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Introduction
®0

This work describes an extension of the Bayesian MARS

emulator to include gradient information, when available.

Most uncertainty quantification tasks boil down to: “Estimate the sensitivity
and/or variability in some quantity y = f(x) resulting from uncertainty or
variability in its dependencies.”
@ Dimensionality of ¥ and cost of f(-) may limit sampling density.
@ Emulators (or response surfaces) “functionalize” the mapping y = f(x)
using a set of available samples, y; =f(x;), i=1...N.
@ An effective emulator

@ is cheap to sample,
@ provides accurate estimates of y at untried inputs, and
@ gives an estimate of its own regression error.
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Most uncertainty quantification tasks boil down to: “Estimate the sensitivity
and/or variability in some quantity y = f(x) resulting from uncertainty or
variability in its dependencies.”

@ Dimensionality of ¥ and cost of f(-) may limit sampling density.

@ Emulators (or response surfaces) “functionalize” the mapping y = f(x)
using a set of available samples, y; =f(x;), i=1...N.

@ An effective emulator

@ is cheap to sample,
@ provides accurate estimates of y at untried inputs, and
@ gives an estimate of its own regression error.

How can we use V,f?

Adjoint and/or automatic differentiation methods can possibly provide
gradient information about f(x). How can we use this information to improve
the effectiveness of our emulators?
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Introduction
oce

Inclusion of gradient information requires differentiation of

the emulator’s functionalization.

Some examples:

@ Polynomial chaos: write the unknown as a multivariate polynomial
expansion in x,

y=P(x) = Zaillfi(x)

and solve for the g;’s. Solution techniques vary, but gradient information
is fairly straightforward to include.

@ Gaussian process regression: Model f(x) as a multivariate random field
specified by a mean and covariance function. Inclusion of gradient
information requires differentiation of the mean and covariance function
(Lockwood, Anitescu — Summer 2011 ANS meeting).

We apply the extension to the Multivariate Adaptive Regression Splines
(MARS) emulator.
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Introduction
0

The MARS basis function is a summation of polynomial

“spline” functions.

These splines are defined to be zero on part of the domain and polynomial in

x on the remainder.

Response

4 6
Input

The MARS basis function is

K 1
B(x) =Bo+ Y Be [ [ — ),
=1 =0

where the regression coefficients 3
are chosen to minimize the error in
the approximation

B(x;) = f(x:)
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Introduction
oe

The Bayesian extension of MARS is important for treating

uncertainty in the response data.

Evolve the basis function using
Markov chain Monte Carlo

@ Propose change to basis
function

@ Recompute B’s

Response

© Compute likelihood of new
model (goodness of fit)

© Accept/Reject proposal

©@ Repeat - 3 ; 3 ; )

Input

If we have noisy data, we'd prefer that our predictions give some
estimate of the distribution of that noise. BMARS provides a posterior
distribution of predictor functions.
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Method for Including Gradients
©00

The gradient of a BMARS basis function is another BMARS

function.

The gradient in direction x,, is:

K I .
o
Vo B(x) =Y ornPi [ [ — i)y
=1 1=0
where

of = oxi—1 Il=n
kot ok l#Fn

Thus, we can use the same machinery to evaluate B and VB. Our
regression task is now to minimize the error in the fit:
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Method for Including Gradients
oeo

The regression coefficients are solved for using a Bayesian

least-squares approach.

The least squares problem is written as an over-constrained linear
system:

(ATA+7°Ix) p=ATD,
AcRPK pbeRP, P>K, 1eR.

where

@ the first I rows of matrix A contain the K unscaled splines B
evaluated at each x;;

N

oB
@ the next N blocks of I rows contain the unscaled gradients, FE
Xn

evaluated at each x;;
@ b contains the function and gradient response data;
@ f} are the regression coefficients; and
@ T is a Bayesian precision parameter.
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Method for Including Gradients
ooe

The regression coefficients are solved for using a Bayesian

least-squares approach, ctd. ..

In explicit form (forn =1...N):

I 1:31(551) 1:32(551) ?K(xl) | ) i
Bi(%2)  By(X%) Bg (%) f(Gr)
: : i : f(%2)
Bi®)  Ba®) ... BkGw) | :
A= | 4B @) de@,) dBK(q) , b= fG)
X —
dx;, : dx;, : dx, : Vi f (F1)
dB] . dBQ . dBK = L Vxnf(yq) i
| dx, (1) dx,, () dx, (%) i
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Regression Results
°0

We verify the algorithm on a set of test functions proposed

by the original BMARS authors (Denison, et. al., 1998).

“Harmonic” Function “Additive” Function

Q
Nosez////17100y
Wi
b
L

Response

X, 00 X,

Flx1,x2) = 42,659 {0.1 5 Flon) =13356{ 1.5 (1 —x))
_ . _ 2
(0.05+3% — 108353 + 534 } +exp (26— 1)sin (3(x1 — 6))
. 2
N +exp(3(x2—.5))sin (47‘c(x2 9) )}
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Regression Results
oe

Using gradient information decreases regression error.

Our regression metric is the Fraction of Variance Unexplained (FVU):
2
_ Li(Blxi) —f(xi))

FVU i
Y (f(xi)—f)
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Regression Results
oe

Using gradient information decreases regression error.

Our regression metric is the Fraction of Variance Unexplained (FVU):

Fyy - i (Bxi) —f(x)*

Y (F(x) )
| Case (# Samples) || Training Data I Testing Data
Harmonic BMARS gBMARS BMARS gBMARS
52 8.761e-01 3.254e-02 9.821e-01 1.176e-01
102 2.464e-03 | 1.179e-03 8.407e-02 | 3.221e-03
152 1.926e-03 | 3.683e-04 3.594e-03 | 5.553e-04
Additive BMARS gBMARS BMARS gBMARS
52 1.020e-03 | 1.112e-03 3.432e-01 | 4.009e-02
102 6.644e-04 | 8.399e-04 1.297e-02 | 3.696e-03
152 7.373e-04 | 4.269e-04 3.577e-03 | 8.133e-04

@ Training data: 52, 102, or 152 uniform samples on unit square
@ Testing data: 10 000 uniform samples on unit square
@ Reporting mean FVU of 5 repititions
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Regression Results
©00000

We apply gBMARS to do UQ on a mock traveling wave

reactor problem.

@ A model problem for the CESAR Exascale center (ANL, TAMU, and
others)

@ Coupled 3-nuclide Bateman Egs. and 1D diffusion (nonlinear):

%N(r, 1) =M(9(r.1),p)N(r1)

M(N(r,1),p)¢(r,1) =3 (p)o(r,1) =0
"% —Po=0
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Regression Results
©00000

We apply gBMARS to do UQ on a mock traveling wave

reactor problem.

@ A model problem for the CESAR Exascale center (ANL, TAMU, and
others)

@ Coupled 3-nuclide Bateman Egs. and 1D diffusion (nonlinear):

%N(}’, l) = M((P(r, t)vp)N(r’ t)

M(N(r,1),p)o(r,t) =25 (p)o(r,1) =0
0% —Py=0

@ X Engineering degree of freedom
@ p: a vector of uncertain parameters (eg: cross-sections)
@ Initial conditions: power concentrated at one end of reactor

@ “Downstream” fertile material breeds and reaction moves through the
slab
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Regression Results
00000

We use a mock 1D Traveling Wave Reactor model to use

gBMARS for Uncertainty Quantification.

@ We solve both the forward and
adjoint problem.

n
o

@ Define a neutron economy
metric:

Scalar Flux (cm‘ss)
- o n

_Neutrons Used for Breeding
"~ Neutrons Lost to Leakage

@ Adjoint problem gives
sensitivity of G w.r.t
parameters in p

Time (yr) 0 o

Axial Dim. (z)
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Regression Results
00000

Our UQ task is to estimate the mean, variance, and

individual realizations of our neutron economy metric.

@ Our 10 inputs are allowed to vary
independently within 10% of their
nominal value.

@ We have 40 full forward/adjoint solution
pairs (40 function/gradient evaluations)
generated by LHS sampling of the
inputs.

@ We'll build and sample a BMARS model
using 5, 10, 15, 20, 30, and 40 of these
samples both with and without the s
gradient information.

Frequency

5
Metric G X107

@ We also have 1000 forward LHS Distribution of our 1,000 “testing” runs.
samples — we will verify the gBMARS
predictions against these runs.
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Regression Results
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Relative Error in Predicting the distribution mean
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Figure: NOTE: 10 repetitions of each sample size
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Regression Results
000000

Relative Error in Predicting the distribution variance
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Regression Results
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Root-Mean-Squared Predictive Error

Relative RMSP Error
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Conclusions

We demonstrate an extension of the BMARS algorithm to

include gradient information for improved regression.

@ Gradient information is fairly straightforward to include in the
BMARS emulator.

@ For both a suite of bivariate testing problems and a
higher-dimensional reactor problem, the use of gradient
information improved the regression of the underlying function
and reduced the predictive variance.

@ Gradient information provided the greatest gains in:

@ predicting both individual realizations and the variance of the
metric distribution; and
@ the cases of very sparse sampling of the input space.

© Gradient enhanced emulators provide reasoning for a modeler to

pay the extra cost of an adjoint or AD solve.
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Conclusions

Questions?

—~

DOE
OCSGF
N

Some gradient information produced using the INTLAB forward automatic
differentiation package for MATLAB.
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