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Polynomial Chaos Expansions for Uncertainty
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Ryan G. McClarren
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2-D Poisson Equation Example

The examples we have seen so far have been functions that have been
simple to evaluate.

In those examples, there was no benefit to minimizing the number of
function evaluations.

For a more expensive evaluation, we solve the 2-D Poisson equation with
Dirichlet boundary conditions:(

∂2

∂x2 +
∂2

∂y2
)
u(x,y) = −q(x,y). (1)

u(1,y) = u(x,1) = u(−1,y) = u(x,−1) = 0. (2)

The source q will be a Gaussian in space with an uncertain center in y:

q(x,y) = exp
[
−x2 − (y− ω)2

]
. (3)
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2-D Poisson Equation Example

The center of the Gaussian in the y-coördinate will be a uniform random
variable in the range [−0.25,0.25] (i.e., ω ∼ U (−0.25,0.25)).
We are interested in the integral over a quarter of the domain. Our quantity
of interest is therefore

g(ω) =

1∫
0
dx

1∫
0
dyu(x,y;ω). (4)

The notation u(x,y;ω) denotes that the solution depends on the center of
Gaussian ω.
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2-D Poisson Equation Example

We will estimate the Legendre expansion coefficients using
Gauss-Legendre quadrature.

Using an n= 2 quadrature rule we would estimate the coefficients as

cn ≈
2n+ 1

2

(
g
(
−

1
4
√
3

)
Pn

(
−

1
4
√
3

)
+ g

( 1
4
√
3

)
Pn

( 1
4
√
3

))
.

(5)

To compute the cn in this case will require solving Poisson’s equation twice,
each time with different sources, and computing the integral in Eq. (4).

We use Mathematica’s NDSolve function with these two values of ω to get

g
(
−

1
4
√
3

)
= 0.381378, g

( 1
4
√
3

)
= 0.381378.

The mean of the function is

c0 ≈
1
2

[
g
(
−

1
4
√
3

)
+ g

( 1
4
√
3

)]
= 0.381378. (6)
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2-D Poisson Equation Example: Coefficients

n c0 c1 c2 c3 c4 c5
1 0.386712 0.000000 -0.966780 0.000000 1.305153 0.000000
2 0.381378 0.000000 -0.000000 -0.000000 -1.334823 -0.000000
3 0.381406 -0.000000 -0.010613 -0.000000 0.014327 0.000000
4 0.381406 -0.000000 -0.010559 0.000000 -0.000000 0.000000
5 0.381406 0.000000 -0.010559 0.000000 0.000071 -0.000000
6 0.381406 -0.000000 -0.010559 0.000000 0.000071 -0.000000
7 0.381406 -0.000000 -0.010559 0.000000 0.000071 -0.000000
8 0.381409 0.000000 -0.010567 -0.000000 0.000079 0.000000
9 0.381406 0.000000 -0.010559 -0.000000 0.000071 -0.000000

10 0.381406 0.000000 -0.010559 -0.000000 0.000071 -0.000000

1: The convergence of the first six coefficients in the 2-D Poisson equation example as
a function of the number of Gauss-Legendre quadrature points used.

Note that in the best case, we could only hope for a quadrature rule with n points
to integrate up to c2n−1 accurately, and that this would only be the case if g we
are a constant function.

From this table it seems that the integrals are accurate (though not exact) up to cn
for an n point quadrature rule, for n> 2.
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2-D Poisson Equation Example

0

100

200

300

400

500

0.370 0.375 0.380 0.385 0.390
g(X)

de
ns

ity

MC

n = 2

n = 4

n = 6

n = 10

PDF of the random variable g(ω) =
∫ 1
0 dx

∫ 1
0 dyu(x,y;ω), where ω ∼ U (−0.25,0.25) and u

is the solution to Eq. (1), using several different Gauss-Legendre quadrature rules and a Monte

Carlo simulation using 3× 103 numerical solutions of Poisson’s equation.
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Section 2

1 Example from a PDE: Poisson Equation with an uncertain source

2 Multi-Dimensional Polynomial Chaos Expansions

3 3-D Example: Black-Scholes Pricing Model

4 Sparse Quadrature

5 Black-Scholes w/ Sparse Quadrature

6 Estimating Expansions Using Regularized Regression
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Expansions in More than One Dimension

It is likely that in a realistic problem there will be several sources of
uncertainty and several uncertain parameters.

It may also be possible that the different parameters may have different
types of distributions.

Consider a generic function of d random variables, θi, with an expansion
given by

g(θ1, . . . ,θd) =
∞

∑
l1=0

· · ·
∞

∑
ld=0

cl1,...,ldPl1,...,ld(θ1, . . . ,θd). (7)

Here Pl1,...,ld(θ1, . . . ,θd) is a product of the d orthogonal polynomials,

Pl1,...,ld(θ1, . . . ,θd) =
d

∏
i=1

Pli(θi), (8)
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Expansions in More than One Dimension

The expansion coefficients are

cl1,...,ld =
∫
D1
dθ1 · · ·

∫
Dd
dθdg(θ1, . . . ,θd)Pl1,...,ld(θ1, . . . ,θd)w(θ1, . . . ,θd),

(9)

w(θ1, . . . ,θd) is the product of the weight functions for the d bases.

If the sum is truncated at degree N polynomials then there will be (1+N)d
terms in the expansion.
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Expansions in More than One Dimension

Consider the function g= cos(θ1)cos(θ2) and θi ∼ U (0,2π)

A second-order expansion would have the form

g(θ1,θ2) = c0,0 + c1,0P1(πθ1 + π) + c0,1P1(πθ2 + π)+

c2,0P2(πθ1 + π) + c0,2P2(πθ2 + π)+

c1,1P1(πθ1 + π)P1(πθ2 + π)+

c2,1P2(πθ1 + π)P1(πθ2 + π)+

c1,2P1(πθ1 + π)P2(πθ2 + π)+

c2,2P2(πθ1 + π)P2(πθ2 + π). (10)
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Tensor-Product Quadrature

To compute the expansion coefficients we can use what is known as a
tensor-product quadrature set.

Here we take a 1-D quadrature rule with n points and weights given by
{wi,xi} for i= 1 . . .n, that we denote as Qn so that

Qnf(x) =
n
∑
l=1

wlf(xl), (11)

Apply it over all dimensions as

Q(d)
n g(θ1, . . . ,θd) =

n
∑
l1=1

· · ·
n
∑
ld=1

wl1 · · ·wldg(θ1l1 , . . . ,θdld), (12)

where θi,lj is the ith input evaluated at its jth point in the quadrature set.
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Tensor-Product Quadrature

It is convenient to write Q(d) as a tensor product of 1-D quadrature rules.
We define a tensor product of two quadrature rules as

Qn ⊗ Qm = {{wiwj, (xi,xj)} : i= 1 . . .n, j= 1 . . .m}. (13)

Therefore, we can write a tensor-product quadrature comprised of n point
quadratures as

Q(d)
n g(θ1, . . . ,θd) = (Q(1)

n ⊗ · · · ⊗ Q(d)
n )g. (14)

We could in principle have each dimension have a different number of
quadrature points, and in many cases this will make the calculation more
efficient.
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Tensor-Product Quadrature

The number of quadrature points scales geometrically with d.
This is the so-called curse of dimensionality because the number of
function evaluations needed explodes as d gets larger.

Using a two-point quadrature rule, when d= 26, requires one simulation
for every person in Germany.

Even worse d= 26 requires a mole (6× 1023) of calculations for the
n= 8 rule.

In a full-scale engineering system, 26 uncertain parameters is not out of the
question.
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Tensor-Product Quadrature

x

y

1-D quadrature in x

x

y

1-D quadrature in y

x

y

Tensor product quadrature

1: Illustration of the 2-D tensor-product quadrature derived from the six-point
Gauss-Legendre quadrature set. The size of a point is proportional to its weight.
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Tensor-Product Quadrature

Two things are evident in previous figure:

The weights are much larger in the middle of domain, and

The points are more densely packed near the corners.

These effects are even more pronounced as the number points in the
quadrature set goes up.
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Section 3

1 Example from a PDE: Poisson Equation with an uncertain source

2 Multi-Dimensional Polynomial Chaos Expansions

3 3-D Example: Black-Scholes Pricing Model

4 Sparse Quadrature

5 Black-Scholes w/ Sparse Quadrature

6 Estimating Expansions Using Regularized Regression
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Black-Scholes Model

We will look at the solution to the Black-Scholes partial differential equation
for the value of a call option.

A call option gives the holder the ability to purchase a stock at a given
price, called the strike price, at a given future date.

The value of the option is a function of the current price of the stock (S), the
strike price (K), the time to expiration in years (T), the risk-free interest rate
(r), the dividend rate the stock pays q, and the volatility of the stock (σ).

Three of these, r, q, and σ are uncertain parameters.

The Black-Scholes model is based on assuming that the stock price
follows geometric Brownian motion.
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Black-Scholes Model

The solution for the price, p, of an option from the Black-Scholes model
can be given by

p= e−rT (FΦ(v1)− KΦ(v2)) , (15)

where
F= Se(r−q)T, (16)

v1 =
log S

K + (r− q+ 1
2σ2)T

T
√
T

, v2 = v1 − σ
√
T, (17)

and Φ(z) is the standard normal CDF function.
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Black-Scholes Example

We are interested in calculating the current value of a call option for stock
in the Coca-Cola company, ticker symbol KO.

On 15 August 2016, KO was trading at $44.15.

We will consider a call with strike price of K= $44.

The option expiration is 158 days away (T= 0.432877).
This option was trading at $1.46 on that day, we want to know how that
compares to the model.

We need to estimate the random variables, r, q, and σ.

For the interest rate, r, we will use the benchmark LIBOR 30-day interest
rate with a Gamma distribution r= 0.0048x with X∼ G(0,1).

This distribution had a mean of the current rate (0.48%).

For the dividend rate we will use a uniform distribution so that
Q∼ U (0.025,0.045).
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Black-Scholes Example

For the volatility, σ, we look at the actual annual standard deviations of
daily returns for the years from 1970 to 2015.

The histogram of these 45 volatilities is shown on the next slide,

We compute a Gamma distribution that matches the mean and variance of
the observations, Σ ∼ G(5.46636,41.8142).
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Black-Scholes Example: Coca-Cola Volatility
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Black-Scholes Example: Expansion

The expansion of p(X,D,Σ) will have the form

p(X,Q,Σ) =
∞

∑
lx=0

∞

∑
ld=0

∞

∑
lσ=0

clxldlσL
(0)
lx (x)Pld

(2d− 0.7
0.2

)
L(5.46636)
lσ (41.8142σ).

(18)

From this equation, we can compute the mean of the distribution, c000 as

p̄= c000=
∞∫
0
dx

0.045∫
0.025

dq
∞∫
0
dzp

(
x,q,

z
41.8142

) z5.46636

Γ(6.46636)e
−x−z

( 1
0.02

)
≈ 1.56662. (19)

Note that this is slightly higher than the price the option is trading at, $1.46.
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Black-Scholes Example: Fourth-Order Expansion

Because the price of the option is a well-behaved function, we will expand
p with polynomial degree up to order four:

p(X,Q,Σ) =
4
∑
lx=0

4
∑
ld=0

4
∑
lσ=0

clxldlσL
(0)
lx (x)Pld

(2d− 0.7
0.2

)
L(5.46636)
lσ (41.8142σ). (20)

Such an expansion will have 53 = 125 terms.

Using tensor-product Gauss quadrature—Gauss-Laguerre in x and σ,
Gauss-Legendre in q—we can estimate these coefficients.
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Black-Scholes Example: Coefficient Estimation
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Black-Scholes Example: Coefficient Estimation

In the previous figure the results from these calculations with various
numbers of points in the 1-D quadrature rules that comprise the
tensor-product quadrature are shown.

This figure indicates the maximum single polynomial degree in each point
using a color/shape.

Here we only show coefficients with a magnitude larger than 10−6,

For the n= 2 rules we do not show any coefficients corresponding to
degree three or four polynomials.
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Black-Scholes Example: Coefficient Estimation

We see that the n= 2 quadrature rule does a good job of estimating the
low-order, large-magnitude coefficients.

This indicates that most of the variation in the distribution can be captured
using only 23 = 8 evaluations of the function.

The higher-order coefficients have a smaller magnitude and can be
captured using n= 4 rules,

The largest, significant coefficient c004 or the coefficient for a quartic in
volatility can be captured using n= 6

A total of 63 = 216 function evaluations.
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Black-Scholes Example: Variance Estimates

One way to compare the quadrature rules is to look at the convergence of
the variance. The variance in the price is

Var(P) =
∞

∑
lx=1

∞

∑
ld=1

∞

∑
lσ=1

Γ(lx + 1)Γ(lσ + 6.46636)
lx!lσ!Γ(6.46636)(2ld + 1)c

2
lxldlσ . (21)

The results for this calculation using the expansion coefficients are shown
below. This table indicates that the n= 2 coefficients estimate the
variance to three digits of accuracy.

n Var(P)
2 0.486085
4 0.486321
6 0.486321
8 0.486321

2: The convergence of the variance in the option price as a function of the quadrature
rule used.
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Black-Scholes Example: Coefficient Estimation
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Black-Scholes Example: Conclusions

From this example, several things are evident.

With a smoothly varying function, the expansion order required to estimate
the distribution of the quantity of interest, and the number of function
evaluations needed are small.

The results also indicate that of the many coefficients possible in a
high-order expansion will be negligible.

Next, we will investigate how to take advantage of this structure.
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Section 4

1 Example from a PDE: Poisson Equation with an uncertain source

2 Multi-Dimensional Polynomial Chaos Expansions

3 3-D Example: Black-Scholes Pricing Model

4 Sparse Quadrature

5 Black-Scholes w/ Sparse Quadrature

6 Estimating Expansions Using Regularized Regression
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Maximum-Order Expansions

The explosion of terms in multi-dimensional expansions comes, in part,
from the cross-terms that appear in the expansion.

For example, in a fourth-order expansion we end up with 4d degree
polynomials because the highest order terms in the series are a product of
four d-degree polynomials.

The tensor-product Gauss quadratures that we use to estimate the
expansion can accurately integrate these polynomials.

Nevertheless, these high-degree interactions (that is the product of several
high-degree polynomials) are often unnecessary in the expansion (as we
saw in the previous case).
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Maximum-Order Expansions

In such a scenario it can be useful to change the way that we expand the
output in orthogonal polynomials.

Instead of including combinations of polynomials up to a given degree, we
look to include only polynomials up to a maximum degree:

g(θ1 . . . ,θd) ≈ ∑
l1+···+ld<N

cl1,...,ldPl1,...,ld(θ1, . . . ,θd), (22)

With this expansion, we no longer need to integrate any polynomials of
degree higher than N.
Therefore, our tensor-product quadrature rule integrates higher-degree
polynomials than we need.
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Smolyak Sparse Quadrature

For this situation we can use Smolyak sparse quadrature sets.

These rules construct quadrature points that do not grow as fast as
product quadrature grids.

To accomplish this, we combine quadrature rules to ensure that a
polynomial of a given degree in any single dimension, but not products of
polynomials of that degree, is exactly integrated.

For a given value of ℓ, in d dimensions the quadrature rule is defined as

S(d)ℓ f=
ℓ−1
∑

q=ℓ−d
(−1)ℓ−1−q

(
d− 1

ℓ− 1− q

)
∑

∥⃗k∥1=q+d
Q2k1−1 ⊗ · · · ⊗ Q2kd−1f,

(23)

where ∥⃗k∥1 = ∑d
i=1 |ki|.

Looking at this formula we see that the tensor products where the sum of
the number of points in each dimension equals a constant are included.

Note that the quadrature rule can have negative weights.
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Smolyak Sparse Quadrature Example in 2-D

To demonstrate how these rules work we will look at the quadrature rule
with ℓ = 3 and Gauss-Legendre quadrature.

In this case we should have the a quadrature rule with up to 23 − 1 points:

S(2)3 f=
2
∑
q=1

(−1)2−q
(

1
2− q

)
∑

∥⃗k∥1=q+2
Q2k1−1 ⊗ Q2k2−1f

=− ∑
∥⃗k∥1=3

Q2k1−1 ⊗ Q2k2−1f+ ∑
∥⃗k∥1=4

Q2k1−1 ⊗ Q2k2−1f

=− (Q1 ⊗ Q3)f− (Q3 ⊗ Q1)f+ (Q3 ⊗ Q3)f+ (Q1 ⊗ Q7)f+ (Q7 ⊗ Q1)f

Counting up the total number of points in this rule there are 21 compared
to 49 for the tensor product quadrature rule for Q7 ⊗ Q7.

The (Q1 ⊗ Q3) and (Q3 ⊗ Q1) rules are completely redundant with
(Q3 ⊗ Q3) and the (Q1 ⊗ Q7) and (Q3 ⊗ Q1) rules share the origin with
(Q3 ⊗ Q3).

RG McClarren (TAMU) Polynomial Chaos Expansions 2016-11-11 35 / 62



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Smolyak Sparse Quadrature Example in 2-D

x

y

S(2)3 rule

x

y

Q7 ⊗ Q7 rule

2: Comparison of the Smolyak sparse quadrature rule of level ℓ = 3 and the
tensor-product rule comprised of 7-point Gauss-Legendre quadrature rules.
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Smolyak Sparse Quadrature Example in 2-D

Another way to show the construction of a 2-D Smolyak quadrature rule is
to

Write all the quadrature rules up to order 2ℓ − 1 in a tableau of
tensor-product quadratures where
The number of points in the x-direction increases from left to right, and
The number of points in the y-direction increases from bottom to top.

The Smolyak quadrature rule will be a linear combination of the
tensor-product rules from the diagonal and below.

This construction is shown on the next slide.
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Smolyak Sparse Quadrature Construction

51

Q1 ⌦ Q7 Q3 ⌦ Q7 Q7 ⌦ Q7

Q1 ⌦ Q3 Q3 ⌦ Q3 Q7 ⌦ Q3

Q1 ⌦ Q1 Q3 ⌦ Q1 Q7 ⌦ Q1

Figure 19: Demonstration of the con-
struction of the Smolyak quadrature
rule with ` = 3 in two dimensions com-
prised of Gauss-Legendre quadrature
rules. The Smolyak quadrature is a
linear combination of the points below
the dashed line.
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Smolyak Sparse Quadrature Example in 2-D

Now that we have seen how the sparse grids work, we will discuss why
they are constructed in the form that they are.

As we have said, a product quadrature rule comprised of n points in 1-D,
will integrate d-dimensional polynomials where any single component
polynomial has degree less than or equal to (2n− 1).
The Smolyak construction is designed to integrate polynomials with a total
degree of equal to (2n− 1).
This is shown in on the next slide for n= 2.
It can be shown that the Smolyak sparse grid that is exact on polynomials
of N in the one-dimensional quadrature rules will be exact on polynomials
of total degree N for the multi-dimensional integral.
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Smolyak Sparse Quadrature Construction

52

integrate d-dimensional polynomials where any single component
polynomial has degree less than or equal to (2n � 1). The Smolyak
construction is designed to integrate polynomials with a total degree
of equal to (2n � 1). This is shown in Figure 20 for n = 2. Indeed, it
can be shown that the Smolyak sparse grid that is exact on polyno-
mials of N in the one-dimensional quadrature rules will be exact on
polynomials of total degree N for the multi-dimensional integral.

1

x y

x2 xy y2

x3 x2y xy2 y3

x3y x2y2 xy3

x3y xy3

x3y3

Figure 20: The monic polynomials
that can be integrated exactly by a
two-dimensional tensor-product Gauss
quadrature rule comprised of two-point
rules. The dashed line encloses the
polynomials that the sparse grid will
integrate.

The construction of the quadrature set will illuminate the origin
of Eq. (110), in particular why there needs to be negatively-weighted
points. Looking at Figure 20, to integrate the polynomials in the
triangle we can think about it in terms of “adding” quadrature rules:

0

B

@

1
x y

x2 xy y2

1

C

A

=

0

B

@

1
x

x2

1

C

A

+

0
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@

1
y

y2

1

C

A

+

0

B

@

1
x y

xy

1

C

A

�

0

B

@

1
x

1

C

A

�

0

B

@

1
y

1

C

A

(111)

Here we see the reason for the appearance of the term (�1)`�1�q

term in Eq. 110. It is worth mentioning that there is an alternate form
of the Smolyak rule. For this will also need to define a difference in
quadratures as

D2l� f = Q2l� f � Q2l�1�1 f , (112)
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Smolyak Sparse Quadrature Example in 2-D

The construction of the quadrature set will illuminate the origin of Eq. (23),
in particular why there needs to be negatively-weighted points.

Looking at the previous slide, to integrate the polynomials in the triangle we
can think about it in terms of “adding” quadrature rules: 1

x y
x2 xy y2

 =

 1
x

x2

+

 1
y

y2

+

 1
x y

xy


−

 1
x

−

 1
y

 (24)
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Smolyak Sparse Quadrature Example in 2-D

Now that we have seen how the sparse grids work, we will discuss why
they are constructed in the form that they are.

As we have said, a product quadrature rule comprised of n points in 1-D,
will integrate d-dimensional polynomials where any single component
polynomial has degree less than or equal to (2n− 1).
The Smolyak construction is designed to integrate polynomials with a total
degree of equal to (2n− 1).
This is shown in on the next slide for n= 2.
It can be shown that the Smolyak sparse grid that is exact on polynomials
of N in the one-dimensional quadrature rules will be exact on polynomials
of total degree N for the multi-dimensional integral.
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Section 5

1 Example from a PDE: Poisson Equation with an uncertain source

2 Multi-Dimensional Polynomial Chaos Expansions

3 3-D Example: Black-Scholes Pricing Model

4 Sparse Quadrature

5 Black-Scholes w/ Sparse Quadrature

6 Estimating Expansions Using Regularized Regression
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Black-Scholes w/ Sparse Quadrature

Turning back to our Black-Scholes example from before, we will construct
a Smolyak sparse grid for this 3-D expansion.

As we saw in before, a tensor-product quadrature comprised of six-point
quadrature rules was able to capture the most important coefficients in the
expansion.

This rule has 63 = 216 function evaluations.

We will use the ℓ = 3 Smolyak sparse grid to compute the coefficients in
the expansion.
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Black-Scholes w/ Sparse Quadrature

This quadrature rule can be calculated from

S(3)3 f=
2
∑
q=0

(−1)2−q
(

2
2− q

)
∑

∥⃗k∥1=q+3
Q(σ)

2k1−1 ⊗ Q(x)
2k2−1 ⊗ Q(z)

2k3−1f

=Q(σ)
1 ⊗ Q(x)

1 ⊗ Q(z)
1 f− 2

[
Q(σ)
3 ⊗ Q(x)

1 ⊗ Q(z)
1 f+ Q(σ)

1 ⊗ Q(x)
3 ⊗ Q(z)

1 f+ Q(σ)
1 ⊗ Q(x)

1 ⊗ Q(z)
3 f

]
+ Q(σ)

7 ⊗ Q(x)
1 ⊗ Q(z)

1 f+ Q(σ)
1 ⊗ Q(x)

7 ⊗ Q(z)
1 f+ Q(σ)

1 ⊗ Q(x)
1 ⊗ Q(z)

7 f+

+ Q(σ)
3 ⊗ Q(x)

3 ⊗ Q(z)
1 f+ Q(σ)

3 ⊗ Q(x)
1 ⊗ Q(z)

3 f+ Q(σ)
1 ⊗ Q(x)

3 ⊗ Q(z)
3 f
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3-D Sparse Quadrature Rules

βσ wσ x wx z wz
Q1 6.466360 271.060701 1.000000 1.000000 0.000000 2.000000

13.811184 13.236834 6.289945 0.010389 0.774597 0.555556
Q3 7.787369 148.010162 2.294280 0.278518 0.000000 0.888889

3.800528 109.813705 0.415775 0.711093 -0.774597 0.555556

28.226889 0.000454 19.395728 0.000000 0.949108 0.129485
20.399826 0.129138 12.734180 0.000016 0.741531 0.279705
14.769642 4.663395 8.182153 0.001074 0.405845 0.381830

Q7 10.417345 42.165053 4.900353 0.020634 0.000000 0.417959
6.984121 116.015439 2.567877 0.147126 -0.405845 0.381830
4.281556 93.279531 1.026665 0.421831 -0.741531 0.279705
2.185142 14.807693 0.193044 0.409319 -0.949108 0.129485

3: The 1-D quadrature rules that comprise the sparse rule S(3)3 .

The nesting of points in the z direction leads to 7 redundant points and a total of 50 unique points

in the S(3)3 set.
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Black-Scholes w/ Sparse Quadrature Points

βσ = 30

x= 20

z= −1

3: Depiction of the points for the S(3)3 quadrature set comprised of the rules in Table 3. The red
points are the Q7 rules in each dimension, and the points and planes in blue are those from the
three permutations of the rule Q3 ⊗ Q3 ⊗ Q1. The black points are the two non-redundant points
from permutations of the Q3 ⊗ Q1 ⊗ Q1 rules.RG McClarren (TAMU) Polynomial Chaos Expansions 2016-11-11 47 / 62
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Black-Scholes w/ Tensor Product Quadrature

55

bs = 30

x = 20

z = �1
Figure 22: The points from the
Q7 ⌦ Q7 ⌦ Q7 tensor-product quadrature
using the points from Table 21. The dif-
ferent x levels are colored to distinguish
them in the 2-D projection.
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Sparse Black-Scholes: Coefficient Estimation
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Sparse Quadrature Observations

We have seen that sparse quadrature can give us accurate expansions
with a relatively small number of function evaluations.

Sparse quadrature does not eliminate the curse of dimensionality, but it
does help.

Could have saved even more evaluations if we had used nested
quadrature rules in the Smolyak construction (e.g., trapezoid,
Gauss-Kronrod, or Clenshaw-Curtis rules).

In the Smolyak construction, the subtractions then remove more points.

There are further improvements possible as well...
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Anisotropic Sparse Quadrature

In the Black-Scholes example, it appeared that the volatility was more
important than the other two input parameters.
Anisotropic quadratures are a way to handle integrals that require more
accuracy in a given dimension.
A simple way of doing this is to introduce a weight into the selection of
quadrature rules.:

S(d)ℓ,⃗a f=
ℓ−1
∑

q=ℓ−d
(−1)ℓ−1−q

(
d− 1

ℓ− 1− q

)
∑

q+d−1<∥⃗k∥⃗a≤q+d
Q2k1−1 ⊗ · · · ⊗ Q2kd−1f, (25)

where a⃗ is a d-length vector of weights, and ∥⃗k∥⃗a = ∑d
i=1 |aiki|.

If a⃗= (1,0.5), then the ℓ = 3 quadrature rule with d= 2 would be

S(d)ℓ,(1,0.5)f=
− Q1 ⊗ Q7f− Q1 ⊗ Q15f− Q3 ⊗ Q3f− Q3 ⊗ Q1f+

Q3 ⊗ Q15f+ Q3 ⊗ Q7f+ Q1 ⊗ Q31f+ Q7 ⊗ Q3f+ Q7 ⊗ Q1f (26)

This rule has a maximum of 31 points in one direction and 7 in the other
dimension.
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Adaptive Sparse Quadrature

We could make the quadrature adaptive in each dimension to try and
automatically determine which direction to add more points in.

We would compute a quadrature rule as

Ad)f= ∑
k⃗∈I

∆2k1−1 ⊗ · · · ⊗ ∆2kd−1f, (27)

where I is the set of all indices included in the rule.

The adaptive algorithm starts with I= {(1, · · · ,1)}. Then, we add a point
to I with an additional level in the dimension with the largest value of the
tensor product of ∆ quadratures because the magnitude of a ∆ quadrature
indicates how much the integral changes when adding new points. Then
an additional level in the direction of the level just added. The rule grows by
considering those tensor products that are adjacent to terms already in the
set.
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Section 6

1 Example from a PDE: Poisson Equation with an uncertain source

2 Multi-Dimensional Polynomial Chaos Expansions

3 3-D Example: Black-Scholes Pricing Model

4 Sparse Quadrature

5 Black-Scholes w/ Sparse Quadrature

6 Estimating Expansions Using Regularized Regression
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Regression Equations

The approximation of a quantity using polynomial chaos can be
constructed using other means than quadrature.
One possibility is to think of the expansion as a function to be estimated via
regression and use regularized regression techniques to minimize the
number of function evaluations needed.
To set the stage for this approach let us consider an Nth order Hermite
expansion of a function g(x),

g(x) ≈
N
∑
n=0

cnHen(x).

Now consider that we have evaluated g(x) at M values of x. The resulting
data gives us the following system of equations

g(x1) = c0He0(x1) + c1He1(x1) + · · ·+ cnHen(x1) + ϵ1,

g(x2) = c0He0(x2) + c1He1(x2) + · · ·+ cnHen(x2) + ϵ2,

...

g(xM) = c0He0(xM) + c1He1(xM) + · · ·+ cnHen(xM) + ϵM.

RG McClarren (TAMU) Polynomial Chaos Expansions 2016-11-11 54 / 62



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Regression Equations

Here we have written the expansion error for each case as ϵi.
This system is M equations for N+ 1 unknowns, the cn coefficients, and
therefore has no unique solution unless M= N+ 1.
We can write this system using rectangular matrices as

y= Ac,
where y is the vector of length M that contains the g(xi), A is the
M× (N+ 1) matrix of the Hermite functions evaluated at xi, and c is a
vector of length (N+ 1) for the unknown ci coefficients.
One could use standard least squares regression to estimate the
coefficients by multiplying the equation on both sides by At and then
solving to get

cls = (AtA)−1Aty. (28)

That is, if the inverse of (AtA) exists, which it will not under many
conditions, including when M< N+ 1.
Using least squares will not necessarily save us the growth in function
evaluations as N increases.
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Least-Squares as a Minimization Problem

The least squares solution is the minimizer of the sum of the squares of the
residuals, ϵi.
That is, least squares minimizes the function

Jls(c) =
1
2

M
∑
i=1

(yi − aic)2, (29)

where ai is the ith row of A.
The minimizer of Jls can be found by taking the derivative with respect to c
and setting the result to zero, to get

M
∑
i=1

ati(yi − aic) = 0.

This can be re-written in matrix form as,

Aty= AtAc,
the solution of which is cls.
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Regularization of the Least-Squares Problem

The idea behind regularized regression is to modify the least-squares
problem to make it possible to solve the minimization problem if the inverse
of (AtA) does not exist.
We will be interested in regularizations where we minimize the magnitude
of the coefficients ci.
We have seen, that many of the coefficients can be small as in the
Black-Scholes example or the coefficients decay to zero as N→ ∞.
A common way to regularize the least squares minimization is to add a
penalty term corresponding to the norm of the coefficients

Jel =
1
2

M
∑
i=0

(yi − aic)2 + λ
N
∑
n=1

|cn|+ λ
(1− α)

2
N
∑
n=1

c2n.

The minimizer of this function is called the elastic net minimizer. The
parameter λ > 0 controls the amount of penalty for large coefficients.
Choosing α = 1 only considers the L1 penalty and is called the lasso
penalty, and α = 0 is called the ridge penalty.
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Regularization of the Least-Squares Problem

The goal of elastic net is to find estimates of the expansion parameters that
both approximate the values of g(x) in the data and constrict the
coefficients in the expansion.

This will work well if many of the correct coefficients are small.

The balance between correctly matching the data and making the
coefficients small is struck through the parameter λ.

Ideally, we want λ to be as small as possible.
To obtain λ we typically perform a cross-validation procedure:

Use a subset of the data (called training data) to construct an elastic net fit
with a given value of λ and then
Test the fit on the data not used to create the fit (called the testing data).
The smallest value of λ that has an acceptable error on the test data is used
for the fit.

One can use the implementation for R, called glmnet, or using
Scikit-Learn for python. Matlab has a function for lasso and ridge
penalties.
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Black-Scholes w/ Regularized Regression, α = 0.75
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Conclusion

In this part we learned how things work in multiple dimensions.

The curse of dimensionality strikes.

Can improve the quadrature with sparsity and other tricks.

Regression can help as well.
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Thank you!

Polynomial Chaos Expansions for Uncertainty
Quantification

AICES EU Regional School 2016 - Part 2

Ryan G. McClarren

Texas A&M University
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