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Background ©

e Basics for TRIGA Reactors

® TRIGA reactors are thermal reactors using U-ZrH_ fuel
® Thermal neutrons, which are heavily affected by thermal scattering, are
Important
® Scattering Complexity
* Binding forces affect thermal neutron scattering cross sections

* Difterent ZrH_ compositions (different x) result in different bindings, and then
different vibration frequency distributions (also called phonon spectrum), thus
different scattering cross sections

* Different temperatures result in different bindings, thus different phonon spectra
and cross sections
* Existing data
® ENDF based on Slaggie’s study on ZrH,; IKE simplified the H phonon spectrum
for ZrH,; the evaluations use phonon spectra at RT for all temperatures
® Possible Problem
® x=1.523 (i.e. ZrH, .,5)

® Accurate scattering cross scattering data specific for x=1.523 at multiple

\ temperature are needed /
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Motivations

e Establish valid pararneterized phonon spectrum models for H and Zr in

/rH

X

® Find sensitive quantities of interest in the TRIGA simulations which
could be used to calibrate the parameters in the phonon spectrum

models

e Tabulate the reasonably accurate thermal scattering law table for
TRIGA at TAMU for future reactor simulation uses
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Introduction

° Theory

Double differential scattering cross section

, , Op E
o(E' > E,Q" - Q) = kT E,S(CZ,,B)

E+E'-2uvEE' __E-E'
and f = :
AKT kT

where @ =

The S(a, B) is the scattering law. It can be given by:
(0/0)

1 .
S(a,p) = je‘ﬁte_y(t)dt

where
y(t) =« J P(B)|1 — e Ft]le=P/2dB and P(B) =

The p(f) is the phonon spectra in terms of f5.

p(h)

28 sinh(B/2)
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° Theory

Introduction

Double differential scattering
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Phonon spectra for Hin ZrH_
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Parameterized Model and Model Tests
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Parameterized Model and Model Tests

® Some existing spREREREE NI

Phonon spectra for Hin ZrH_
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Parameterized Model and Model Tests

® Some existing spectra
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Parameterized Model and Model Tests

® Parameterized Phonon Spectra (PPY)

e For H:
( 3b
2T3y
3b
c(b)
\\V 20
® For /r:
r(1+c)
p(@)zr = oz
Zr (1+o)r (1+0o)" (1 w
ex —
Tpzr P 1-r Tpzr

® Parameters:

(1)2,(1) < TDH

(,()C, w < TDZT

Tpy, b, p, FWHM, 1, c and Tpy,

((1) - ZTDH)Z,TDH < w< ZTDH

(w —p)?
exp [—T ,2Tpy < W < Wmaxn

)] 'TDZT Sw< wmax,Zr

Parameters FWHM/meV b p/meV | Tpy/meV Tpzr r c
/meV
Ranges [25,31] [1/7361,1/91] | [127,147] [16,24] [16,24] [0.4,0.8] | [2,2.8]

)
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Parameterized Model and Model Tests

e Some existing spectra for H in ZrH_

Phonon spectra for Hin ZrH_
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Parameterized Model and Model Tests
* Latin Hypercube sampling design (LHS)

° Sampled 3000 sets of parameters over the seven dimensional input space

® Generated 3000 realizations of phonon spectrum based on the LHS
design

® Each realization gives unique phonon spectra for H and Zr, respectively.
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Parameterized Model and Model Tests

® For each realization, we get a unique phonon spectrum
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Parameterized Model and Model Tests

® Model Tests: lUzry,

0.6

Our model via MATLAB

*  ENDF-VII via NJOY
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Parameterized Model and Model Tests

® Model Tests:

tot,ZrH 1.5229
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Calibration based on MCNP Simulation?

® Calculation and Analysis Procedure

Thermal

Parameterized scattering data

phonon spectra generations and

generation . .
simulations

Sensitivity tests
and calibration
based score
estimations
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Calibration based on MCNP Simulation

e (Calculation and Analysis Procedure
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® Calculation and Analysis Procedure

Calibration based on MCNP Simulation

A\
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® Geometry in MCNP
e TRIGA lattice model at TAMU
® 3000 MCNP simulations

* QOIs
® p:reactivity

e FRD: fission rate density

Calibration based on MCNP Simulation

N

Fuel

Central zirconium rod
$S304 cladding

Water moderator

Axial graphite reflector
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Calibration based on MCNP Simulation

® Scatterplot on reactivity(p)-
FRD plane

® Reference results are
surrounded by PPS model

results

® Two reference results stay in

different parts of the plot

N
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Calibration based on MCNP Slmulatlon

Complex model
O MCNP vs predlctlons 0
* ANOVA indicated reactivity Lneoregrossion | .
3265 o oL
. o, . S -
is sensitive to the parameters JEgcl o
» 326} o g &F
1. 2 & =
® Cross-validation for 8 2 5
3255/ o S0,
o . H
i
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DEE o
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predict outputs for the rest T s
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Calibration based on MCNP Simulation

® Sensitivity for reactivity p

Phonon spectra for H in ZrH

70

. . 3 T
Sensitive to proposed H: ENDE-VII

parameters S0l cogtic part x100 = = = Malik

® Most sensitive to two main Ol bbb

factors

® Main factors:

e\r1

Branchi ig Ratio

ol /
A 4

Optical peak position in H
Branching ratio of acoustic

mode to optical mode in H

By “main”, it means QOls are

most sensitive to it (them)

Optical mode
K Acoustic mode
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Calibration based on MCNP Simulation

® Geometry in MCNP
. o . Fuel rod
* Simplified full-core TRIGA model at
TAMU O Shim safety rod
* Configuration: to make TRIGA near Q Regulating rod
critical (k ;=1.0000040.00013 (O (ex-core) ex-core detectors
with ENDF) O (central) transient rod
°* QOIs Graphite block
® p:reactivity (not the phonon Water
spectrum!)

e A: neutron mean generation time

® ar. . :tuel temperature feedback
fuel

coefficient

° ,Beff: effective delayed neutron
fraction

® R,ps: ex-core detector absorption

rate

idmnugugggbi
\_ /
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Calibration based on MCNP Simulation

® Cross-validation test the significances

of the factors indicated by ANOVA
® 1331 MCNP simulation results in total

1064 for forming regression models

267 for comparing simulations and

predictions based on regression models

® Complex model (right upper): based
on all “significant” factors from ANOVA

® Main-factor model (right lower): based
on optical peak position and branching
ratio of acoustic mode to optical mode
in H

® Reactivity is most sensitive to these

two factors

-
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Calibration based on MCNP Simulation?

® Calculation and Analysis Procedure

QOI sensitivity

analyses

Thermal
scattering data

Parameterized

phonon spectra

generation generations and

simulations

X
|
Calibrations based on
score estimations

Appropriate

parameter

ranges

Calibrations based
on score estimation
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Calibration based on MCNP Simulation

e (Calibration

A\

® MC quantities of interest (QOlIs): given in forms of normal distributions

® Score estimation: overlaps of QOI distributions

It measures how close each realization is to the reference QOI

Target distribution for QOI

Particular realization
distribution for QOI
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Calibration based on MCNP Simulation

Scores for p (near-critical), reference: ENDF

® Score Estimation for Calibration

e ENDF and IKE scattering data were

used as calibration examples

® X,: standardized form of branching

ratio of acoustic mode to optical mode
in Hin ZrH _

* X,: standardized form of optical peak
position in H in ZrH_

® They have different high score regions

® What if we have multiple QOlIs

sensitive to proposed parameters?

- -10.6

- 0.5

- 104

N
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Calibration based on MCNP Simulat'on?

Individual normal distributions

® Score Estimation for Calibration '5 .zzs

e ENDF and IKE scattering data were 0_; 0:25

used as calibration examples o o 02

o They have different hlgh SCOre regions 0.5 ' z:5

® What if we have multiple QOlIs 1; IG-05
sensitive to proposed parameters? ; x, !

® Multiplications of multiple score Product of normal distrbutions -

distributions lo.os

® Calibrated parameter ranges shrink 0.05

0.04

o 0.03

002

Io.o1
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Calibration based on MCNP Simulation

® An example of the products

Product of scores for p and A in ENDF case

Scores for p (near-critical), reference: ENDF

N
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Conclusions and Future Work

® Model tests:
® [t would be reasonable to hypothesize PPS models tor ZrH phonon spectra

® Methodology:
® NJOY-MCNP chain is compatible with this UQ study;

e ANOVA and cross-validations are effective to determine the main-factor affecting
QOlIs and find the relationship between the parameters and QOlIs;

® Score estimation may be appropriate to take the calibration.
® QOI sensitivities:
® Several QOlIs (e.g. p, ATee1 A, etc.) are found to be sensitive to proposed
parameters
¢ Future work:

* Investigate in-core neutron detectors to further constrain the parameters in the
model.

* Calibrate parameters for TRIGA reactor at TAMU for different temperatures.
e Tabulate S(a, 8, T) for TRIGA reactor at TAMU

- /
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