of flow. This

phenomenon is diagrammed in Fig. 3.3: the red lines represent information propagating

skew to the grid, the green lines demonstrate how the numerical method would move

that information.
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x

z

Figure 3.3: This cartoon shows how a dimensionally split numerical method would
propagate information moving skew to the grid.

3.3 High-Resolution Correction

The discretization given by Eq. (3.10) is a first order method in ∆x and ∆z. This is

due to the fact that it presupposes the values in each cell to constant. To make a higher

order method we would like to reconstruct a slope inside each cell using the values

from neighboring cells. Of course in doing so we would like to avoid creating artificial

extrema in the solution. Unfortunately, the situation is not all that simple: Godunov’s

Theorem2 [40] demonstrates that it is impossible to have a linear method high order

method that does not introduce artificial oscillations. Hence, to achieve better than

first order spatial accuracy we must reconstruct the slope in each cell using a nonlinear

method.

Much work has been done on developing schemes that are better than first order

in space and do not introduce oscillations. There is a body of literature [41–44] that

has been devoted to methods of reconstructing the gradient on unstructured grids while

2Here I want to contribute my opinion of the correct pronunciation of this name. Seminars on the
topic of hyperbolic equations are peppered with two distinct means of pronouncing Godunov. In its
entry on the Russian historical figure and subject of an opera by Mussorgsky, The American Heritage
dictionary [39] gives the preferred pronunciation as gŏod′n− òf over the common gòd′n− òf .
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maintaining certain desirable properties such as exactly capturing the gradient for a

linear function. Another tack are the essentially non-oscillatory (ENO) and weighted

ENO (WENO) schemes [45, 46] which use high order functions to reconstruct the so-

lution using an adaptive stencil.

In this thesis we will reconstruct the slope perpendicular to each face of a particular

cell using the harmonic mean limiter and the minmod slope limiter. In both approaches

the slope (in our rotated coordinate system that is perpendicular to the cell interface) of

cell i is calculated

m− =
Ii − Ii−1

∆χ
(3.21)

m+ =
Ii+1 − Ii

∆χ
, (3.22)

for each element of ~I . In the harmonic mean approach the slope in cell i is set to [47]

mi =


2m+m−
m++m−

m−m+ > 0

0 otherwise

(3.23)

This approach assures that the interpolated value is between Ii±1/2 is between Ii+1 and

Ii−1 [1], hence the term “limiter”. One benefit of this limiter is that it smoothly tran-

sitions between using m+ and m− away from extreme points, where the slope is set to

0. Due to this smoothness property this limiter was used to in our nonlinear implcit

scheme (see results in Sec. 9.1.

In the minmod method m− and m+ are compared and the slope in cell i is set to

mi =



m− |m−| < |m+| and m−m+ > 0

m+ |m+| < |m−| and m−m+ > 0

0 otherwise

. (3.24)
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If the cell is not an extreme point, slope mi is limited to be the minimum of the slope

to either side of the cell. The minmod limiter has the benefit of being linear once the

choice of stencil (i.e. whether to use m− or m+) is made. This feature will be exploited

in development of our quasi-linear implicit method (see Sec. 5.2.

3.4 Justification of High Resolution Method

We have yet to show if our high resolution method is guaranteed to not introduce ar-

tificial oscillations. To show this we will first make some definitions. The total variation

(TV) of a moment of the intensity, I , is defined as

TV (I) ≡
J∑

j=0

∆x|Ij − Ij−1| (3.25)

An important property for a numerical method for hyperbolic equations is, total varia-

tion dimishing (TVD). This says that the total variation of the numerical method does

not increase between time steps

TV (Ik+1) ≤ TV (Ik) (3.26)

for each time step k. This property is important for two reasons, the true solutions to

hyperbolic conservation laws are TVD [40] and if a method is TVD it will not introduce

artificial oscillations – this would increase the TV.

We state without proof that the first order Riemann method is TVD. This can eas-

ily be seen through a modified equation analysis and show that the modified equation

has a diffusive term but no dispersive term [40]. Since the Riemann method is TVD,

we can define the following recipe for a high resolution TVD method. First, we take

the previous time step’s solution and reconstruct the solution using a slope reconstruc-

tion technique. Then use this reconstructed solution to obtain the next time step via

the Riemann method. If the reconstruction technique is TVD then its combination
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with the Riemann solver will be TVD. Both the minmod and harmonic mean limiters

produce TVD reconstructions, making our high resolution method TVD and hence

non-oscillatory.

In an implicit time integration scheme, the slope reconstruction would have to be

done on the next time step’s solution. This leads to a nonlinear system of equations

that need to be solved at each time step. The next chapter introduces some implicit time

integration schemes and later in Chapter V we will show how these nonlinear systems

can be solved.



CHAPTER IV

Time Integration

There are two diseparate time scales in the Pn equations for thermal transport: the

speed of light time scale and the material temperature time scale. The speed of light

time scale is orders of magnitude shorter than the material temperature scale and often

the details of radiation propagation at the speed of light scale are not important. Given

this situation, it is natural for us to want to integrate the semi-discrete Pn equations over

a time step that is large in regards to the radiation propagation time scale but small on

the material temperature time scale. For this reason we have investigated implicit time

integration methods without a time step size restriction.

In this chapter we will present a general approach to the time integration of the

semi-discrete Pn equations (Eq. (3.4)). In the end we arrive at two different schemes:

the backward Euler method, which is a first order unconditionally stable method, and a

high-resolution second order method based on the Crank-Nicolson method, which users

a limiter based approach to achieve a non-oscillatory scheme. Most of the theorems and

proofs in this chapter deal with the scalar linear advection equation rather than a system

of conservation laws, such as the Pn equations. This is due to the fact that the upwind

discretization for this scalar equation is equivalent to our first order Riemann solver for

a linear system of equations.

38
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4.1 θ Notation for Time Integration

To discretize the time variable in Eq. (3.4) we average the time derivative over ∆t

and combine the other terms in a convex sum of their values at the current and next

time step. The semi-discrete Pn equations become

~In+1
i − ~In

i

c∆t
= θLn+1

i + (1− θ)Ln
i , (4.1)

where

Ln
i = − 1

∆V

∑
j

F n
i,j∆s · n̂j − σt

~In
i + σs

~Iiδl0δm0 + σaδl0δm0acT
4
i , (4.2)

the superscripts refer to values at the nth time step and θ ∈ [0, 1]. The material energy

equation in this notation is given as

Cv
T n+1

i − T n
i

∆tσa

= θ(2
√
πI0,n+1

0,i − acT n+1,4
i ) + (1− θ)(2

√
πI0,n

0,i − acT n,4
i ). (4.3)

By choosing specific values of θ we recover some common methods of time integra-

tion. In the following sections we will discuss some of these methods and present those

which we have implemented.

4.2 The Backward Euler Method

The backward Euler method [48] (also called the implicit Euler method) is an im-

plicit method where θ = 1. This method only uses information from the future time

step to evaluate the non-time derivative terms. The method is unconditionally stable

for any size time step on a properly discretized hyperbolic problem, as can be shown by

a simple example.

Take a linear advection equation with positive speed

∂u

∂t
+ c

∂u

∂x
= 0, (4.4)
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that is discretized with the first order upwind (aka the Courant-Isaacson-Rees [49])

method1 and the backward Euler method

un+1
j − un

j = −c∆t
∆x

(un+1
j − un+1

j−1 ). (4.5)

If we write the solution as a Fourier series in x, i.e. un
i =

∑
m Fm(n∆t)Ame

imj∆x,

Eq. (4.5) becomes

Fm((n+ 1)∆t)− Fm(n∆t) = −c∆t
∆x

(Fm((n+ 1)∆t)− Fm((n+ 1)∆t)e−im∆x, (4.6)

for each Fourier mode. We now look at the growth rate of the solution between two

time steps. If the growth rate between time steps is no bigger the one in magnitude, the

method is stable. This growth rate, g, is given by

gm =
Fm((n+ 1)∆t)

Fm(n∆t)
. (4.7)

With this definition, Eq. (4.6) gives g as

gm =
1

1 + c∆t
∆x

(1− cos(m∆x) + i sin(m∆x))
. (4.8)

Hence, |g| ≤ 1 and the method unconditionally stable, as is well known. One inter-

esting point to note is that as ∆t gets bigger the growth rate gets smaller (i.e. the time

integration introduces more damping). This suggests that just because it is possible to

take an arbitrarily large time step does not mean the solution will be properly resolved.

This analysis of the stability of the backward Euler method is specific to the upwind

discretization. The growth rate would change for different spatial discretizations (i.e.

centered-difference or Lax-Friedrichs).

Finally, we will show that the following theorem:

Theorem 1. The backward Euler method is unconditionally TVD for the upwind discretiza-

tion of the linear advection equation with positive velocity.
1This method is the scalar version of our first order Riemann solver.
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Proof. The backward Euler method can be written as

un+1
j = un

j −
c∆t

∆x
(un+1

j − un+1
j−1 ). (4.9)

We will use the total variation to define a norm [40]

‖un‖TV = TV (un). (4.10)

Rearranging Eq. (4.9) gives(
1 +

c∆t

∆x

)
un+1

j = un
j +

c∆t

∆x
un+1

j−1 . (4.11)

Taking the TV norm of Eq. (4.11) and using the triangle inequality gives(
1 +

c∆t

∆x

)
‖un+1‖TV ≤ ‖un‖TV +

c∆t

∆x
‖un+1‖TV , (4.12)

which implies ‖un+1‖TV ≤ ‖un‖TV and the method is TVD.

We have now shown that the backward Euler method is unconditionally stable and

TVD. However, the method is only first order accurate; next, we will look at a method

that is second order accurate.

4.3 Crank-Nicolson Method

The Crank-Nicolson method (also known as the trapezoid method) [50] is a sec-

ond order time integration scheme obtained by setting θ = 0.5. However, the Crank-

Nicolson scheme is only TVD when the time step size satifies [8]

∆t ≤ 2
c∆t

∆x
. (4.13)

We can demonstrate this with the following theorem,

Theorem 2. For the upwind method, the Crank-Nicolson method will be TVD if the time

step size satisfies Eq. (4.13).
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Proof. First we write the Crank-Nicolson method

un+1
j = un

j −
c∆t

2∆x
(un+1

j − un+1
j−1 + un

j − un
j−1). (4.14)

We rewrite this equation as(
2 +

c∆t

2∆x

)
un+1

j = 2un
j −

c∆t

∆x
(un+1

j − un+1
j−1 ) +

c∆t

∆x
un

j−1. (4.15)

Taking the TV norm and using the triangle inequality we get

‖un+1
j ‖TV ≤ ‖un

j −
c∆t

2∆x
(un+1

j − un+1
j−1 )‖TV . (4.16)

Notice that

un+1
j = un

j −
c∆t

2∆x
(un

j − un
j−1) (4.17)

is the forward Euler method with a time step of 0.5∆t. We state without proof that the

forward Euler method is TVD when the time step size, ∆τ , satisfies

1 ≥ c∆τ

∆x
. (4.18)

If ∆t satisfies Eq. (4.13) then the forward Euler method is TVD and Eq. (4.16) becomes

‖un+1
j ‖TV ≤ ‖un

j |. (4.19)

However, if Eq. (4.13) is not satisfied then the forward Euler step will not be TVD and

the Crank-Nicholson method will not be TVD.

This result shows that while Crank-Nicolson is second order accurate, it has a time

step restriction to be TVD. The above theorem is a generalization of a similar TVD

theorem for a general linear multi-step methods [8]. That theorem also shows that

any method better than first order will have a time step restriction. Now we can turn

to a high-resolution time integration scheme that combines the unconditionally TVD

property of the backward Euler method and the second order convergence of the Crank-

Nicolson method.
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4.4 High-Resolution Time Integration

Recently, Duraisamy, et al. presented a limiter based method to combine the use

of the backward Euler method and the Crank-Nicolson method to create a higher than

first order TVD method [8]. This method is based on defining θ locally in space and

choosing it to go between Crank-Nicolson in smooth regions and backward Euler in

non-smooth regions.

To locally define θ we invoke a lemma developed by Huynh [51] that states: Given

f(t1) and f(t2) and f ′(t1) or f ′(t2), the resulting quadratic interpolant between t1 and t2

is monotone in [t1, t2] if f ′(t1), f ′(t2) ∈ [0, 2s], where s = f(t2)−f(t1)
t2−t1

. This lemma can be

used for time integration of the first order upwind scheme. We define

f(t1) = un
j (4.20)

f(t2) = un+1
j (4.21)

f ′(t1) = Ln
j =

∂u

∂t

n

=
1

∆x
(un

j − un
j−1) (4.22)

f ′(t2) = Ln+1
j =

∂u

∂t

n+1

=
1

∆x
(un+1

j − un+1
j−1 ) (4.23)

s
n+1/2
j =

un+1
j − un

j

∆t
(4.24)

We would like to adjust the value of θ locally to guarantee monotonicity as in the

lemma. This will cause our method to smoothly transition between a Crank-Nicholson

and backward Euler scheme at different points in the problem domain. To apply the

lemma we first check to see if

Ln+1
j

(
Ln+1

j − 2sj

)
≤ ε and Ln

j

(
Ln

j − 2sj

)
≤ ε, (4.25)

for ε small and positive. If Eq. (4.25) true then the assumptions of the lemma are satisfied

and θj is set to 0.5. Otherwise we check to see if Ln+1
j or Ln

j has a different sign as sj ,



44

i.e. if

Ln
j sj < 0 or Ln+1

j sj < 0. (4.26)

In the case Eq. (4.26) is true θj is set to be 1 because the assumptions of the lemma are

false, and the backward Euler method is used. If neither Eq. (4.25) nor Eq. (4.26) are

satisfied then we are in a situation where at least one of the Lj’s is too large. In this case

we set

θj = 1.0−min

[
sj

Ln+1
j + ε

,
sj

Ln
j + ε

, 0.5

]
. (4.27)

The above process of deciding θj is equivalent to what we did in developing a high

resolution spatial scheme: we adjusted our interpolation step to make our solution

monotone. We can show that this method will be linearly stable by applying a simi-

lar analysis as we did for the backward Euler method.

Theorem 3. The local θ method is stable for any size time step on the first order upwind

method [8].

Proof. The local θ method for the upwinded linear advection equation is written as

un+1
j = un

j −
c∆t

∆x
(θju

n+1
j − θj−1u

n+1
j−1 + (1− θj)u

n
j − (θj−1)u

n
j−1). (4.28)

Now we write the spatial part of Eq. (4.28) as a Fourier series, and for a particular

Fourier mode

Fm((n+ 1)∆t) = Fm(n∆t)− c∆t

∆x
(θjFm((n+ 1)∆t)− θj−1Fm((n+ 1)∆t)e−im∆x

+ (1− θj)Fm(n∆t)− (θj−1)F (n∆t)e−im∆x). (4.29)

The growth rate is then given by

gm =
1− c∆t

∆x
((1− θj)− (1− θj−1)e

−im∆x)

(1 + c∆t
∆x

(θj − θj−1e−im∆x))
. (4.30)
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The minimum value of the denominator occurs when θj − θj−1e
−im∆x = −0.5. This

implies that

g ≤
1− c∆t

2∆x

1− c∆t
2∆x

(4.31)

≤ 1

The maximum growth rate is 1 and the method is stable.

Now that we have presented different time integration schemes we have fully dis-

cretized the Pn equations. In the next chapter we press on by describing how we imple-

ment and solve these discrete equations.



CHAPTER V

Implementation

The impetus behind developing space and time discretizations is to solve the under-

lying equations in large scale simulations. By large scale we mean hundreds of thousands

or millions of unknowns. This fact we have kept in mind in designing our implemen-

tation. The most important part of this chapter is the discussion of the quasi-linear

method of solving the nonlinear systems that arise from the high resolution discretiza-

tion of the Pn equations. The basis of the idea is grounded in the fact that the streaming

operator is linear and the nonlinearities were added only to make a high order scheme

that is non-oscillatory. Our quasi-linear approach allows us to make nonlinearities ex-

ist in the temperature source only. Below we will discuss how we use modern solver

technology to implement our discretization.

5.1 Implicit Equations

The time integration schemes we detailed in the previous chapter were all implicit

schemes. To use an implicit approach we must solve a system of equations at each time

step. We will write our equations in the form

Ψn+1 + θ(LΨn+1 + F(Ψn+1)) = Ψn − (1− θ)(LΨn + F(Ψn)). (5.1)

46
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The vector Ψ represents all the radiation and temperature unknowns in our system.

For a Cartesian mesh this vector has a length of Nx × Nz × (1
2
(N2

mom + 3Nmom) + 2).

These unknowns are the number of cells in the x and z directions (Nx and Nz), and

the number of unknowns from the spherical harmonic moments, (see Eq. (2.47)) where

Nmom is the order of the Pn expansion. There is one more unknown per spatial cell

than in Eq. (2.47) because here we have included the temperature variable. The linear

operator, L, represents the first order upwind discretization. The nonlinear terms from

the high-resolution correction along with the temperature nonlinearities are contained

in F . This system of equations can be solved using a Newton-Krylov solver (see §5.3).

An alternative means of solution for our particular system of nonlinear equations can

be solved using a quasi-linear approach which we will describe next.

5.2 Quasi-Linear High-Resolution Implementation

The quasi-linear approach will be developed for the Pn equation independent of the

temperature equation. Later we will show how to bring in the temperature coupling

using a full nonlinear treatment for those terms.

For the high-resolution spatial scheme using the backward Euler method without

temperature coupling, the system of equations that must be solved at each time step is

written as

Ψn+1 + LΨn+1 + F(Ψn+1) = Ψn. (5.2)

Recall, that F(Ψ) contains all the nonlinear terms from the spatial discretization. Given

the nature of the nonlinearities of F(Ψ) it is hard to compute an approximate Jacobian

due to the discontinuties in the derivative of F(Ψ). The harmonic mean approach of

van Leer does help to alleviate this issue, as that limiter smoothly combines the slopes

to the left and right of each cell and only has a discontinuous derivative at an extreme
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Table 5.1: Quasi-Linear Algorithm
1. Solve for Ψ∗ in Ψ∗ + LΨ∗ = Ψ∗ using GMRES
2. Build the matrix M(Ψ∗)
3. Solve Ψn+1 + LΨn+1 +M(Ψ∗)Ψn+1) = Ψn using GMRES

point. The situation is worse in the minmod case where the method switches between

the slope to the left and right of the cell and also to zero in a non-smooth way.

But, the minmod limiter has an advantage that we exploit. With the minmod

method once it is known whether to interpolate in a cell and in which direction to

interpolate, the limiter is effectively linear. Using this fact can write Eq. (5.2) for the

minmod limiter in quasi-linear form

Ψn+1 + LΨn+1 +M(Ψn+1)Ψn+1 = Ψn. (5.3)

Here the matrixM contains the “choices” from the minmod limiter; by analyzing Ψn+1

the stencil for reconstruction is determined and M can be constructed. By using this

structure of the minmod method we can avoid using a traditional nonlinear solver. This

is not the case for the harmonic mean approach as that method nonlinearly combines

the data from surrounding cells to compute a slope.

By solving the linear part of the system Eq. (5.1) we can retrieve the information

needed to determine how to reconstruct the slope in each cell. We then can make the

function F(Ψ) linear and perform another linear solve to get the final answer for the

time step. This procedure is given in Table 5.1.

To build the operator M(Ψ∗), the solution vector is analyzed in each cell to deter-

mine the m+,m− and, therefore, how to interpolate in that cell: to the left, to the right,

or not at all. Then using this information we have determined the stencil for the high

resolution method.

The first solve using GMRES (see §5.4) uses the previous time-step’s result as the
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initial guess while the final solve takes Ψ∗ as the guess. While the algorithm involves

solving two linear systems, the solution of the second system is made much easier by

the use of this initial guess. Our implementation uses the fact that a Krylov method such

as GMRES only needs to perform the action of a matrix times a vector. To perform this

action we multiply L by the vector and add to it M(Ψ∗) times the vector. Also, we use

a matrix-free representation of M(Ψ∗), which saves the cost of building a new matrix

at each time step.

We also remark that this algorithm is only the first step in a series of iterations. After

solving for Ψn+1 one could repeat steps two and three of the algorithm until a converged

solution is found. Our results, from both analysis and numerics below, suggest that this

is not necessary and that the three steps outlined in the algorithm are sufficient. In other

words, one iteration is enough.

5.2.1 Analysis of the Quasi-Linear Approach

One natural question about the quasi-linear method is whether it is justified to use

the solution to the first-order method to approximate the shape of the solution of the

high resolution scheme. We will answer this question by looking at the phase velocity

of monotonic initial conditions in each method.

To simplify the analysis, we will look at the method on a scalar advection equation

given by

ut + aux = 0, (5.4)

where we have denoted derivatives by subscripts. Without loss of generality we assume

that a > 0 for the rest of this discussion. The first-order Riemann method (also known

as the upwind method) discretizes this equation as

un+1
j = un

j −
a∆t

∆x

(
un+1

j − un+1
j−1

)
. (5.5)
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This discretization is a first-order approximation to the Eq. (5.4) but it is a second-order

approximation [40] to

ut + aux =
a∆x

2

(
1 +

a∆t

∆x

)
uxx. (5.6)

This is known as the model equation for the first-order Riemann numerical method.

The theory of using model equations to analyze numerical methods can be found in

Refs. 52 and 53.

We now derive the model equation for the minmod based method to compare the

properties of the high resolution method with the first-order method. To begin we

assert that the slope in each cell is computed using the value in the cell to the left. This

is general and we will point out where this choice influences our result. Given this fact,

the method is written as

un+1
j = un

j −
a∆t

∆x

(
3

2
un+1

j − 2un+1
j−1 +

1

2
un+1

j−2

)
. (5.7)

Expanding the numerical solution, u, in a Taylor series about u(xj, t
n+1) then gives

ut + aux =
∆t

2
utt +

a∆x2

3
uxxx +O(∆x3) +O(∆t2). (5.8)

To continue the derivation we will eliminate the utt term by taking the derivative of Eq.

(5.8) w.r.t. t to get

utt = −autx +
∆t

2
uttt +

a∆x2

3
utxxx +O(∆x3) +O(∆t2)

= −a
(
−aux +

∆t

2
utt +

a∆x2

3
uxxx

)
x

+O(∆t) +O(∆x3)

= a2uxx +
a∆x2

3
utxxx −

a2∆x2

3
uxxxx +O(∆t) +O(∆x3). (5.9)

Next, we operate on Eq. (5.8) with ∂3/∂x3 and find that

utxxx = −auxxxx +O(∆t) +O(∆x2). (5.10)
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Using Eqs. (5.9) and (5.10) in Eq. (5.8) the model equation becomes

ut + aux =
a2∆t

2
uxx +

a∆x2

3
uxxx −

a2∆x2∆t

3
uxxxx +O(∆t2) +O(∆x3). (5.11)

This equation would have the same structure had we used a different stencil to recon-

struct the slope (i.e. if the upwind method where used and the cell to the right were

used to reconstruct the slope).

To compute the phase velocity a wave in the solutions to Eqs. (5.6) and (5.11) we

will expand u in a Fourier series and look for solutions in the form ei(kx−c(k)t). Inserting

this into the upwind model equation yields

c(k) = ak − iak2∆x

2

(
1 +

a∆t

∆x

)
. (5.12)

The phase velocity of a wave is given by c(k)/k, and for the upwind method is

vup
p = a− ia2k∆t

2
− iak∆x

2
. (5.13)

This says that every wave travels at the same speed but is dissipated to different degrees

depending on the wave number k. Similarly, by inserting a Fourier mode into Eq. (5.11)

we can obtain the phase velocity for the minmod method,

vmm
p = a− ia2k∆t

2
− ak2∆x2

3
+
ia2∆x2∆tk3

3
. (5.14)

The wave speed for the high resolution scheme is different for different wave numbers.

This can be seen in the third term on the LHS of Eq. (5.14). This term is real and changes

the phase velocity based on the value of k2. The different wave speeds would be prob-

lematic for solutions with discontinuities because these solutions would have large range

values of k and hence demonstrate considerable dispersion. The Gibbs oscillations near

extreme points that are seen in linear second order methods are a result of this disper-

sion. It is at these extreme points that we wish to “turn off” the slope reconstruction by
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setting mi = 0 and use the first order method. Beyond this dispersion effect, Eq. (5.11)

an amount of dissipation that decreases at a rate of ∆x2 rather than the ∆x convergence

of the upwind method in Eq. (5.6).

The heart of our quasi-linear method is found in using solutions of the first-order

upwind method to determine how to reconstruct the solution in each cell. The real

phase velocities for the upwind and minmod methods are the same to order k2∆x2. The

evaluation of M(Ψ) is fairly insensitive to the values of Ψ used. This is due to the fact

that in building this matrix, only relative comparisons between values in neighboring

cells matter, not the actual values in each cell. Therefore, the model equations having

the same real phase velocities to order ∆x2 is sufficient to approximateM(Ψ). The first

order solution is “good enough” to get the shape and fix the minmod choice. In our

computational results from actual calculations will demonstrate this point.

A natural question at this point is whether it would be practical to approximate the

shape of the solution using the previous time step’s solution; this would require only

one linear solve per time step. We claim that this, in fact, would be a poor idea for large

time steps where information can travel across multiple cells. The location of extreme

points in the solution would almost certainly be at a different place than those in the

initial data. Moreover, in the case of a small time step an implicit method would not be

necessary.

5.2.2 Quasi-linear time integration

For our high-resolution time integration scheme detailed in the previous chapter, we

can apply the same approach as for the spatial scheme. We simply modify the algorithm

to determine the value of θ for each cell, the set of which we denote by the vector, ~θ.

In this case we are using the first order solution in both time and space to determine
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how to correctly use the high order method. This method works in nearly the same the

way as the approach for just the spatial scheme because the equations are linear once ~θ

is known. The results we present below for high resolution time integration use this

approach to calculate each time step.

5.2.3 Temperature coupling

Up to this point we have neglected how the material temperature equation is inte-

grated. This equation is nonlinear and our quasi-linear approach would work only if the

material equation and temperature source terms were linearized. However, the temper-

ature equation is local and only feeds directly into the transport equations for its own

cell. For this reason, we treat the temperature fully nonlinearly. To do this we use a

Newton-Krylov solver in steps one and three of the algorithm in Table 5.1. This non-

linear treatment could be modified to use a linearization of the temperature equation,

in which case the procedure in Table 5.1 would appear to be identical. We have not

explored linearizing the temperature terms.

5.3 Newton-Krylov Methods

Newton’s method (or the Newton-Raphson method) is a means of solving nonlinear

equations through successive linearizations [54, 55]. The method iterates on an initial

guess. For the solution to the nonlinear equation F (x) = 0, Newton’s method gives the

ith iterate as

xi = xi−1 − F ′(xi−1)
−1F (xi−1). (5.15)

For a system of equations, Newton’s method appears to be similar

~xi = ~xi−1 − F′(~xi−1)
−1F (~xi−1), (5.16)

but the derivative of F (~x) is the Jacobian matrix of the function defined element by
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element as

F′(~x)i,j =
∂Fi

∂xj

(x). (5.17)

To use the Newton method for systems we must evaluate the product of the inverse

of the Jacobian and the result of the function on the previous iterate. To evaluate this

we must solve the linear system

F′(~xi−1)~s = −F (~xi−1). (5.18)

Methods that use an approximate means to find ~s, hence the product we needed, are

called inexact Newton methods [55].

One notable example of an inexact Newton method are Newton-Krylov meth-

ods [55,56]. These use a Krylov based iterative solver such as GMRES (see §5.4). Krylov

methods approximate the solution to a linear system within a specified tolerance. In-

exact Newton methods can also approximate the Jacobian of F using finite differences.

This is done in such a way that the Jacobian matrix need not be built (see §5.4.2).

5.4 GMRES

The generalized minimum residual method (GMRES) [57] is an iterative method

for solving non-symmetric linear systems of the form A~x = ~b. GMRES is a Krylov

subspace method, meaning that it uses the subspace

Ki(A, ~r0) = span{~r0,A~r0,A2~r0, . . . }, (5.19)

where ~r0 = ~b − A~x0 is the residual from the initial guess ~x0 in the process of finding

the solution. GMRES gives for the ith iteration the value of ~xi as the vector in the space

~x0 +Ki that minimizes ‖~b−A~xi‖2. This minimization is performed by solving a least

squares problem of size (i + 1) × i which is inexpensive for small i. This procedure is
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especially useful for solving large systems because the matrix A need not be stored, only

how A acts on a vector needs to be known.

GMRES will converge to the solution ~x = A−1~b in at most n iterations where n

is number of rows and columns of A. However, one drawback of GMRES is that the

Krylov subspaces, Ki must be stored and this could lead to a memory issue. However,

there is a fix to this dilemma in restarted GMRES. In this method after some predeter-

mined number of iterations, the old Krylov subspaces are purged and the last solution

vector is used as ~x0 to restart the method. This method will not be guaranteed to con-

verge and when to restart is a decision that must be made on a problem by problem

basis. The use of GMRES has been previously explored for solving problems in neu-

tron transport [58, 59]. It was found that GMRES is a robust solution method and that

it shows strong promise when using a preconditioner.

5.4.1 Preconditioning

In preconditioning a linear system another matrix, M is applied to the system:

M−1A~x = M−1y. (5.20)

If M = A, then we would have the solution immediately without doing an GMRES

iterations. If this were the case then we would not need to be worrying about an iterative

solver. When M = I, then we have done nothing. The power in preconditioning lies in

choosing M ≈ A so that hopefully fewer iterations will be needed to solve the system,

but in such a way that M−1 is easy to compute. Algebraically, a good choice of M will

make the spectral radius A smaller, but the notion that M−1 approximates the inverse

of A will suffice for picking a preconditioner for many applications.

There are two types of preconditioners one can use: algebraic preconditioners and

physics-based preconditioners. Algebraic preconditioners approximate the operator A
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in such a way that an approximate inverse can be cheaply found. One important type

of this preconditioner is the incomplete LU (ILU) factorization. This factors the matrix

A into the form

A = LU−R (5.21)

where L and U are lower and upper triangular matrices respectively and R is the error

in the factorization. The error is neglected in defining the preconditioner, M = LU.

This factorization is generally done in such a way that LU has nearly the same nonzero

structure as A, i.e. where A has a zero, so does LU.

Variations on the theme of ILU factorizations include the ILU(0) preconditioner in

which the sparsity of LU is exactly the same as A. Another approach is the ILU(τ)

method [60] which sets an element of of LU to zero if that element’s magnitude is

less than τ times the norm of the row. An ILU(τ = 0) method would compute the

actual LU decomposition of the matrix and require storage of a possibly dense matrix.

A large value of τ would make the LU decomposition inaccurate and a less effective

preconditioner.

The other type of preconditioner is the physics-based preconditioner. This type of

preconditioner approximates the inverse of A using a physical approximation to A. For

example, if A represents a discretized P3 transport system, a physics based precondi-

tioner could be an operator that is just the streaming part of the P3 transport system.

The benefits from a physics-based preconditioner are seen when the preconditioner is

easily inverted and represents a good approximation to the physics of the full operator.

For instance, this was the observation when P1 or diffusion operators were used to pre-

condition the transport operator in discrete ordinates codes [35,61]. Another important

type of physics-based preconditioner is the multigrid approach, which uses a series of

different size meshes as preconditioners [62]. In fact the use of P1 as a preconditioner
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for and Sn calculation can be thought of as a multigrid-in-angle preconditioner.

5.4.2 Matrix Free

Another important property of the GMRES algorithm is that it does not require the

matrix A to be stored. All that is required is the action of A on a vector. This is due to

the way the Krylov subspace is created – by repeatedly applying the operator to a vector.

This can reduce the amount of memory needed and can allow the method designer

more freedom. This feature will be used when we develop our quasi-linear solver and is

used by inexact Newton methods to avoid specifying an analytic Jacobian, but instead

allowing its action to be computed by a cheap finite difference approximation.

5.5 Trilinos

The numerical solver library Trilinos from Sandia National Laboratories [63] was

used to invoke the solver methods described in this chapter. While offering much more,

we primarily used the Epetra package (a collection of matrix construct/storage classes),

the AztecOO package (a linear solver package which has GMRES) and the NOX pack-

age which implements a Newton-Krylov method.

For the Newton-Krylov method the user can stipulate a convergence tolerance or

maximum number Newton iterations. The convergence tolerance can be a norm of

the residual or a norm of the relative change in the solution. The norm can be length

scaled also if the user desires. Unfortunately, NOX does not have the functionality to

have tolerances for different parts of the solution vector. This is a problem for our solu-

tion vectors which contain radiation intensities and temperatures. For a temperature of

300eV the value of I0
0 is on the order of 1019. In such a case we would like to converge

the temperatures to much less than an eV and the moments of the intensity to about

107. With NOX we must set the convergence criteria to be 107 for the entire vector.
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In practice we have not seen evidence that this drawback of NOX has degraded our

solutions.

Also, with NOX one can specify the line search method. That is, rather than taking

a full Newton step, a shorter step can be taken if the full Newton step increases the

residual [55]. One type of line search is the polynomial line search where the step

length is reduced by fitting a polynomial to the residual gained by taking smaller steps

and choosing an appropriate step length. The step length is only reduced if the full

Newton step increases the residual. In most problems we have observed that the full

Newton step does not increase the residual, however, we turn on the polynomial line

search method as a cheap hedge.

In NOX we use a matrix-free approximate Jacobian, this allows us to avoid comput-

ing and storing the Jacobian for our system. Using this approximate Jacobian a linear

system of equations is solved using GMRES. NOX also allows the user to specify an

operator to precondition this system with. As a physics based preconditioner, we use

the first order Riemann discretization with the temperatures assumed to be constant to

precondition. This is a reasonable choice because for time steps that are small compared

to the temperature time scale, this approximation would be valid. We do not compute

the action of the first order matrix to precondition. Rather than computing the action

of the inverse of the first order matrix – which would require a linear solve, an ILU(τ)

factorization of the first order matrix is computed and this is used to approximate the

inverse of the first order matrix. If A is the first order matrix, instead of using A−1 as

the preconditioner we use the incomplete LU factorization, (LU)−1, as the precondi-

tioner. The incomplete LU inverse is very cheap to compute and much less expensive

than the linear solver required to compute the action of the inverse of the first order

matrix.



CHAPTER VI

Boundary Conditions

In transport theory boundary conditions are such that the incoming radiation must

be specified at a boundary. Even in the fully continuous case for the Pn equations the

boundary conditions represent an approximation to the transport boundary condition.

The transport boundary conditions are given by an incoming intensity

I(~x, Ω̂) = B(Ω̂) for n̂ · Ω̂ < 0, (6.1)

where n̂ is the outward normal of the boundary. One might be tempted to just take

spherical harmonic moments of the incoming intensity,B, and use these as the Pn boundary

condition. However, B is only specified for incoming directions and the exiting inten-

sity is not known. One approach to take is to take the spherical harmonic moments of

B only over the incoming directions. This tack is called the Marshak boundary condi-

tion [10, 13, 16]. Another approach is to take the value of B along the characteristics of

the Pn equations and use those values to enforce the boundary conditions. This is called

the Mark boundary condition [10, 13, 16].

The Mark boundary condition allows the specification of an incoming intensity.

However, often we may want a boundary that reflects particles instead of allowing them

to pass. Such reflecting boundaries are well known for one-dimensional Pn methods, but

59
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multiple dimensional reflecting boundary conditions are, at best, not widely dissemi-

nated. These multi-dimensional reflecting boundary conditions will be derived below.

6.1 Mark Boundary Condition

While it is possible to implement a Marshak Boundary condition in method that

uses an upwind discretization, the partial fluxes that need to be specified at a boundary

require a completely different treatment of the boundary cells [1]. The Mark boundary

condition can be implemented within the framework of the Riemann solver without

completely recharacterizing the flux between a boundary cell and the actual problem

boundaries.

The Mark boundary condition specifies the incoming intensity along particular di-

rections. The movement of information along characteristics is automatic with the

Riemann solver. In fact, the Riemann solver was designed to move information upwind

along the characteristics so implementing the Mark boundary condition is natural. To

implement the Mark boundary conditions we use a techinque known as ghost cells. This

involves placing a distribution that has the desired incoming angular dependence “just

outside” the physical system. It is not necessary to compute the appropriate incoming

flux from the boundary cell (as is necessary in the Marshak boundary condtion). This

is because the Riemann solver already computes the flux across a cell face in the proper

way. In the ghost cell boundary condition, only the information that is supposed to

flow across a system boundary does. Since the impetus behind developing a Riemann

solver for radiative transfer was the desire to have a method that moves information in

an upwind manner, we need not make an exception at the boundary.
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Figure 6.1: The reflected angle equals the incident particle angle for a reflecting bound-
ary.

6.1.1 Vacuum boundary condition

The vacuum boundary condition can be easily implemented with ghost cells. For

example, in a cell at the left edge of the system we set the value of ~Ighost = ~0 (~Ighost is the

value in the ghost cell). Then the flux across the boundary is (c.f. Eq. ??)

Fboundary =
1

2

(
nxAx

(
~Iinterior

)
+ nyAy

(
~Iinterior

)
+ nzAz

(
~Iinterior

))
(6.2)

− 1

2

(
nx|Ax|

(
~Iinterior

)
+ ny|Ay|

(
~Iinterior

)
+ nz|Az|

(
~Iinterior

))
.

Vacuum boundaries for other locations are similarly treated.

6.2 Reflecting Boundary Condition

The reflecting boundary condition causes the system boundary to reflect particles

impinging on the boundary interface. In Fig. 6.1 this process is illustrated. The particles

hitting the boundary are to be reflected with the same angle relative to the outward
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normal to the interface. The relation between θi and θr, taking into account direction,

is θr = π−θi. For an incident particle with direction Ω̂i, the angle between the outward

normal and Ωi is given by Ω̂i · n̂ = cos θr and the reflected angle is then given by

Ω̂r · n̂ = cos (π − θi) = − cos θi. Therefore the intensity at the boundary is symmetric

in the cosine of the polar angle with respect to n̂

I (cos θi)cos θi>0 = I (− cos θi)cos θi<0 . (6.3)

The incident direction of a particle in terms of Cartesian coordinates (x, y, z) is

Ω̂′
i =

(√
1− µ2 cosφ,

√
1− µ2 sinφ, µk̂) (6.4)

The reflecting boundary condition for general inward normal is a linear combination of

the boundary conditions for each of the x, y, and z directions. We will now derive the

boundary conditions for each of these directions.

Z direction

If the outward normal, n̂, equals k̂ the boundary condition becomes

I (µ, φ)µ>0 = I (−µ, φ) , (6.5)

because Ω̂i · n̂ = µ. The intensity at the boundary is an even function of µ. Therefore,

the moments of this intensity are given by

~Im
l boundary =

∫ 2π

0

dφ

∫ 1

−1

dµȲ m
l I(µ, φ) =


~Im
l l +m even

0 l +m odd

. (6.6)

This is because the associated Legendre functions are odd in µ for l + m odd and they

are even if l +m is even.

To impose this boundary condition using ghost cells we will set the boundary flux

to be

~Fm
l Boundary =

1

2

(
~Im
l interior + ~Im

l ghost

)
, (6.7)
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with

~Im
l ghost =


~Im
l interior l +m even

−~Im
l interior l +m odd

. (6.8)

Note that this is equivalent to making our scheme a centered-difference (and not up-

winded) scheme at the boundary.

X direction

For n̂ = î, the incident angle is given by

cos θi =
√

1− µ2 cosφ. (6.9)

This makes the outgoing (exiting the system) direction cosφ > 0 or φ∈[−π/2, π/2], and

the reflected direction cosφ < 0 or φ∈[π/2, 3π/2]. The boundary condition is

I (µ, φ)φ∈[−π/2,π/2] = I (µ, π − φ) . (6.10)

To determine what the value of Im
l should be at the boundary let us examine the

integrals that define the moment

Im
l =

∫ 1

−1

dµ

∫ 2π

0

dφȲ m
l I(µ, φ) (6.11)

=

∫ 1

−1

dµ

∫ π/2

−π/2

dφȲ m
l I(µ, φ) +

∫ 1

−1

dµ

∫ 3π/2

π/2

dφȲ m
l I(µ, π − φ).

The real part of the second integral can be simplified using∫ 3π/2

π/2

dφKm
l P

m
l (µ) cos (mφ) I(µ, π − φ) =

∫ π/2

−π/2

dφKm
l P

m
l (µ) cos (m(π − φ)) I(µ, φ),

(6.12)

where Km
l is the normalization constant, and the identity

cos (m(π − φ)) =


cos (mφ) m even

− cos (mφ) m odd

, (6.13)
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to get

Re (Im
l ) = 0 for m odd (6.14)

The imaginary part is handled by examining

−
∫ 3π/2

π/2

dφKm
l P

m
l (µ) sin (mφ) I(µ, π − φ) = −

∫ π/2

−π/2

dφKm
l P

m
l (µ) sin (m(π − φ)) I(µ, φ),

(6.15)

and the identity

sin (m(π − φ)) =


− sin (mφ) m even

sin (mφ) m odd

, (6.16)

giving

Im (Im
l ) = 0 for m even. (6.17)

The conditions of Eqs. 6.14 and 6.17 are satisfied using ghost cells by setting the flux at

the boundary to

~Fm
l Boundary =

1

2

(
~Im
l interior + ~Im

l ghost

)
, (6.18)

with

~Im
l ghost =


~̄Im
l interior m even

−~̄Im
l interior m odd

. (6.19)

Y direction

For n̂ = ĵ, the incident angle is given by

cos θi =
√

1− µ2 sinφ. (6.20)

This makes the outgoing direction sinφ > 0 or φ∈[0, π], and the incoming direction

sinφ < 0 or φ∈[π, 2π]. The boundary condition is

I (µ, φ)φ∈[0,π] = I (µ, π − φ) . (6.21)
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To determine what the value of Im
l should be at the boundary let us examine the

integrals that define the moment

Im
l =

∫ 1

−1

dµ

∫ 2π

0

dφȲ m
l I(µ, φ) (6.22)

=

∫ 1

−1

dµ

∫ π

0

dφȲ m
l I(µ, φ) +

∫ 1

−1

dµ

∫ 2π

π

dφȲ m
l I(µ, π − φ).

The real part of the second integral can be simplified using∫ 2π

π

dφKm
l P

m
l (µ) cos (mφ) I(µ, π − φ) =

∫ 2π

0

dφKm
l P

m
l (µ) cos (m(2π − φ)) I(µ, φ),

(6.23)

and the identity

cos (m(2π − φ)) = cos (mφ) , (6.24)

which says that the real part of ~Im
l should be the same in the ghost cell. The imaginary

part is handled by examining

−
∫ 2π

π

dφKm
l P

m
l (µ) sin (mφ) I(µ, π − φ) = −

∫ π

0

dφKm
l P

m
l (µ) sin (m(π − φ)) I(µ, φ),

(6.25)

and the identity

sin (m(2π − φ)) = − sin (mφ) , (6.26)

giving

Im (Im
l ) = 0 for all m. (6.27)

Condition 6.27 is enforced using ghost cells through setting

~Fm
l Boundary =

1

2

(
~Im
l interior + ~Im

l ghost

)
, (6.28)

with

~Im
l ghost = Re(~Im

l interior). (6.29)
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6.2.1 Albedo Boundary Condition

An albedo boundary condition is used to model the partial return of radiation en-

ergy that has escaped the system. Specifically, the returned radiation will have lost all

the angular information that the exiting radiation had. For example, if one were model-

ing the radiation field inside a hohlraum for inertial confinement fusion, the gold walls

of the hohlraum might be treated as an albedo boundary, i.e. the walls isotropically

return some fraction of the radiation entering the walls.

For a Pn boundary condition, the albedo can be treated as a reflecting boundary in

the I0
0 moment multiplied by the albedo value, α. The other moments have a reflected

value of zero.

~Im
l ghost =


α~I0

0 interior l = 0, m = 0

0 otherwise

. (6.30)



CHAPTER VII

Limits of the Pn Equations

enThe behavior of the transport equation has some important limits that we would

like our numerical method to respect. One of these limits is the diffusion limit, where

scattering (or absorption/ reëmission1) dominate. In this limit we would like to have

our numerical method be robust when a diffusion length is resolved, rather than a mean

free path. The other extreme is the free-streaming limit, which presents a problem for

Pn methods in multiple dimensions. Below we will present a novel analysis that the

standard Riemann solver does not limit to a discrete diffusion equation. Beyond this

we will demonstrate that the Pn equations give analytic solutions with negative energy

densities and we point to some possibilities to address these issues.

7.1 The Diffusion Limit

In this section we examine how Riemann solvers for the Pn equations behave in

problems of a “diffusive” nature, that is, in problems where scattering interactions dom-

inate. At steady-state these problems are described by an elliptic diffusion equation,

which is an approximation to the full transport equation in the limit of asymptotically

1The use of the diæresis over the second e in reëmission is technically correct. This symbol denotes
that the vowels are part of two different syllables and should not be pronounced as a dipthong [64]. The
New Yorker is particularly fond of using a diæresis in words where it regularly omitted, such as coöperate.

67
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small absorption and small sources. In linear radiation transport the steady-state solu-

tion to diffusive problems varies on a length scale characterized by the diffusion length

L = 1/
√

3σtσa which is much larger than a mean-free-path 1/σt when σa � σt. As

is well known, time dependent diffusion is governed by a parabolic equation, and un-

like hyperbolic problems, parabolic equations are characterized by infinite propagation

speed of information. They are also characterized by dissipation: they produce smooth

solutions even from non-smooth sources and initial data.

This presents a challenge: Riemann solvers are specifically designed to solve hyper-

bolic equations and to upwind information flow at finite speed in a minimally dissipative

way. Riemann solvers will give good results for cells that are on the order of 1/σt or

smaller, but to resolve the solution in a diffusive problem a cell on the order of L should

be sufficient. For robustness we would hope that a Riemann solver would capture this

diffusive solution on a spatial grid that only resolves the diffusion length L. A method

that has this robustness property is said to have a diffusion limit.

We will show that the standard Riemann solver for the Pn equations does not have a

diffusion limit, and because of this a mean-free path must be resolved to obtain a good

steady solution even in diffusive problems. An asymptotic analysis of the problem re-

veals that the main impediment to a diffusion limit in a Riemann solver is the numerical

dissipation present in the scheme. This grid-size-dependent dissipation is present in a

Riemann solver to make it upwinded and thus maintain the proper physics of finite

propagation speed, and hence stability. However, the collisional interactions that in

transport physics dominate the diffusion limit represent another type of dissipation.

The number of particles travelling in a given direction is reduced by collisions. We

propose a method that recovers the diffusion limit by systematically scaling out the

numerical dissipation in regions where scattering collisions dominate. The result is a
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hybrid method that is a Riemann solver when the grid resolves a mean-free-path, but

which becomes a centered difference method when when the grid is large.

7.1.1 Diffusion properties of the Pn equations

Since we study the spherical harmonic equations, we wish to understand their prop-

erties in the diffusion limit.

Let us begin by exploring a diffusion-like solution of the transport equation.2 In one

dimension with isotropic scattering, the grey transport equation is

1

c

∂I

∂t
+ µ

∂I

∂x
+ σtI =

σs

2

∫ 1

−1

I dµ′ +
Q

4π
. (7.1)

Suppose that we have a linear-in-space source Q = qx for some constant q, and we seek

a solution of the transport equation that is linear in space x and linear in the direction

cosine µ. Substituting I(x, µ) = ax+ bµ into Eq. (7.1) we find

µa+ σt(ax+ bµ) = xσsa+ x
q

4π
. (7.2)

From this we find a = q/(4πσa) and b = −a/σt, and thus

I(x, µ) =
q

4πσa

[
x− µ

σt

]
(7.3)

is a special solution of the one-speed transport equation with constant cross-sections and

a linear-in-space isotropic source. This solution is not strictly positive, however this is a

result of a having negative source for x < 0.

This solution is interesting because it satisfies Fick’s law: in particular, it has

φ = 2π

∫ 1

−1

I dµ =
q

σa

x a linear in space scalar flux, and (7.4)

J = 2π

∫ 1

−1

µI dµ = − q

3σaσt

= − 1

3σt

∂φ

∂x
a constant current satisfying Fick’s law .

(7.5)

2This is a simple exercise in the method of manufactured solutions, a technique first suggested by
Lingus [65]
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Because of this property it has been suggested that a numerical scheme for the transport

equation should capture this solution [66, 67] at least in the diffusion limit. A method

that can produce these linear solutions is said to be linear solution preserving (LSP). We

will see later that the Riemann solver for the Pn equations is LSP, and so is the modified

Riemann solver that we propose in this paper.

7.1.2 Linear solution of the Pn equations

We should like to know if the Pn equations capture the linear-in-space, linear-in-

direction cosine solution just described in Eq. (7.3). The 1D Pn equations are

1

c

∂I0
∂t

+
∂

∂x
(B1I1) + ΣaI0 =

Q

2
√
π

1

c

∂Il
∂t

+
∂

∂x
(Al−1Il−1 +Bl+1Il+1) + ΣtIl = 0 l = 1 . . . n

In+1 = 0 .

(7.6)

For that linear source problem, we can immediately compute that

I0 =
qx

2σa

√
π

(7.7)

I1 = − q

2σaσt

√
3π

(7.8)

Il = 0 l > 1 . (7.9)

Noting that A0 = B1 = 1/
√

3, and substituting these into Eqs. (7.6) along with Q = qx

we discover that they do indeed satisfy the Pn equations. Therefore the Pn equations

have the special solution that represents Fick’s law.

In order for a numerical scheme to capture this solution it is necessary only that

the derivative in the zeroth moment equation map a constant to zero (so it must be at

least zeroth order accurate) and the derivative in the first moment equation must map

a linear function to a constant of the correct value (so it must be at least first order

accurate). These not very demanding conditions will guarentee that a method for the



71

Pn equations will capture the linear-in-space and linear-in-direction cosine solution of

the Pn equations. We will note below that the Riemann solver for the Pn equations does

have these properties.

We also note in passing that because of the rotational invariance of the spherical

harmonic equations, they will in fact have an entire family of linear-in-space and linear-

in-direction cosine solutions resulting from rotations of the special x-dependent solution

just displayed.

7.1.3 Asymptotic analysis of the Pn equations

To investigate the diffusive limit of the Pn equations, and numerical methods for

them, we want to examine their solution when scattering dominates over absorption

namely, σt � σa, and when time variation is negligible, ∂Il/∂t ≈ 0. To do this we

divide σt by a small, positive parameter ε and multiply σa, Q and ∂/∂t by ε as well,

resulting in
ε

c

∂I0
∂t

+
∂

∂x
(B1I1) + εσaI0 = ε

Q

2
√
π

ε

c

∂Il
∂t

+
∂

∂x
(Al−1Il−1 +Bl+1Il+1) +

σt

ε
Il = 0 l = 1 . . . n

In+1 = 0 .

(7.10)

We also then postulate a asymptotic expansion for Il given by

Il ∼
∞∑

j=0

εjI
(j)
l (x, t) , ε→ 0 . (7.11)

Next, we present a theorem on the asymptotic behavior of the Pn equations that we will

want to recapture with our modified Riemann solver.

Theorem 4. Let σt > 0. Then for the asymptotic expansion Eq. (7.11) to satisfy the scaled

Pn equations, Eq. (7.10), we must have I(j)
l = 0 for l > j. In other words, Il = O

(
εl
)
.



72

Furthermore, the solution satisfies Fick’s law at leading order,

I
(1)
1 = −A0

∂I
(0)
0

∂x
(7.12)

and
1

c

∂I
(0)
0

∂t
− ∂

∂x

A0B1

σt

∂I
(0)
0

∂x
+ σaI

(0)
0 =

Q

2
√
π

(7.13)

Proof by induction. Substituting Eq. (7.11) into Eq. (7.10) yields

∞∑
j=1

εj
1

c

∂I
(j)
0

∂t
+

∞∑
j=0

εj
∂

∂x

(
B1I

(j)
1

)
+
∑
j=1

εjσaI
(j−1)
0 = ε

Q

2
√
π

∞∑
j=1

εj
1

c

∂I
(j)
l

∂t
+

∞∑
j=0

εj
∂

∂x

(
Al−1I

(j)
l−1 +Bl+1I

(j)
l+1

)
+

∞∑
j=−1

εjσtI
(j+1)
l = 0 l = 1 . . . n

∞∑
j=0

εjI
(j)
n+1 = 0 .

Gathering terms of order ε−1 yields I(0)
l = 0 for l > 0. Gathering terms of order ε0

produces

∂

∂x

(
B1I

(0)
1

)
= 0 (7.14)

∂

∂x

(
Al−1I

(0)
l−1 +Bl+1I

(0)
l+1

)
+ σtI

(1)
l = 0 l = 1 . . . n (7.15)

I
(0)
n+1 = 0 . (7.16)

Since I
(0)
1 = 0, Eq. (7.14) is automatically satisfied. Eq. (7.15) for l = 1 implies

A0∂I
(0)
0 /∂x + σtI

(1)
1 = 0, which is Fick’s law. Also since I(0)

l = 0 for l > 0, Eq. (7.15)

for l > 1 implies I(1)
l = 0 for l > 1.

Repeating the exercise for terms of order ε1 we will discover that

1

c

∂I
(0)
0

∂t
+

∂

∂x

(
B1I

(1)
1

)
+ σaI

(0)
0 =

Q

2
√
π

(7.17)

1

c

∂I
(0)
l

∂t
+

∂

∂x

(
Al−1I

(1)
l−1 +Bl+1I

(1)
l+1

)
+ σtI

(2)
l = 0, l = 1 . . . n (7.18)

I
(1)
n+1 = 0 . (7.19)
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Equation (7.17) combines with Fick’s law to give us the time-dependent diffusion equa-

tion for I(0)
0 . From Eq. (7.18) with l > 2, and using I(1)

l = 0 for l > 1, we see that

I
(2)
l = 0 for l > 2. Thus we begin to build up an induction on the order j to show that

I
(j)
l = 0 for l > j.

Suppose that there is a value j such that for all values j′ ≤ j we know I
(j′)
l = 0 for

l > j′. We need only consider j > 2 since we have already established this for j ≤ 2.

Gathering terms of order εj we have

1

c

∂I
(j−1)
0

∂t
+

∂

∂x

(
B1I

(j)
1

)
+ σaI

(j−1)
0 = 0 (7.20)

1

c

∂I
(j−1)
l

∂t
+

∂

∂x

(
Al−1I

(j)
l−1 +Bl+1I

(j)
l+1

)
+ σtI

(j+1)
l = 0, l = 1...n (7.21)

I
(j)
n+1 = 0 . (7.22)

Using I(j−1)
l = 0 for l > j − 1 and I(j)

l−1 = 0 for l − 1 > j, and hence I(j)
l = 0 and

I
(j)
l+1 = 0 for l − 1 > j, with Eq. (7.21) for l > j + 1 therefore implies that σtI

(j+1)
l = 0,

and hence I(j+1)
l = 0 for l > j + 1. This completes the induction.

Note that A0B1 = 1/3, and also recalling that φ = 2
√
πI0 we see from Eq. (7.13)

that the scalar flux φ satisfies the time dependent diffusion equation to leading order

in ε. This proof shows that the diffusion limit of the Pn equations is connected to the

angular moments of order l being of order εl, and in the correct Fick’s law arising at

first order in the expansion.

7.1.4 Diffusion properties of the Riemann discretization

We now want to explore the Riemann solver discretization in the thick diffusion limit.

To begin, we write the first-order in space Riemann discretization of the Pn equations
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in one-dimension with a uniform grid

1

c

∂

∂t
~Ii + A

(
~Ii+1 − ~Ii−1

)
2∆x

− |Λ|
(
~Ii+1 − 2~Ii + ~Ii−1

)
= −S~Ii + ~Qi(t) . (7.23)

Here ~Ii is a vector of angular moments ascending through l averaged over spatial cell i,

and

|Λ| =
n∑

k=0

~rk|λk|~lk . (7.24)

We first consider the linear-in-space and linear-in-direction cosine solution, which in

the discrete form on a uniform mesh of spacing ∆x should be

I0,i =
q i∆x

2σa

√
π

(7.25)

I1,i = − q

2σaσt

√
3π

(7.26)

Il,i = 0 l > 1 . (7.27)

We wish to see if this solution satisfies the discrete Pn equations (c.f. Eq. (7.23)).

For this solution we immediately have (I0,i+1 − I0,i−1)/2∆x = q/(2σa

√
π), (Il,i+1 −

Il,i−1)/2∆x = 0 for l > 0, and ~Ii+1 − 2~Ii + ~Ii−1 = 0. With these observations it is easy

to conclude that this linear-in-space and linear-in-direction cosine solution is an exact

solution of the Riemann discretized Pn equations. This really was inevitable from the

first order accuracy of the discretization.

However, even though the Riemann discretized Pn equations have this exact diffusion-

like solution (which exactly satisfies Fick’s law, you will recall), it does not have a good

diffusion limit. Introducing the same scaling in ε as for Theorem 1 we write the Rie-
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mann discretized equations as

ε

c

d~Ii
dt

+ A

(
~Ii+1 − ~Ii−1

)
2∆x

− |Λ|

(
~Ii+1 − 2~Ii + ~Ii−1

)
2∆x

= −



εσa 0 0 . . .

0 σt/ε 0 . . .

0 0 σt/ε

...
... . . .


~I +



εQ/(2
√
π)

0

0

...


, (7.28)

We once again use the asymptotic expansion Il,i ∼
∑∞

j=0 ε
jI

(j)
l,i (t) and have the following

unfortunate theorem which says the Riemann solver has a poor diffusion limit.

Theorem 5. Using Il,i ∼
∑∞

j=0 ε
jI

(j)
l,i (t) in Eq. (7.28) with σt > 0 we must have I(0)

1 = 0

and I(0)
0,i+1 − 2I

(0)
0,i + I

(0)
0,i−1 = 0, so I(0)

0,i does not satisfy a discrete diffusion equation.

Proof. Considering first terms of order ε−1, we get contributions only from the right

hand side and when σt 6= 0; these terms imply I
(0)
l,i = 0, and in particular I(0)

1 = 0,

yielding the first claim of the theorem.

Moving on to terms of order ε0 we have

A
~I

(0)
i+1 − ~I

(0)
i−1

2∆x
− |Λ|

(
~I

(0)
i+1 − 2~I

(0)
i + ~I

(0)
i−1

)
2∆x

=



0 0 0 . . .

0 σt 0 . . .

0 0 σt

...
... . . .


~I

(1)
i . (7.29)

This appears to have many terms, but in fact we already know that only I(0)
0,i is non-zero,

and all other I(0)
l,i = 0 for l > 0, and so most of the terms on the left are zero. For the

first equation, the I0 equation, the first term on the LHS of Eq. (7.29) only contains I1

terms hence, under our scaling this first equation becomes

|Λ|0,0

(
I

(0)
0,i+1 − 2I

(0)
0,i + I

(0)
0,i−1

)
2∆x

= 0 (7.30)
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where |Λ|0,0 denotes the first row, first column of |Λ|, which corresponds to l = 0,

explaining the zero indices. So, in order to establish the theorem we need only show

that |Λ|0,0 6= 0.

Going back to Eq. (7.24), |Λ| =
∑n

k=0 ~rk|λk|~lk, Brunner & Holloway [2, 36] have

perviously derived the eigenvectors and eigenvalues of A, and from these results one

can construct |Λ|0,0 and see that it is non-zero. Alternately, noting that Bl+1 = Al we

see that A is symmetric, hence ~rk = ~lk. Every term in the sum for |Λ| is therefore

non-negative, and if the first element of ~rk corresponding to a non-zero eigenvalue λk

is non-zero, then |Λ|0,0 > 0. This is easy to discover from the structure of A in 1D,

which has a zero diagonal and non-zeros on the first super and sub-diagonals. If the first

element of an eigenvector is zero then, for a non-zero eigenvalue, the second element is

zero. And if the first and second elements are zero, the third must be, and so on down

the line. Hence the first element of the eigenvector cannot be zero, so |Λ|0,0 > 0 and

the theorem is proved.

So, at first order in ε we discover the equation for the leading order scalar flux I0,i is

I0,i+1 − 2I0,i + I0,i−1 = 0 , (7.31)

hence the Götterdämmerung3 of the standard Riemann solver in the diffusion limit.

This equality tells us that the leading order terms will not satisfy the correct diffusion

equation. We see this be noting that Eq. (7.31) is (within a constant factor) a finite-

difference Laplacian. This Laplacian being zero tells us the leading order terms are

linear in space and satisify an erroneous diffusion equation ∇2I
(0)
0 = 0.

3Properly translated into English, Götterdämmerung, means “twilight of the gods” and denotes the
turbulent and complete downfall of a regime or institution. The word is the mistranslation into German
of the Old Norse ragnarok (which means “fate of the gods”) and its most famous usage is by Richard
Wagner as the title for the finale of The Ring of the Nibelung.
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7.1.5 Intermediate Diffusion Limit

The intermediate diffusion limit has the cell thickness ∆x equal to about one mean

free path. In the notation from the above analysis this means h → εh, which gives the

scaling

ε

c

d~Ii
dt

+ A

(
~Ii+1 − ~Ii−1

)
2εh

− 1

2εh
|Λ|
(
~Ii+1 − 2~Ii + ~Ii−1

)
= −



εσa 0 0 . . .

0 σt/ε 0 . . .

0 0 σt/ε

...
... . . .


~I +



εQ/(2
√
π)

0

0

...


,

We then proceed by postulating a smooth solution to the Pn equation such that

Il,i(t, ε) = gl(xi, t, ε, h). (7.32)

We then expand gl(x, t, ε) as a Taylor series in hε (hiding the dependence on time) as

Il,i+1 = g(xi, ε) + hε
dgl

dx
(xi, ε) +

h2ε2

2

d2gl

dx2
(xi, ε). (7.33)

Inserting Eq. (7.33) into Eq. (7.1.5) we get

ε

c

d~gi

dt
+ A

d~gi

dx
− 1

2εh
|Λ|
(
ε2h2d

2~gi

dx2

)
= −



εσa 0 0 . . .

0 σt/ε 0 . . .

0 0 σt/ε

...
... . . .


~I +



εQ/(2
√
π)

0

0

...


,

(7.34)

We now inspect the equations in the system given by Eq. (7.34) in their long form

which is
ε

c

dgo,i

dt
+B1

dg1,i

dx
− εh

2
|Λo|

(
d2~gi

dx2

)
= −εσaI0,i + ε

Q

2
√
π
, (7.35)

ε

c

dg1,i

dt
+ Al−1

dgl−1,i

dx
+B2

dg0,i

dx
− εh

2
|Λl|

(
d2~gi

dx2

)
= −1

ε
σtIl,i, l > 0 (7.36)
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In+1 = 0, (7.37)

where we have denoted the kth row of |Λ| by |Λl|. Expanding Il,i into a power series as

before we get for the O(1/ε) terms

I
(0)
l,i = 0, l > 0 (7.38)

and from the O(1) equations

∂

∂x
I

(0)
1,i = 0 (7.39)

Al−1

dg
(0)
l−1,i

dx
+Bl+1

dg
(0)
l+1,i

dx
= −σtI

(1)
l,i , l > 0 (7.40)

For Eq. (7.40) we can simplify further by using the fact that since I(0)
l,i is zero for l > 0,

its derivatives will also be zero. This gives us the result

−A0

σt

dg
(0)
0,i

dx
= I

(1)
l,i , (7.41)

I
(1)
l,i = 0, l > 1. (7.42)

Now we look at the O(ε) terms in the first equation in Eq. (7.34). These are

1

c

dg
(0)
o,i

dt
−
(
A0B1

σt

+
h

2
|Λ0,0|

)
d2g

(0)
0,i

dx2
+ σaI

(0)
0,i =

Q

2
√
π

+
h

2

N∑
l=1

|Λl|
(
d2gl,i

dx2

)
. (7.43)

This equation is “diffusion-like” insofar as it looks like the diffusion equation with an

incorrect diffusion coefficient and a different source term. This result is better than that

of the thick diffusion limit. Eq. (7.43) does include material interaction terms and the

time derivative term. However, it still is not the correct diffusion equation.

7.1.6 Modified Riemann solver in the diffusive limit

Riemann solvers were designed to add just the right amount of dissipation to make

the advective terms of a problem upwinded and stable. They treat an idealized problem

(one in which there are no sources or sinks) exactly and use the solution to this problem
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to determine the amount of flow across a cell interface. In problems where the ad-

vection of information dominates this is the correct approach. Yet, in many transport

problems there are source terms, namely collisional interactions and inhomogeneous

sources. When the advection dominates these source terms (i.e. when a mean free path

is resolved), the Riemann solver’s added dissipation is the correct amount. However,

when a mean free path is not resolved, the dissipation is incorrect.

To address this problem we suggest that the Riemann dissipation be scaled out as the

cell size relative to a mean free path grows. In particular we suggest that the dissipation

matrix |Λ| be multiplied by
[
1 + (σs∆x)

2
]−1, where σs = σt−σa is the scattering cross-

section. This scaling allows the dissipation to be largely unchanged when the cell size is

smaller than a scattering mean free path, but also reduces the dissipation acutely when

the cell size is larger than the scattering mean free path. This has the effect of effectively

making |Λ|0,0 = O(ε2) as ε→ 0 in the proof of Theorem 2, and thereby this “diffusion

correction” removes the problem revealed there.

This scaling factor obeys

1

1 + (σt/ε− εσa)2∆x2 ∼


1 ε→∞

ε2

σ2
s∆x2 ε→ 0 .

(7.44)

Using this scaling the order 1/ε equations still yield

I
(0)
l,i = 0 (7.45)

for l > 0. But the order 1 equations now state

I
(1)
1,i =

−1

2∆xσt

√
3

(
I

(0)
0,i+1 − I

(0)
0,i−1

)
, (7.46)

which recalls Fick’s law. Finally, the order ε equations give

1

c

dI
(0)
0,i

dt
− 1

3σt

(
I

(0)
0,i+2 − 2I

(0)
0,i + I

(0)
0,i−2

4∆x

)
+ σaI

(0)
0,i =

Qi

2
√
π
. (7.47)
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This is a discrete diffusion equation with the correct diffusion coefficient D = 1/3σt.

The effect of the scaled dissipation is to convert the solver from an upwinded Riemann

solver when computational cells are on the order of a mean-free-path or smaller, into a

cell-centered diffusion solver when cells are many scattering mean-free-paths thick.

It should be noted that this diffusion equation is discretized on a mesh that is of size

2∆x, rather than on the mesh of size ∆x. As written this limit is therefore yielding

two diffusion equations, one on even numbered mesh cells, and one on odd numbered

cells. This arises because in the first-order Riemann solver all quantities are effectively

cell-centered. However, as we will show in the results of the next section, we have

not seen a problem with this in practice because the nonlinear interpolation used in a

high-resolution Riemann solver does couple neighboring cells in this limit.

We also note that the scaling of the Riemann dissipation term could have been of

the form
[
1 + (σt

ε
∆x)2

]−1 based on σt rather than σs. Our thinking, however, was that

for a mesh that contains large cells in a strong absorber we should continue to upwind

the solution, rather than allow it to become a centered difference scheme. However,

in problems of thermal radiative transfer the absorption/reëmission process behaves as

effective scattering. In this case the scaling factor using σt would be appropriate.

7.2 Free Streaming Limit and Negative Solutions

In one dimension both the transport and Pn equations have simple solutions in the

free streaming limit. For an initial condition of isotropic radiation released at the origin,

I0
0 (0, µ, 0) = Q the solutions are

I0
0 (z, µ, t) =

Q

2( z
µ
− t)

h

(
z

µ
− t

)
transport (7.48)

I0
0 (z, µ, t) =

1

n+ 1

n∑
i=0

δ(z − λit) Pn , (7.49)
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where the λi are the eigenvalues of the Pn equations. In the limit on n → ∞ the

Pn solution agrees with the transport solution, however, for any finite number of mo-

ments there will be a series of delta functions moving out from the origin. These simple

solutions can show us how the Pn equations have trouble in multi-dimensional prob-

lems. To see these problems we will transform this plane solution to a point solution.

We can make such a transformation because the Pn equations are rotationally invariant

and linear.

The plane to point transform is found by inverting the transformation from a point

solution to a planar solution. Given a point solution, I0
0, point, it is possible to find the

solution from summing up a plane of those solutions. Let z be the distance from the

plane and r be the distance from the point, then the planar solution is given by

I0
0, plane(z) =

∫ ∞

r

dr2πrI0, point(r). (7.50)

By inverting this equation we can find the value of a point solution from a plane solu-

tion:

I0
0, point(r) =

−1

2πr

∂I0, plane(z)

∂r

∣∣∣∣
z=r

. (7.51)

Applying Eq. (7.51) formula to Eq. (7.49) will give negative values for I0
0 because the

derivative of a δ function is negative in the sense of distributions [68]. This quantity is a

constant multiple of the energy density, so the energy density will also be negative.

There are three ingredients that make the Pn equations give negative energy den-

sities. The plane to point transform was valid because the Pn equations are rotation-

ally invariant and linear. The delta functions which led to negatives exist because the

Pn equations are hyperbolic and have a finite number of degrees of freedom in the an-

gular variables. This means that if we want to guarantee that the solution given by a

Pn method will be positive, we must give up one of these four properties. Obviously,
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we cannot give up finite dimensionality if we want to do computer simulations; so there

are really only three possibilities. This is unfortunate because the transport equation is

linear, rotationally invariant and hyperbolic.

Other methods satisfy this quid pro quo in different ways. Diffusion methods give

up hyperbolicity allowing information to travel infinitely fast. This eliminates the delta

functions and gives diffusion positivity. Discrete ordinates methods give the same delta

function solutions as those in Eq. (7.49). However, the discrete ordinates equations are

not rotationally invariant so the transform in Eq. (7.51) does not apply4. This lack of

rotational invariance leads to the ray effects seen in discrete ordinates solutions [13]. This

makes the choice of dropping the rotational invariance of the Pn approach undesirable.

It would be possible to drop linearity through a nonlinear closure. The standard

Pn equations are closed by assuming Im
n+1 = 0. A nonlinear closure would attempt

to construct this moment using the other moments that are known. One potentially

promising closure is the Minerbo maximum entropy closure which determines the un-

known moment using physical arguments regarding the equilibriation of the intensity

in angle [1, 5]. It should be noted that linear closures derived based on some assumed

form for the intensity [26] will not resolve our problem unless they give up hyperbolic-

ity.

Another possible remedy could be to make a diffusion-like approximation in the

highest moments in the Pn equations. This would lose the hyperbolic character in the

Pn equations, yet how this would actually effect the physics is unknown. It is possi-

ble that this ad hoc approach would only seriously affect the higher moments in the

Pn equations without harming the lower moments (which are the moments that we

4Discrete ordinates solutions can sometimes have negative values for the energy density, but this is a
numerical effect caused by some spatial discretizations [29], whereas the Pn equations have these negatives
in the spatially continuous limit.
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care the most about).



CHAPTER VIII

Verification and Test Problems

Solving the time dependent thermal transport equations is a difficult problem, the

number of degrees of freedom is large and the system is nonlinear. These nonlinearities

in the temperature variable make all but the most trivial problems tractable analyti-

cally. This is unfortunate because it is rather useful to have analytic solutions to test a

code against. With an analytic test one can show that a code than claims to solve the

Pn equations does indeed solve those equations. This type of test is called verification

and is an excellent way to check a code for bugs or other unexpected shortcomings.

Below we will derive an analytic solution to the thermal P1 equations and later we will

use this problem to test our code. We will also present some other radiation transport

test problems.

8.1 Analytic Solutions to the Thermal P1 Equations

Despite the difficulting of solving thermal transport problems, using a cleverly form

of the heat capacity (CV ) as a function of temperature, it is possible to find linearized

equations that can be solved. Using this form, grey diffusion solutions [69,70] have been

found for various problems. Also, using a modified P1 and P2 approximation for grey

transport Pomraning and Shokair found the value of the radiation and temperature fields

84
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at the free-surface and the total radiation and material energies of a half-space problem

[71]; Ganapol and Pomraning found these quantities for the full transport equations [72].

The transport solution for the radiation and temperature fields throughout a problem

domain was found by Su and Olson [73].

One might wonder why so much ink has been spilled to solve radiative transfer

problems that involve an assumed (and unrealistic1) form of the heat capacity. This

work has not been an exercise in solipsism but rather represents a the need to have

analytic solutions to verify the codes written to solve the nonlinear radiation transport

equations. Given that a code should have the ability to take an arbitrary heat capacity

for a material, these solutions can be used to verify numerical codes (i.e. a diffusion

code should converge to the analytic diffusion solution). Furthermore, given an analytic

solution to the transport equation we can test the accuracy and applicability of various

approximations to the transport solution.

Below we will develop the first time-dependent P1 (telegrapher’s equation) solutions

for thermal radiative transfer. We do this by first developing the Green’s function for

the P1 equations and then using this solution to “build up” solutions to other problems.

This solution will allow us to verify that indeed our method and code solves the P1

equations as claimed. Beyond this capacity, the analytic solutions will give us insight

into the behavior of P1 solutions as compared to transport solutions.

8.1.1 Normalized P1 equations

We will normalize the P1 equations to make our discussion as general as possible.

Also, we will write the equations in energy density and radiation flux form instead of

spherical harmonic form since these are a more common form of the equations. In this

1The heat capacity of a material is nearly constant as a function of temperature, except in the region
where the material is ionizing [20].
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notation the P1 equations are

1

c

∂E
∂τ

+
1

c

∂F
∂z

+ σaE = aσaT
4 + S, (8.1)

1

c

∂F
∂τ

+
c

3

∂E
∂z

+ σaF = 0, (8.2)

where the radiation flux is defined as

F = 2π

∫ 1

−1

dµµI(µ), (8.3)

and the energy density is E . These equations are different than those used in the analysis

on the P1 by Shokair and Pomraning [71]. They dropped the time derivative in 8.2 in

their analysis.

The equation that describes the coupling of material energy to radiation energy,

Cv

c

∂T

∂t
= σa

(
E − aT 4

)
, (8.4)

with Cv denoting the heat capacity of the material. Eqs. (8.1), (8.2), and (8.4) give a

closed system of equations that govern the interplay between radiation and material

energies.

To proceed we make a common assumption on the behavior of the heat capacity of

the material to make Eq. (8.4) linear in T 4, namely we stipulate that

Cv = αT 3. (8.5)

This assumption on the heat capacity was used by Pomraning [69], Su and Olson in

their development of a diffusion benchmark [70] and in a transport benchmark [73].

This assumption allows us to bring to bear the classic tools of mathematical physics on

the P1 system of equations.
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Before continuing we will normalize the P1 system using

x ≡ σaz, ε ≡ 4a

α
, t ≡ εcσaτ, (8.6)

E ≡ E

aT 4
r

, U ≡ T 4

T 4
r

, F ≡ F

aT 4
r

, Q =
S

aT 4
r

. (8.7)

Given these definitions the P1 system becomes

ε
∂E

∂t
+

1

c

∂F

∂x
= − (E − U) +Q, (8.8)

ε
∂F

∂t
+
c

3

∂E

∂x
+ F = 0, (8.9)

∂U

∂t
= (E − U). (8.10)

The boundary and initial conditions that we will use throughout this paper are

E(±∞, t) = 0, E(x, 0) = U(x, 0) = 0. (8.11)

8.1.2 Green’s function

We will now seek the Green’s function for the system given by Eqs. (8.8)-(8.10) by

specifying the source Q = δ(x)δ(t). Upon finding this Green’s function we will be able

to construct the solution from more complex sources.

To begin finding the Green’s function we first Laplace transform Eqs. (8.8)-(8.10)

using the convention

f̂(s) =

∫ ∞

0

dte−stf(t), (8.12)

and we obtain

εsÊ +
1

c

∂F̂

∂x
= −ca

(
Ê − Û

)
+ δ(x), (8.13)

εsF̂ +
c

3

∂Ê

∂x
+ F̂ = 0, (8.14)

sÛ = ca(Ê − Û). (8.15)
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Solving Eq. (8.15) for Û we can eliminate that equation from the system changing Eq. (8.13)

into

εsÊ +
1

c

∂F̂

∂x
= −

(
1− 1

1 + s

)
Ê + δ(x). (8.16)

Applying a Fourier transform, given by

f̃(k) =

∫ ∞

−∞
dxeikxf(x), (8.17)

to Eqs. (8.14) and (8.16) yields

εsĒ − ik

c
F̄ = −

(
1− 1

1 + s

)
Ē + 1 (8.18)

εsF̄ − ikc

3
Ē + F̄ = 0, (8.19)

where for simplicity in notation we have denoted functions that have been both Laplace

and Fourier transformed using an overbar. Upon solving Eq. (8.19) for F̄ and substitut-

ing the solution into Eq. (8.18) we arrive at

εsĒ +
k2

3(εs+ 1)
Ē = −

(
1− 1

1 + s

)
Ē + 1. (8.20)

This gives the value of Ē as

Ē(k, s) =
3(εs+ 1)(

3εs(εs+ 1) + 3(εs+ 1)− 3(εs+1)
1+s

+ k2
) . (8.21)

Before performing any inverse transforms, we factor the denominator of Eq. (8.21)

Ē(k, s) =
3(εs+ 1)

(k + iΛ) (k − iΛ)
, (8.22)

where we have defined

Λ2 ≡ 3εs(εs+ 1) + 3(εs+ 1)− 3(εs+ 1)

1 + s
. (8.23)

The inverse Fourier transform of Eq. (8.22) is given by

Ê(x, s) =
1

2π

∫ ∞

−∞
dk

3(εs+ 1)e−ikx

(k + iΛ) (k − iΛ)
. (8.24)
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This integral can be evaluated using the residue theorem [74] and the fact that the roots

of a quadratic equation are either both real or complex conjugates. When x > 0 the

path of integration taken in the complex plane is a semicircle in the lower-half plane

enclosing the pole at k = −iΛ and using the residue theorem

Ê =
1

2π
lim

R→∞

(∫ R

−R

dk
3(εs+ 1)e−ikx

(k + iΛ) (k − iΛ)
+

∫ π

0

dθ
3(εs+ 1)e−iReiθx

σt (Reθ + iΛ) (Reiθ − iΛ)

)
. (8.25)

The integral over θ in Eq. (8.25) limits to zero as R→∞, making

Ê(x, s) =
3(εs+ 1)e−Λx

2Λ
, x > 0. (8.26)

For x < 0 the path of integration is a semicircle below the real axis and Ê becomes

Ê(x, s) =
3(εs+ 1)e+Λx

2Λ
, x < 0. (8.27)

We combine Eqs. (8.26) and (8.27) to get

Ê(x, s) =
3(εs+ 1)e−Λ|x|

2Λ
. (8.28)

Our task now is to perform an inverse Laplace transform on Eq. (8.28). We are now

at a crossroads in our journey; this transform in not tractable analytically (to the best

of our knowledge) and we have two choices to proceed: we could numerically perform

the inversion to obtain the value of E at particular values of t, this tack had been used

in the past [70, 73], or we could specify specific values of ε to simplify Eq. (8.28). Given

a value of unity for ε the value of Λ changes and Eq. (8.28) becomes

Ê(x, s) =
3(s+ 1)e−

√
3s(s+2)|x|

2
√

3s(s+ 2)
. (8.29)

To aid in the computation of the inverse Laplace transform we notice that Eq. (8.29) can

be written as
√

3/2(f(s) + sf(s)) where

f(s) ≡ e−
√

3s(s+2)|x|√
s(s+ 2)

. (8.30)
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This tells us that E(x, t) =
√

3/2(f(t) + f ′(t)). The inverse Laplace transform of f(s)

can be found in an exhaustive table of Laplace transforms [75] to be

f(t) = e−tI0(
√
t2 − 3x2)h(t−

√
3|x|). (8.31)

Here we have denoted the modified Bessel function of the first kind of order zero with

I0 and the Heaviside step function by h. The derivative of f(t) is

∂f

∂t
= e−t

(
−I0(

√
t2 − 3x2)h(t−

√
3x) +

tI1(
√
t2 − 3x2)√
t2 − 3x2

h(t−
√

3|x|) (8.32)

+I0(
√
t2 − 3x2)δ(t−

√
3|x|)

)
. (8.33)

Therefore, we have the Green’s function for the P1 equations with ε = 1

G(x, y, t) =

√
3

2
e−t

(
tI1(
√
t2 − 3(x− y)2)√
t2 − 3(x− y)2

h(t−
√

3|x− y|) (8.34)

+I0(
√
t2 − 3(x− y)2)δ(t−

√
3|x− y|)

)
. (8.35)

In the Green’s function we note some important properties. The finite propaga-

tion speed allowed by the P1 equations (due to their hyperbolic nature) is manifest in

the delta and Heaviside functions; the solution has a front of uncollided source par-

ticles with a speed of 1/
√

3 moving away from the origi, with a decaying modified

Bessel function behind the front. These features can be seen in Fig. 8.1 which shows the

Green’s function solution from a pulsed source at the origin (i.e. y = 0) at t = 10. The

“strength” of the delta functions in this figure is fairly weak because a large majority of

the particles have been absorbed and reëmitted and very few are still streaming straight

from the source. The stength of the delta function becomes exp(−t), hence, most of

the energy in the solution is in the reëmitted particles.

8.1.3 Finite source in time and space

A well known benchmark problem presented in the past has a unit source where

|x| < 0.5 and t < 10. A transport solution and diffusion solution were presented by
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Figure 8.1: The Green’s function solution to the P1 equations at t = 10.

Su and Olson [70, 73]. To present a P1 solution to this problem we will integrate the

Green’s function Eq. (8.34) over space and time yielding

E(x, t) =

√
3

2

∫ 0.5

−0.5

dy

∫ t

0

dt′e−t′

(
t′I1(

√
t′2 − 3(x− y)2)√

t′2 − 3(x− y)2
h(t′ −

√
3|x− y|) (8.36)

+ I0(
√
t′2 − 3(x− y)2)δ(t′ −

√
3|x− y|)

)
=

√
3

2

∫ 0.5

−0.5

dy

(
e−

√
3|x−y|h(t−

√
3|x− y|).

+

∫ t

0

dt′
t′I1(

√
t′2 − 3(x− y)2)√

t′2 − 3(x− y)2
h(t′ −

√
3|x− y|)

)
.

This function can be computed and plotted using Mathematica in a straightforward

manner. In Figs. 8.2 - 8.3 we plot the P1 analytic solution along with the transport

solutions [73].
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Figure 8.2: Analytic solutions to the P1 and transport equations for the finite source
problem.

8.2 Point Source

To transform the solution from a pulsed plane source to a point source in 3D we can

employ the transform

Gpoint(r, t) = − 1

2πr

∂Gplane

∂r
. (8.37)
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Figure 8.3: The solutions shown in Fig. 8.2 on a logarithmic scale.

Upon using this transform, the solution function for a point source at the origin be-

comes

Gpoint(r, r
′, t) =

3
√

3e−tI1
(√

t2 − 3r2
)
δ
(
t−

√
3r
)

2π
√
t2 − 3r2

+
3e−ttI1

(√
t2 − 3r2

)
δ
(
t−

√
3r
)

2πr
√
t2 − 3r2

+
3
√

3e−tt
(√

t2 − 3r2I0
(√

t2 − 3r2
)

+ I2
(√

t2 − 3r2
))
h
(
t−

√
3r
)

4π (t2 − 3r2)3/2

−
√

3e−tt
2I1
(√

t2 − 3r2
)
h
(
t−

√
3r
)

4π (t2 − 3r2)3/2
+

3e−tI0
(√

t2 − 3r2
)
δ′
(
t−

√
3r
)

2πr
(8.38)

8.2.1 Line source

By summing an appropriate arrangement of point sources we can construct a line

source benchmark. This line source can be used to test our two-dimensional P1 code for
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radiative transfer. To construct this line source we employ the transform

Eline(ρ, t) = 2

∫ ∞

0

dzEpoint(
√
ρ2 + z2, t), (8.39)

where the variable ρ is the distance from the line source. The integral can be more easily

evaluated if we change variables to

R ≡
√

3
√
z2 + ρ2 dz =

Rdr
√

3
√
R2 − 3ρ2

. (8.40)

After making this transform the terms that contain delta functions can be evaluated

after some manipulation and we arrive at

Eline(ρ, t) =
3te−t(t2 − 3ρ2 − 2)h(t−

√
3ρ)

4π(t2 − 3ρ2)
3
2

− 3e−tI0(
√
t2 − 3ρ2)

2π
√
R2 − 3ρ2

δ(t−
√

3ρ)

∣∣∣∣∣
R=

√
3ρ

+

∫ ∞

√
3ρ

3te−tR
(
I0(
√
t2 −R2) + I2(

√
t2 −R2)

)
h(t−R)

4π(t2 −R2)
√
R2 − ρ2

dR (8.41)

−
∫ ∞

√
3ρ

3Re−tI1(
√
t2 − 3R2)h(t−

√
3R)

2π(t2 −R2)
3
2

√
R2 − 3ρ2

dR. (8.42)

The integrals of Bessel functions over a finite domain must be evaluated numerically.

These integrals need to be evaluated carefully due to the fact that there is a square-root

singularity at the lower endpoint.

Results from the line source are shown in Fig. 8.4. This figure shows the energy

density from the absorbed and reëmitted (i.e. the delta functions are not shown). Just

behind the wave front the energy density is negative. This negativity decays in time and

at ct = 10 is nearly gone. Early in time P1 is doing a poor job of capturing the angular

dependence of the intensity. As more photons are absorbed and emitted isotropically,

the P1 approximation is more viable and the negatives go away.

8.3 Linear Exact Solutions

Problems without temperature feedback can also be used to test the transport fea-

tures of our Pn method. Brunner developed P1 solutions to two such problems, a plane
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Figure 8.4: The collided energy density from the line source problem at time ct = 5, 10.

source [5] in a scattering medium and a line source in vacuum [2], both pulsed at time

zero. For the plane source there is also a transport solution [76]. These P1 solutions

again contain by delta functions traveling away from the origin at speed c/
√

3. The

plane solution is plotted in Fig. 8.5. Both problems present a numerical method with a

mare’s nest of difficulties. Early in time the P1 solution is a pair of delta function spikes

moving away from the origin, but as time progresses a smooth solution representing the

collided particles grows in the middle of the domain. Hence, a numerical scheme must

capture both steep gradients (the spikes) and smooth regions. Also the method must

move the uncollided particles at the appropriate speed.

8.4 Other Test Problems

There are some problems without analytic solutions that will demonstrate how the

Pn method we have developed will perform in more realistic simulations. One such



96

−10 −5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Ε

x

Transport
Analytic P1

Figure 8.5: The P1 and transport solutions to the plane, pulsed source problem.

problem is called the “M” problem. This problem is a variation on the so-called crooked

pipe problem (aka the tophat problem) [77]. In our version an M shaped vacuum is cut

out of a dense material. A schematic of this problem is shown in Fig. 8.6. We will

run this problem in two modes: the first is in normalized units with c = 1 where

the blue region is a purely scattering medium of σs = 20 making this a problem of

linear transport. The other mode has thermal feedback with c = 2.998 × 108 m/s,

Cv = 5 × 1010 J/kg-keV and σa = 5000 m−1. In both instances radiation is input

isotropically through the middle leg of the problem.

A one-dimensional linear problem that we will examine is Reed’s problem [78]. This

is a multi-material problem and its set up is detailed in Table 9.1.1. Also, there is a

vacuum boundary on the left and a reflecting boundary on the right. This problem
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features very distinct material types and provides a way to assess a method’s ability to

handle the interfaces between dissimilar media.

The final test problem we will show is problem meant to roughly represent a hot

wire in a Z pinch array heating another wire across a vacuum. This problem (see Fig.

9.28) has a central block of material heated to T = 300 eV and another block starting at

T = 1 eV, at the beginning of the problem there is no radiation. The blocks are consub-

stantial with Cv = 5 × 1010 J/kg-keV and σa = 5000 m−1. The reflecting boundaries

quadruple the actual size of the problem – there are four of the initally cooler blocks.
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Table 8.1: Material Layout in Reed’s Problem

Scattering Region Vacuum Absorber Strong Source
σa = 0.1 σa = 5 σa = 50
σs = 0.9 σs = 0 σs = 0

S = 0 S = 50
S = 0 S = 1

x ∈ (0, 2) x ∈ (2, 4)
x ∈ (4, 5) x ∈ (5, 6) x ∈ (6, 8)

0.0 .30.25 .80 1.0 cm

0.
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0

1.
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Hot Material
Initially 300 eV
σa = 50 m2/kg

cv = 5E8 J/(kg keV)
ρ = 100 kg/m3
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(radiation energy density is zero everywhere initially)

Figure 8.7: The problem of one wire heating another across a vacuum.



CHAPTER IX

Numerical Results

Now we will study some results from calculations using the numerical methods

introduced in the previous chapters. The presentation of the results will mimic the

development of the implicit Riemann solvers. First, we will begin with some results

from linear transport (i.e. problems where there is no material temperature). These

results begin with a demonstration of the effectiveness of an implicit method on the

nonlinear slope reconstruction terms of the high resolution Riemann solver; this is

followed by a discussion of results in the diffusion limit. Next, the results from the

quasi-linear method are presented. This is followed by results from thermal radiative

transfer (aka nonlinear transport). Finally, we will show results from high resolution

time integration. Throughout this chapter the high resolution spatial scheme will be

used (unless otherwise noted) along with backward Euler time integration (except in the

last section).

9.1 Linear Transport Results

Linear transport is an important part of a thermal transport calculation because

in many codes the material temperature and the transport operators are split. This

means that the two equations are solved independently, possibly by using a guess at the
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temperature, solving the transport equation and iterating on the temperature guess. In

fact, most of the literature on transport methods presents results for linear transport, in

part due to the fact that in this split case a linear transport equation is solved.

9.1.1 Implicit Riemann solver using a Newton method

The high resolution Riemann solver method adds a nonlinear term to the linear

Pn equations; because of this the effectiveness of an implicit scheme on such equations

was not a foregone conclusion. A nonlinear equation solver would have to be used to

solve a nonlinear algebraic system at each time step. Newton based methods are the

most straightforward approach to solve such equations, so the following results use the

harmonic mean limiter and a Newton method to solve the implicit equations. In all our

linear calculations the speed of light is set to one. This makes the scalar flux, φ, equal to

the energy density.

One-dimensional problems

The first problem we will examine is the plane pulse problem in a purely scattering

medium (see Sec. 8.3); Fig. 9.1 shows some results. In this figure CFL= c∆x
∆t

and CFL> 1

would be unstable for an explicit time integration method. Even time steps that allow

particle to travel across fifty spatial cells in one time unit show good agreement with

the analytic P1 solution. The numerical solutions 5 seconds after the pulse demonstrate

a smoothing of the spikes in the analytic P1 solution. It is clear that the solutions are

converging in ∆t to the P1 solution, as would be expected for a method solving that P1

equations in discretized form. However, the front of the wave of particles with speed

±
√

(1/3) – which is captured in the analytic solution by a delta function – is retarded

from the proper speed with large time steps. This is not an artifact from the Riemann

solver, rather it arises from the time integration scheme, as can be seen in Ref. 1. In
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Figure 9.1: The high resolution P1 solutions between x = −3.5 and 3.5 at t = 5.

this reference results for the same problem using explicit time integration have the wave

fronts moving at the appropriate speeds. Increasing the size of the time step beyond

the CFL limit moves particles at the wrong speeds. This effect is seen in Fig. 9.1, in

which we see that as ∆t is reduced (CFL decreases for ∆x fixed) the wave-front tracks

the correct location more accurately. At later times there are fewer uncollided particles

(the delta functions are weaker). This makes the analytic P1 solution easier to compute

and this effect is seen in Fig. 9.2. In this figure, even a large time step, ∆t = 1, performs

very well in capturing the anayltic solution.

The high resolution and first order spatial schemes were compared on a series of

tests using the P7 equations to solve the plane pulse problem. These results at t = 1 are

shown in Fig. 9.3. The P7 solutions have a series of “spikes” representing the particles

travelling at speeds characteristic of the P7 equations, much like the delta functions of

the P1 equations. In the series of plots in Fig. 9.3 the high resolution method captures
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Figure 9.2: The high resolution P1 solutions at t = 10. The analytic P1 solution and the
∆t = 0.1 solution are coincident in the middle region.

these features more accurately for both coarse and fine grids. Furthermore, the high

resolution solution withNx = 150 is better than the first order solution withNx = 300.

This improvement with fewer cells will be an important effect in multidimensional

problems.

Using our time dependent method, we solve steady state problems using what is

colloquially referred to as “time-stepping to steady state.” An initial condition is given

and this condition is propagated forward in time until the solution converges (i.e. the

difference in solution vectors between successive time steps is sufficiently small). The

results for steady state calculations using the high resolution spatial scheme on Reed’s

problem from Sec. 8.4 are given in Fig. 9.4. This figure depicts P7 solutions obtained

using the high resolution spatial scheme and ∆t = 10 for various ∆x values. Here we see

that our method is able to handle the sharp changes in solution behavior at the material
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Figure 9.3: Comparison of high resolution and first-order solutions to the P7 equations
with different numbers of spatial grid points.
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Figure 9.4: Steady state results from Reed’s problem

interfaces and the solution is fairly insensitive to increasing the spatial grid size. Also, in

Fig. 9.4 the S8 solution using the multidimensional multibalance method [66] is shown.

The agreement of the solutions suggests that the implicit Riemann solver is converging

to the correct solution.

Figure 9.5 shows the solution to Reed’s problem at t = 1. The initial condition had

all moments set to zero and steady state solution “grows” out of this. The only region

where the solution is sensitive to the size of the time step is the strong scattering region.

This suggests that the scattering source becomes important with large ∆t and affects the

numerical results in this area.

Two-dimensional problems

The analog of the plane pulse test problem for two dimensions is a pulsed line source.

We will take a P1 analytic solution for a line source pulsed in a vacuum and use it to com-

pare to our numerical solutions. The numerical solution for this problem is shown in
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Figure 9.5: The scalar flux for different values of ∆t; cell width is ∆x = 0.05.

Fig. 9.6. This figure shows the effects of the grid on the solution. At points skew to the

Cartesian grid, the solution is slightly different than at points where information could

arrive by only passing orthogonally through the grid. We can also use this problem to

compare the high resolution method to the first order scheme. Fig. 9.7 shows results

from both spatial discretizations. Similar to the results from the one-dimensional prob-

lem, the high resolution method with fewer points gives a better result than the first

order method with more points. In the figure, the result using a grid of Nx = Nz = 50

has a quarter of the number of cells as the grid with Nx = Nz = 100. This makes the

high resolution method even more important in multiple dimensions. The effect of the

time step size on the solution is shown in Fig. 9.8. As the time step size is increased, the

propagation of the wave front is smoothed out. This smoothing effect is common with

the backward Euler method and is a result of the diffusion term in the model equation,

Eq. (5.5), for the method which is proporational to c2∆t2. In this problem where a delta

function propagates in a vacuum, even rather small time steps introduce noticeable time

integration error.
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Figure 9.6: P1 results from the pulsed line source problem with Nx = Nz = 50 at t=1.
The linear color scale represents the energy density.

Diffusion correction

We now turn to results detailing the effectiveness of the diffusion correction sug-

gested in Sec. 7.1.6. Both steady state and time-dependent problems will be used to

explore the properties of the diffusion-corrected Riemann solver with the high resolu-

tion spatial scheme. Figure 9.9 presents results from a P5 steady state calculation both

with and without the diffusion correction. The problem has an incident beam at x = 0,

a strong absorbing region from x = 0 to x = 2 and a strong scattering region from

x = 2 to x = 7. In the scattering region, where the diffusion approximation is valid, the

uncorrected method (Fig. 9.9(b)) gives different solutions for different mesh spacings.

With the correction added to the dissipation term, the solution does not vary signifi-

cantly with changes in the cell size. Even for cells that are very large compared to a
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Figure 9.7: Comparison of P1 results from high resolution and first order methods on
the pulsed line source problem.

mean-free-path the method with a proper diffusion limit still yields correct results as

seen in Fig. 9.9(a).

Figure 9.10 shows a problem of a uniform source embedded in a diffusive material

with vacuum boundary conditions. Only resolving the diffusion length, the modified

Riemann solver produces a nearly identical solution to the result calculated with a mesh

that resolves a mean free path. The standard Riemann solver causes the height of the

solution “plateau” and the boundary layer to be incorrect when the mean free path is

not resolved.

Another steady state problem used to test the diffusion correction is a modified ver-

sion of Reed’s problem [78]. The problem was modified to make the diffusive region

in the problem optically thick. This was in an attempt to gauge the ability of the diffu-
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ρ

Figure 9.8: The effect of the time scale on P1 results for the pulsed line source problem.
All of these were computed using the high resolution spatial scheme.

sion correction in problems with a variety of materials. The results in Fig. 9.11 show

that in the diffusion correction does indeed improve the calculated flux in the diffusive

region. Moreover, the solution in the strong source and absorber regions is nearly iden-

tical. There does appear to be an issue in the void region: the scalar flux is too high.

When we presented the diffusion correction we did not discuss how it would work in a

multi-material situation. In its current formulation the correction is not conservative at

the interface between a diffusive region and a streaming region. This would explain the

higher value in the vacuum region.

The diffusion correction was also tested in time-dependent problems. One problem

used to test the correction places a plane pulse of particles at the center of a medium

dominated by scattering (σt = 10, σs = 9.9). The differences between the corrected
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(a) The solution using the diffusion-corrected Riemann solver

(b) The solution using the standard Riemann solver without the diffusion correction

Figure 9.9: The P5, steady state solution with incident beam on the left, and two re-
gions: a strong absorber and a strong scatterer
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Figure 9.10: The P1, steady-state solution to a uniform source problem with Q = 1
2π

and σa = 0.01, σt = 10

solution and the standard Riemann solver are noteworthy. Figures 9.12 and 9.13 show

the P7 and P1 solutions to this problem at t = 35 after the pulse with ∆t = 0.5.

The lack of a diffusion limit in the unaltered Riemann solver leads to very different

solutions with different spatial grids. Figures 9.12(b) and 9.13(b) show that the width of

the pulse in the solution artificially spreads as ∆x increases in the solution without the

diffusion correction. The fact that the diffusion correction behaves the same both in the

P1 approximation and the P7 approximation is demonstrated by these figures. This is

manifest in the fact that the standard Riemann solver solutions are similar for both P1

and P7 and the diffusion corrected solutions are similar for both angular approximations

(i.e. Fig. 9.12(b) is similar to Fig. 9.13(b) and Fig. 9.12(a) is similar to Fig. 9.13(a)).
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Table 9.1: Material Layout in Reed’s Problem

Scattering Region Vacuum Absorber Strong Source
σa = 0.1 σa = 5 σa = 50
σs = 9.9 σs = 0 σs = 0

S = 0 S = 50
S = 0 S = 1

∆x = 2 ∆x = 2
∆x = 2 ∆x = 1 ∆x = 2

Figure 9.11: The solution to the modified Reed’s problem.
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(a) The solution from the modified Riemann solver

(b) The standard Riemann solver solution

Figure 9.12: The P7 solution at t = 35 after the initial pulse of particles
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(a) The solution from the modified Riemann solver

(b) The standard Riemann solver solution

Figure 9.13: The P1 solution at t=35 after the initial pulse of particles
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Figure 9.14: The P1 scalar flux for the first test problem at T = 10 after the initial pulse
for different ∆t, solved using the quasi-linear formulation.

9.2 Quasi-linear time integration results

The quasi-linear approach to solving the nonlinear system of equations arising from

the high resolution method was justified via analysis in Sec. 5.2.1. Now we will see if

this approach bears fruit in actual numerical simulations. In Fig. 9.14 results from the

quasi-linear method are shown. The solutions are converging to the analytic solution as

they did when using the Newton based high resolution method.

We will now gauge the performance of the quasi-linear method against a full non-

linear calculation using a fully nonlinear Newton-Krylov high resolution method and

using the first-order method. To accomplish this we have plotted the error for the plane

pulse test problem as a function of spatial resolution (see Fig. 9.15) and the CPU time as

a function of error (see Fig. 9.16) In both of these figures, the L-2 norm error was com-

puted using the region just inside the delta functions in the analytic solution. This was
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Figure 9.16: The CPU time as a function of error for P1 scalar flux with ∆t = 0.05 at
T = 10 as compared with the analytic soltuion.

done because the error at a delta function would be infinite for any numerical method.

In Fig. 9.15 we see that both the fully nonlinear and the quasi-linear method have

second order error convergence whereas the first-order method achieves slightly better

than first order accuracy (order 1.33). Moreover, we see that the errors in the nonlinear

and quasi-linear methods are essentially identical. This suggests that for this problem

there is no loss of accuracy in using the quasi-linear method versus the full nonlinear

solve. Finally, the error for the first-order method with the highest spatial resolution

(∆x = 0.025) is still not as small as for the high resolution methods with ∆x = 0.08.

The superior error convergence shown in the quasi-linear method is a heartening

result, however, it would be for naught if the time inherent in performing the extra

linear solve was prohibitively long. One might imagine a circumstance where the first-

order method with a much finer mesh would have a faster calculation time and the same
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error as a high resolution method with a coarser mesh. Fig. 9.16 addresses this concern

by comparing CPU time with error.

The quasi-linear and nonlinear methods have the CPU time and error related by an

inverse power law while the first-order method has no such simple relation. This is most

likely due to the memory requirements for the problem size required to make the error

small using the first-order method. To produce results with small error, the number of

spatial cells must be large. In smaller problems the entire mesh can fit in the computer’s

cache and the calculation is completed quickly. The sharp increase in CPU time near

an error of 0.001 could be explained by the problem becoming too large to fit in the

computer’s cache. The high resolution method does not need such large meshes to get

small errors and does not demonstrate this effect. In comparsion, for relatively large

errors the first-order method is faster than the high resolution methods. The first-order

method ceases to perform better at an error of 0.001 where the quasi-linear method

finishes faster. In all cases tested the fully nonlinear method is the slowest for a given

error.

To demonstrate the effectiveness of the quasi-linear implict high resolution Riemann

solver, we will compare some Pn results with implicit Monte Carlo (IMC) results on the

“M” problem from Sec. 8.4. By comparing results from an IMC computation [79, 80]

with the implicit Riemann solver we can appraise the effectiveness of the method with

large time steps. In this problem of without temperature feedback, the IMC method

becomes exact up to statistical error.

In Fig. 9.17 results for the scalar flux using the quasi-linear method and the P7

approximation are compared with IMC results. In these figures the color scale is pro-

portional to log10 φ and limited to 3.5 orders of magnitude. With a CFL number of 5,

the P7 solution compares well with the IMC solution. As the time step size is increased
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the features of the solution are blurred, as we see in the results from ∆t = 0.25 (CFL

= 25). This spreading of the solution can be explained using the model equation for this

method (c.f. Eq. (5.11)). The larger time step introduces larger dissipation (proportional

to ∆t2) and this effect can be seen by comparing the P7 solutions with different time

steps.

A telling comparison can be obtained by looking at the scalar flux along the lineout

at x = 0 in Fig. 9.18. We see the effect of the larger time step is to make the numerical

solution lower in the middle of the problem. This result of the damping in the model

equation is quite apparent with the solution having ∆t = 1. Here we see the maximum

time integration error for this situation because that solution was arrived at in only one

time step. Finally, in this region and time in the calculation, the P7 solution is good

approximation to the true solution, even when computed using a CFL number of 25.

9.3 Thermal Transport Results

9.3.1 One-dimensional problems

Now we look at problems where there is a material temperature providing nonlinear

feedback to the radiation intensity. The first problem we will examine is the Su-Olson

finite source problem from Sec. 8.1.3, a problem thermal transport with Cv ∝ T 3. The

P1 analytic solution was given in that section and we could use this solution to verify

that our method is converging to the P1 solution.

Fig. 9.19 shows the numerical solution and analytic P1 solutions to this problem. In

this figure the radiation flux (see Eq. (8.3)) is denoted by Fz. The analytic solution has a

kink (i.e. discontinuity in the derivative of E) at z ≈ 0.077. This kink is due to the edge

of the source at z = −0.5 propagating in the positive z direction. This kink is an artifact

of the sharp transient created when the source was turned on at t = 0. To the right of
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Figure 9.17: Results for the “M” problem at t = 1 after the source is turned on.
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this kink the material does not know that there is a source going back to z = −0.5; in

hydrodynamics we might say that these points are not sonically connected to the source

edge. There is a similar, though less noticeable kink appears at z ≈ 1.077 Such kinks are

difficult to capture using a numerical method and this appears in our numerical solution.

Beyond this expected behavior near a kink, the numerical solution shows a jump at the

edge of the source (z = 0.5). This jump is not present in the analytic solution; this

numerical artifact is a result of the dissipation added to the numerical method becomes

zero in the I0 equation. Consider the discrete P1 equations in one dimension in the free

streaming limit with first order spatial differencing

1

c

In+1
0,i − In

0,i

∆t
+

1

2∆z
√

3
(In+1

1,i+1 − In+1
1,i−1)−

1

2∆z
√

3
(In+1

0,i+1 − 2In+1
0,i + In+1

1,i−1) = 0 (9.1)
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3
(In+1

0,i+1 − In+1
0,i−1)−

1

2∆z
√

3
(In+1

0,i+1 − 2In+1
0,i + In+1

1,i−1) = 0. (9.2)

In Eq. (9.1) the dissipation is proportional to the second derivative of I0. At the edge of

the source there is an inflection point and hence no dissipation. If this happened at a

place were the radiation flux (which is proportional to I1) were smooth there would be

no consequence from the loss of dissipation. However, at the edge of the source there is

a cusp in the radiation flux and a jump in the flow between cells in the I0 equation. This

numerical artifact does go away, but slowly. Fig. 9.20 shows the converge to the analytic

solution as the grid is refined. Up to a point, the convergence as Nz increases is greater

than one. We would not expect full second order convergence in the problem due to the

kinks in the solution. As the mesh gets further refined the convergence rate slackens to

less than one. In this region we are adding more and more spatial cells to remove the

jump at the source edge when only points near the jump affect the solution.

Finally, this problem shows the benefit of having analytic solutions to compare to.

If we did not have this analytic solution, we would likely think that this behavior at the
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Figure 9.20: Logarithm of the Error between high resolution solution and analytic so-
lution for the Su-Olson benchmark as a function of the logarithm of the
number of grid points.

edge of the source were actually in the analytic solution.

Using this same problem we can examine how the Pn equations limit to transport.

This is done by comparing different Pn approximations with fine spatial grids and time

steps (∆x = 0.015 and ∆t = 0.01) to the analytic transport solution found by Su and

Olson [73]. Figs. 9.21 and 9.22 show such comparisons; therein we can see that P7 is

sufficient to capture the transport solution in this problem. We also see that P1 does a

poor job, yet P3 performs noticeably better than P1. In Fig. 9.22 we can see the effect

of the slow P1 wave speed. P1 only allows information to propagate at c/
√

3 and on the

logarithmic scale we can see that P1 does not propagate information far enough into the

problem.

The next one-dimensional problem we will look at is problem where the opacities

depend nonlinearly on temperature. This problem was suggested by Olson et al. and



123

0 0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

1.2

Z

Ra
dia

tio
n E

ne
rg

y D
en

sit
y

 

 
  P1
  P3
  P7

symbols - analytic

ct = 3.16

1
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has a slab of purely absorbing material irradiated on the left boundary by an isotropic

light source [32]. The heat capacity of the material is a constant function of temperature

and the opacities are governed by

σa = σ0T
−p. (9.3)

Olson et al. only examined the case of p = 3. This is actually a special case as it makes

the material temperature time scale independent of temperature. This time scale, τ , is

the e folding time for T 4,

τ =
Cv

4acσaT 3
. (9.4)

When p = 3, this time scale is constant because the T 3 in σa cancels the T cubed

term. The problem is still nonlinear, but the nonlinearity only appears in the transport

equation opacity and the temperature equation is linear [32]. We will look at the p = 3

case and also the harder p = 5 case to be assured that our method can handle such

problems that are nonlinear in opacity, temperature, and radiation.

P7 results for this problem with p = 3 and 5 are shown in Figs. 9.23 and 9.24. In these

figures the dashed lines are the material temperature and the solid lines are the radiation

temperature (Tr = 4
√
E/a). The initial material temperature was set to T = 10−1.25 as

in Ref. 32. P7 was chosen because it performed well in the problem with Cv ∝ T−3

and in this new problem the additional wrinkle is the nonlinearity, which should not

contribute to additional angular complexity. Also, in previous solutions of this problem

it was noted that even P3 provided “a quite adequate solution” [32]. In Fig. 9.23 the effect

of different time step and cell sizes on the solution is portrayed. Early in time a small

time step and cell size are required to accurately capture the front of the wave. The

largest time step used placed the wave front slightly too far rom the boundary source

for all times except ct = 7. In this case the time step is about the order of the time scale
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of the material heating, approximately τ = 1 s. Despite the time discretization errors of

this time step, the method remained stable and produced reasonable results even for this

unreasonable time step. The “medium” sized time step (∆t = 10−2) solution in Fig. 9.23

is nearly perfectly coincident with the fine grid/small time step solution.

For the case of p = 5, as seen in Fig. 9.24, a finer spatial grid was used because the

mean free path of a photon is much smaller in this problem. In this problem the time

scale ranges from about 0.5 in the hot regions all the way down to 5 × 10−7 where the

material is cold. Our solutions are converged in terms of time integration errors despite

not resolving the very fastest time scale in the cold material. This is probably a benefit

of treating the temperature terms (and thereby the opacities) nonlinearly. Also, the

shoulder of the wavefront is where the character of the problem changes from streaming

dominated to absorption dominated and the temperature below the shoulder is higher;

in this region of the problem the material time scale is resolved.

9.3.2 Two-dimensional results

The first test in two dimensions we will look at the P1 line source problem in

medium with Cv ∝ T 3. This problem has an analytic solution as derived in Sec. 8.2.1.

Although this problem is one-dimensional in the distance from the line, ρ, we can

test our two-dimensional code by using a Cartesian grid to model the line. The two-

dimensional solution is shown in Fig. 9.25 and the solutions are compared to the analytic

solution in Figs. 9.26 and 9.27. At t = 5 the numerical method is having a difficult time

capturing the analytic solution. This is due to the fact that the numerical method is

trying to resolve the delta functions containing the uncollided particles. At this point

in time there are still a moderate number of uncollided photons and the numerical so-

lution is smoothing out this delta function, thereby corrupting the solution containing
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Figure 9.27: Comparison of energy density from P1 numerical and analytic solutions at
t = 10.

collided photons. Also, at this point in time there is an artifact from the approximation

of having temperature be constant in a spatial cell. This appears as the bump near ρ = 0.

The temperature is very sharp there as the initial line source of radiation quickly turns

into a localized temperature spike. This temperature spike is difficult to resolve. This

spike cannot conduct away, but must instead radiate. Despite these difficulties early in

time, the numerical solution captures the analytic solution very well later at t = 10 in

Fig. 9.27.

The wire problem detailed in Sec. 8.4 is a good indicator of how both our method

and the Pn approach in general will work on realistic problems with materials heating

each other across a vacuum. This problem uses a constant heat capacity, making the

temperature feedback nonlinear. This particular instance of the problem had the heated

block’s material fed 300 eV over one nanosecond. In Fig. 9.28 energy density from dif-

ferent orders of Pn are shown. For this figure, the radiation temperature was calculated
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Figure 9.28: Radiation temperature (eV) at 2 nanoseconds for the mock wires problem
using different Pn orders. All problems were run on a Cartesian mesh with
Nx = Nz.



130

X

y

 

 

!0%01 !0%005 0 0%005 0%01

!0%01

!0%0075

!0%005

!0%0025

0

0%0025

0%005

0%0075

0%01 0

20

40

60

80

100

120

140

160

180

200

(a) P7 positive part

X

y

 

 

!0%01 !0%005 0 0%005 0%01

!0%01

!0%0075

!0%005

!0%0025

0

0%0025

0%005

0%0075

0%01 0

5

10

15

20

25

30

35

40

(b) P7 negative

Figure 9.29: Comparison of the positive and negative parts of the radiation temperature
for the P7 solution at 2 nanoseconds.
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Figure 9.30: Material temperatures (eV ) at 10 nanoseconds for P5 and P7. The colorscale
is such that any temperature −1 eV or below is black.
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to be

Tr = sign(E)
4

√
|E|
a
, (9.5)

because the numerical solutions had negative energy densities. This figure has any radi-

ation temperature zero or less set to be black. This will give us an estimate of how well

a given order can capture the shadow behind the cold blocks. The P1 solution has no

shadow behind the cold block, showing that in P1 photons unphysically wrap around

the cold block. P3 shows this phenomenon as well but to a lesser extent; a shadow does

exist in this solution. Both the P7 and the P11 solutions have a shadow behind the cold

block. With the P7 solution there is some light at temperature of 60− 89 eV hitting the

back of the block. In Fig. 9.28 all of the solutions with n > 1 also have a negative part

to the radiation temperature in the shadow region. P1 has no negatives because it has no

shadow. The magnitude of these unphysical negatives goes down as n is increased. The

P3 solution has a maximum negative of 63 eV while the P11 result has a maximum of 31

eV. The separated positive and negative parts of the P7 solution are shown in Fig. 9.29.

The real importance of the negative radiation energy density is how it affects the

material temperatures. If the radiation does not cause the material temperature to go

negative, then the unphysical nature of the negatives is more of a quirk than a serious

drawback. The material temperatures are shown in Fig. 9.30. In this figure both P7

and P5 have regions of negative material temperature. The P7 minimum temperature is

about 2 eV and the P5 negative is almost 24 eV.

Finally, it should be pointed out that in all of these figures (Figs. 9.28 - 9.30) implicit

time stepping was heavily utilized; every solution had the photons travelling across the

problem domain multiple times in a time step. To justify taking such large time steps

we can look at the effect of large time steps on the solution. A study was done on an

instance of the wires problem where the hot block was started at 300 eV rather than
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ramped up. This is a more difficult problem to simulate because of the large difference

in radiation and material temperatures in the beginning of the problem. Figs. 9.31 and

9.32 show the effect of time step size on the P7 solution with Nx = Nz = 60. These

figures show the lineout along the diagonal from the center of the heated block through

the cold block and into the shadow region. In this problem the time scale of the material

temperature was as short as about 0.1 ns. These figures show that both the radiation and

material temperature fields are converged in time when time steps capture this material

temperatue time scale are taken. This is the case for the radiation field even when the

time scale of radiation propagation is greater than 100 times shorter than the time step.

The duct problem with temperature feedback is shown in Figs. 9.33 - 9.34. This

problem, as detailed in Sec. 8.4, has a 300 eV isotropic radiation source entering the mid-

dle leg of an “M” shaped duct. This nonlinear version of the problem produces negative

energy densities whereas the purely scattering problem did not. Fig. 9.33 shows the ef-

fect of different Pn approximations on the solution at an early time. The P3 solution has

too much energy turning the corner of the duct; the P7 and P11 solutions show less of

this effect and display a cone of radiation near the top of the duct. All solutions demon-

strate wave effects. In the P3 solution there is a local maximum at the top of the middle

leg of the duct. The higher order in angle solutions also demonstrate wave effects, yet

these appear in the outer legs of the duct. These wave effects are less evident in the

solution at later times as seen in Fig. 9.34. At later times we also notice how P3 creates

a “mushroom” of photons near the top of the duct while the P7 solution maintains a

less rounded shape. In terms of material heating, the P3 solution has significant artificial

heating of the outer legs of the duct. The P7 solution shows much less of this effect.

This difference could be important in a problem where the heating of the wall affected

some other physical process (e.g. in a radiation-hydrodynamics simulation). Finally,
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this problem shows the difficulty of multi-dimensional transport simulations. The P11

solution was limited in the spatial resolution possible by the amount of memory in the

computer because the method has only been implemented for serial machines. The P11

solution required approximately 150,000 unknowns and overwhelmed the capacity of a

single machine.

9.4 High Resolution Time Integration

The final results that we shall examine deal with the use of the high resolution time

integration scheme. These results will show why such an approach is necessary, and

illustrate the behavior of the method. First, we will look at some P1 results from a

one-dimensional problem. In this problem there is a vacuum with c = 1 where initially

the scalar intensity, φ = E/c, and the radiation flux, FZ (see Eq. (8.3)) are given by a

square pulse

φ(z, 0) = Fz(z, 0) = 1 for z ∈ [0.25, 0.75]. (9.6)

The solution for the scalar flux in this problem is a traveling square pulse moving with

velocity 1/
√

3. In Fig. 9.35 we see some numerical results for this problem at time t = 1.

In all the numerical results there are 200 cells in the z direction and the time step size is

t = 0.125. The Crank-Nicolson (trapezoidal method) has obvious issues with artificial

oscillations around the sharp edges of the peak, whereas the backward Euler method

markedly smooths out the numerical solution. The high resolution local θ method does

a better job of capturing the exact solution without numerical oscillations.

This method was also explored using a two-dimensional square pulse in vacuum.

The pulse was isotropic (i.e. Fz = Fx = 0) and of the form

Er(x, z, 0) = 1 for z ∈ [−0.5, 0.5] and x ∈ [−0.5, 0.5]. (9.7)
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Figure 9.33: Radiation and material temperature (eV) at 0.9 ns for the nonlinear duct
problem using different Pn orders. All problems were run on a Cartesian
mesh with a time step of ∆t = 0.05 ns.
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Figure 9.34: Radiation and material temperature (eV) at 6 ns for the nonlinear duct prob-
lem from P3 and P7.
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Figure 9.35: Results from the 1D square pulse problem at t = 1 seconds and ∆t = 0.125
and CFL = 12.5 for different methods compared with the exact solution.

To compare results with different time step sizes a reference solution using the Crank-

Nicolson method and a fine time step was computed. Fig. 9.36 shows results from the

different methods with a time step yielding CFL ≈ 7.5. The Crank-Nicolson method

shows oscillations in the energy density and gives the solution the likeness of a Hopi

woven cloth. The backward Euler method did the opposite and smeared out the effect of

the corners of the square. The high resolution method was much closer to the reference

solution than the backward Euler method and avoided the oscillations of the Crank-

Nicolson method. The next two figures, Figs. 9.37 and 9.38, show the solution along

the line x = 0. The oscillations from the Crank-Nicolson method mar the solution

with time step of ∆t = 0.5 and the solution in the middle of the problem goes far below

the reference solution. These oscillations go away in the solution with the smaller time

step in Fig. 9.38. This smaller time step has CFL = 3 which is beyond the TVD limit

for the Crank-Nicolson method, although no oscillations appear. The backward Euler
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solution is too smooth with the larger time step and does not capture the peaks and

valleys of the reference solution with a smaller time step. Finally, the high resolution

method does better than the Crank-Nicolson method in the large time step case in

terms of not having any oscillations. However, the wave front is further from the peak

of the reference solution in the high resolution method. In the small time step solution,

there is still a difference between the Crank-Nicolson method and the high resolution

method. This is due to the fact that the Crank-Nicolson method is not guaranteed to be

nonoscillatory with this time step.
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Figure 9.36: The radiation energy density for different methods with ∆t = 0.25 com-
pared with the reference solution at t = 1.5 seconds. All solutions have
∆x = 0.033.
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Figure 9.37: Results from the 2D square pulse problem at t = 1.5 seconds and ∆t = 0.5
for different methods compared with the reference solution.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

z

E r

 

 

Crnk-Ncl ∆t=0.01
Crank-Nicolson
high res
backward Euler

Figure 9.38: Results from the 2D square pulse problem at t = 1.5 seconds and ∆t = 0.1
for different methods compared with the reference solution.



CHAPTER X

Conclusions and Future Work

10.1 Implicit time integration

One of the main goals of this work was to explore the use of implicit schemes to solve

an upwinded discretization of the Pn equations. Implicit time integration is important

because the radiation propagation times scale is much shorter than the material energy

time scale. Also, at long times the negativities of the Pn expansion are less prevalent

– as our P1 analytic solution shows. Our implicit approach solved the fully coupled,

nonlinear radiation - material energy equations. With the implicit method we were able

to solve thermal radiation transport problems on the time scale of the material energy

equation rather than on a time scale limited by the CFL limit. These results were the

first use of an implicit Riemann method for thermal radiation transport.

An implicit method for a high resolution spatial scheme requires the solution of a

system of nonlinear equations at each time step. We were able to reduce the computa-

tional cost of solving these equations by using a two-step, quasi-linear approach. The

quasi-linear approach was developed out of the fact that the underlying Pn equations

are linear in radiation propagation and that the nonlinearities were added to get a high

resolution spatial scheme. By exploiting similarities between first order and high resolu-

tion solutions we were able to reduce the computational cost of adding a high resolution
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method without sacrificing accuracy. We showed through analysis and numerical results

that using the first order solution to determine the stencil for the high resolution scheme

is sufficient to suppress oscillations and get high order error convergence. This might

lead to the use of such a quasi-linear approach to add non-oscillatory spatial schemes to

time dependent Sn methods. Also, other fields that solve linear hyperbolic problems

could benefit from this discovery.

10.1.1 High resolution time integration

Using the quasi-linear approach we were able to demonstrate the first radiation trans-

port results from the nascent area of high resolution implicit time integration. The

preliminary results shown in this thesis suggest this could be an area of future research.

A firm conclusion we can draw from our analysis is that the Crank-Nicolson method

should be used when the time step is within the TVD limit. However, beyond this

limit a high resolution method needs to be used to get higher than first order accuracy

without oscillations.

10.2 Accuracy of Pn expansion

For the Su-Olson benchmark problem we were able to study the convergence of

Pn to transport in the one-dimensional case. Results showed that there is a leap in ac-

curacy in going from P1 and P3. The P7 solution captured the transport solution well.

Using P7 we then satisfactorially solved two radiation wave propagation problems where

the opacity was a nonlinear function of the material temperature with time steps large

compared with the mean free time of a photon.

Despite our robust solutions to these nonlinear one-dimesional problems, our results

in two dimensions did show some problems with the Pn method. In two dimensions

we also produced robust results with time steps large compared with the radiation time
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scale. However, even at long times the negative energy densities of the Pn solutions per-

sisted and caused the material temperature to become negative. We showed why these

negatives arise in analytic solutions to the Pn equations and how this shortcoming could

be explained by the Pn method having rotational invariance, linearity, and hyperbolic-

ity. Based on this argument we can point to future work based on the Pn methods,

namely to find a way to give up one of these properties to avoid negative energy densi-

ties. Partially due to the work of this thesis, another student, Tiberius Moran, is taking

up this mantle by investigating the use of a nonlinear closure to eliminate the negatives

in Pn .

The negativities in energy density are not necessarily a mortal blow to the possibil-

ity of using the Pn equations for production purposes. There are simple, ad hoc ways of

dealing with quantities becoming unphysically negative in large code projects [4]. These

can take the form of a temperature floor that does not allow the material temperature

to become negative. It has yet to be determined if such a floor would cause problems in

a coupled simulation using the Pn method. This option, while destroying energy con-

servation, would not affect the negative radiation energy densities in vacuum regions.

While there cannot be a guarantee of positivity for the Pn equations for a finite

expansion, for many problems there will be an order of expansion that reduces the

negatives to a negligible amount. Some important future work would be to understand

how these negatives go away as the order of the expansion is increased. For example,

in the thermal duct problem will P15 reduce the negatives to an acceptable amount?

At this point little is known theoretically about the magnitude of negativities in the

Pn equations as n is increased.
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10.3 Future implementation issues

This leads to another area of future work: implementing our Pn method in paral-

lel. To fully explore the behavior of Pn methods in problems of industrial importance,

the size of the problem will necessitate the utilization of massively parallel architec-

ture. To perform a simulation using a 3D method with P15 and 100 frequency groups

would require 40,000 unknowns per spatial element. This is before introducing the ex-

tra unknowns from a finite element description. In each spatial cell there could be more

unknowns than in the entire problem for an average calculation done in this thesis.

Luckily, our method was implemented with this in mind and since we used the Trilinos

library the task to move to parallel might not be too onerous.

Beyond the parallelization a useful future project would be to implement our method

on non-orthogonal grids. The method was developed with this in mind and is extensi-

ble to such a case. Results on such grids would be the first such results from upwind

Pn methods for thermal radiation transport. This work would also answer important

questions regarding the method’s robustness in difficult scenarios such as the Kershaw

“z” mesh, high aspect ratio cells, and “bowtie” cells.

10.3.1 Diffusion limit

Satisfying a diffusion limit is the ineluctable modality1 of a practical radiation trans-

port scheme – methods that do not satisfy the diffusion limit are often not robust

enough to handle the mesh constraints of real problems. We showed that the stan-

1This phrase is borrowed from James Joyce’s opening of the Proteus chapter in Ulysses [81] – “The
ineluctable modality of the visible” – this uses the first definition of modality given by the Oxford English
Dictionary (OED) [82]: “Those aspects of a thing which relate to its mode, or manner or state of being, as
distinct from its substance or identity; the non-essential aspect or attributes of a concept or entity. Also:
a particular quality or attribute denoting the mode or manner of being of something.” In the context
of diffusion limits we evoke the sixth definition, “A symptom, procedure, or other factor which aids
diagnosis.”
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dard Riemann solver approach does not limit to a diffusion equation in the case of thick

cells and a collision dominated medium. The failure in the diffusion limit is a result of

the dissipation added by the Riemann solver. By scaling away this dissipation we were

able to show how to correct this situation. However, our scaling resulted in a stencil

that decoupled the solution in neighboring cells and contributed to difficulties at mate-

rial interfaces. These effects would be more pronounced in 2D and for this reason, the

diffusion correction was not pursued in multiple dimensions. Furthermore, our correc-

tion has issues with conservation at the interface of a diffusive region. Future research

into numerical methods for Pn will have to address these issues for the Pn method to

be a viable method for large scale thermal radiation transport simulations. It is likely

that going to a discontinuous Galerkin finite element approach will correct the method

in the diffusion limit. This was necessary to make Sn methods robust in the diffusion

limit [33, 83].

10.4 Benchmark solutions

Finally, we have introduced the first benchmark solutions for P1 thermal radiation

transport. These solutions will be especially important as Pn methods become more

used for thermal transport. Having these exact solutions will help in the process of

verification of computer codes that solve the Pn equations. These benchmarks may be

especially useful because we have developed them in one and two dimensions. However,

there is more work to be done in this regard. Our two-dimensional solution is for a

pulsed delta function source. It would be much more useful to have a solution to a finite

source problem where the source remains on for a finite time. This would be an analog

of the Su-Olson slab source problem in two dimensions and would be more useful for

testing 2D Pn codes as well as exploring the P1 approximation.
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10.5 Coda

While our results show that there is still important work to be done in the realms of

numerics and analysis of the Pn equations, these methods still show promise. Pn methods

are at sizeable disadvantage to Sn methods because the latter has such a body of research

regarding analysis and implementation. We have made significant progress in the im-

plementation of the Pn methods with the quasi-linear approach and implicit scheme.

Furthermore, our analysis showed where the real problems with Pn are and suggested

ways to fix them. The work of this thesis coupled with research to address the outstand-

ing issues will make Pn methods a viable option for large scale simulation of thermal

radiation transport.
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ABSTRACT

Spherical Harmonics Methods for Thermal Radiation Transport

by

Ryan G. McClarren

Chair: James Paul Holloway

An implicit, spherical harmonic (Pn ) method for solving thermal transport problems

is developed. The method uses a high resolution Riemann solver to produce an up-

winded discretization. The high resolution scheme introduces nonlinearities to the

radiation transport operator to avoid the creation of artificial oscillations in the solu-

tion. A quasi-linear approach to solving this nonlinear system of equations is developed.

Through analysis and numerical results it is shown that the quasi-linear approach does

suppress artificial oscillations and gives better than first order accuracy. The time inte-

gration methods considered are the backward Euler method and a high resolution time

integration method. Also, reflecting boundary conditions for the Pn equations in three-

dimensions are presented. It is shown that the standard Riemann solver is not robust

in the diffusion limit. A fix is suggested that scales out the dissipation added by the

Riemann solver as spatial cells become optically thick. The free-streaming limit of the

Pn equations is explored and it is shown why in multiple-dimensions the Pn solutions

can have negative energy densities. The Green’s function for the one-dimensional P1



1

thermal transport equations with Cv ∝ T 3 is derived. The Green’s function is used

to create the P1 solution to a common benchmark and to a problem of an infinite,

pulsed line source. The implicit method was able to produce robust results to thermal

transport problems in one and two dimensions. The implicit approach allowed the nu-

merical method to take times steps on the longer material energy time scale rather than

the speed of light time scale. In two dimensional problems the Pn solutions contained

negative radiation energy densities. These negatives caused the material temperature to

become negative as well.


