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Radiation Transport Equation

@ The Implicit Monte Carlo (IMC) software utilized for this analysis
solves the following radiative transport equation coupled to a material
energy equation

10/ B ac _,
S+l = (I—i—ET)
%n — oc(en—aT?)

@ The results we present here are only for gray (frequency-integrated)
problems, so there is no energy dependence
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Weight Windows Background

@ The method known as Weight Windows is a widely used variance
reduction technique applied to Monte Carlo simulations

@ A particular objective of this technique is to increase the amount of
contributing particles to specific regions that contain low responses,
allowing for more accurate and detailed information

@ Recent work by Becker and Larsen [2009] developed a theory to
analyze how different weight windows approaches will perform on a
particular problem
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Weight Windows Background

@ Becker and Larson studied the Global Flux Weight Windows (GFWW)
approach and the Forward-Weighted Consistent Adjoint-Driven
Importance Sampling (FW-CADIS) approach

@ Their work showed that the following expression can be used to
analyze the impact of the specified weight window center, w(x, E),
throughout space and energy

o(x, E) = Cw(x, E)M(x, E)

@ For problems where one is interested in the solution everywhere, it is
usually desirable that M(x, E), the Monte Carlo Particle Flux, is as
uniform as possible

e Wollaber [2008] used the solution of a quasi-diffusion problem to
select the weight window center for IMC solutions to radiative
transfer problems with a large degree of success . TS A
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Lagged Weight Windows Correlation

@ We used a much simpler approach, which has the benefit of a nearly
free improvement in solution statistics

e For a given time step in an IMC calculation we use the previous time
step's estimate of the scalar flux for the weight window center

w(x, E, ty) = ¢(x, E, th—1)

@ Using this weight window center with the expression developed by
Becker and Larson, the Theoretical Monte Carlo particle flux can be
expressed as

__OEt)
M(x, E, t,) = Co(x, E, tr1)
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Weight Window Boundaries

@ The upper limit for the weight window is defined as

20(x, E, th—1)

1—w

U=
@ The lower limit for the weight window is defined as
L=w=xU

@ w is defined as the weight window width factor

@ For many of our simulations w was set to 0.2 resulting in a ratio of 5
for the splitting weight to the roulette weight; that is particles with a
weight greater than 2.5 times the window center are split and
particles with a weight less than 1/2 the window center undergo
Russian roulette
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Initial Expectations

@ In problems that are optically thick, we expect to obtain a nearly
uniform Monte Carlo Particle Flux

e We expect the scalar flux to change slowly as a function of time
e Therefore between time steps the ratio between the current time step
solution and the previous solution should be close to unity
@ In problems that are optically thin (large amounts of streaming), the
ratio could be very large near the wave front where
¢(X7 Ev tﬂ) > d)(X? E7 tn—l)

@ Indeed, we see both of these phenomena in real simulations
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1-D Marshak Wave Configuration

e opacity of 0 = 30073 cm™! with T in keV

@ The initial temperature is 1 eV and there is a boundary source at 1
keV on the left of the problem

@ This problem is optically thick everywhere with any reasonable mesh
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1-D Marshak Wave Material Temperature
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1-D Marshak Wave Particle Flux
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Effectiveness of this technique

@ The solution obtained using the lagged weight windows approach is at
least as accurate as, if not more accurate than, the solution obtained
without

@ The region behind the wavefront is much noisier in the no weight
windows solution than in the weight windows solution
@ In the 5 x 10* particles per step simulation, the solution obtained

without weight windows took 5203 seconds, while the weight windows
solution only took 881 seconds, 1/6th the original runtime.

@ The solution with weight windows shows a much more uniform
distribution of particles than the solution without
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Figure of Merit Calculations

e The Figure of Merit (FOM) used for these simulations is defined by

1
FOM = —=
o<t
e o2 was determined by taking the variance of an error vector, €,
defined as
€= (|T. — Tactuall T, — Tactuall,)) "
converged actual|1y +-+» | T converged actual|p

n is the number of runs performed using different random seeds
t is the average run time for the n different simulations
T is the material temperature

The solution obtained seeding 1x10° particles without weight windows
was considered the converged solution
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Marshak Wave Figure of Merit
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Crooked Pipe C
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@ This configuration is composed of two different types of materials
@ There is a 1 keV blackbody source at the x = 0 plane

Optically Thick

Optically Thin
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Crooked Pipe Characteristics

@ Compared to the material used during the Marshak Wave simulation,
the opacity of the optically thin portion of the crooked pipe
simulation is much smaller

@ In the optically thin material, particles can stream through many
spatial zones during a time step
@ This leads to a large change in the scalar flux at each time step near
the wave front
e Therefore the simulation is expected to experience spikes in the particle
flux towards the particle wave front
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2-D Crooked Pipe Material Temperature Lineout
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Particle Flux Using a Split/Roulette Ratio of 5
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Particle Flux Using a Split/Roulette Ratio of 5000
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@ In effect, the much larger ratio means there is much more splitting
and less roulette
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Particle Flux Normalized by the Average Particle Flux
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@ A value of one means a zone has the average number of photons
entering
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Simulation Elapsed Times

Table: Simulation Run Times

Simulation Type Elapsed Time
Converged Solution (3.5x10°) 00:08:38
Without Weight Windows 00:00:58
Width Factor = 0.2 00:11:56
Width Factor = 0.0002 00:16:00
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Crooked Pipe Solution Observations

@ The solutions obtained without weight windows for the two different
time steps do not illustrate complete uniformity with the particle flux

@ As expected the particle flux is larger towards the left plane of the
simulation, where many particles are originating from the source

@ The solution obtained using the lagged weight windows technique
exhibits spikes in the number of photons entering into each zone
towards the wave front

@ This is undesirable because in this problem one would expect to see a
uniform particle flux if the proper weights were used
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Conclusion

@ Using the lagged value of the scalar flux appears to be an inexpensive
way of setting the weight window centers for implicit Monte Carlo

@ The efficacy of this method was demonstrated on a Marshak wave
problem

@ This technique is less effective in the optically thin regions of
problems as predicted

@ We are currently working on an implementation of this method where
the weight windows are turned off in thin regions of the problem to
avoid the "spiking” of particle densities
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