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Background 
 Basics for TRIGA Reactors 

 TRIGA reactors are thermal reactors using U-ZrHx fuel 
 Thermal neutrons, which are heavily affected by thermal scattering,  are 

important 

 Scattering Complexity 
 Binding forces affect thermal neutron scattering cross sections 
 Different ZrHx compositions (different x) result in different bindings, and then 

different vibration frequency distributions (also called phonon spectrum), thus 
different scattering cross sections 

 Different temperatures result in different bindings, thus different phonon spectra 
and cross sections 

 Existing data 
 ENDF based on Slaggie’s study on ZrH2; IKE simplified the H phonon spectrum 

for ZrH2; the evaluations use phonon spectra at RT for all temperatures 

 Possible Problem 
 x=1.523 (i.e. ZrH1.523) 
 Accurate scattering cross scattering data specific for x=1.523 at multiple 

temperature are needed 
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Motivations 
4 

 Establish valid parameterized phonon spectrum models for H and Zr in 

ZrHx 

 Find sensitive quantities of interest in the TRIGA simulations which 

could be used to calibrate the parameters in the phonon spectrum 

models 

 Tabulate the reasonably accurate thermal scattering law table for 

TRIGA at TAMU for future reactor simulation uses 



Introduction 
 Theory 

Double differential scattering cross section 

𝜎 𝐸′ → 𝐸,Ω′ ⋅ Ω =
𝜎𝑏
4𝜋𝑘𝑇

𝐸

𝐸′
𝑆 𝛼, 𝛽  

where 𝛼 ≡
𝐸+𝐸′−2𝜇 𝐸𝐸′

𝐴𝑘𝑇
 and 𝛽 ≡

𝐸−𝐸′

𝑘𝑇
. 

 

The 𝑆 𝛼, 𝛽  is the scattering law. It can be given by: 

𝑆 𝛼, 𝛽 =
1

2𝜋
 𝑒𝑖𝛽𝑡𝑒−𝛾(𝑡)𝑑𝑡

∞

−∞

 

where 

𝛾 𝑡 = 𝛼  𝑃 𝛽 1 − 𝑒−𝑖𝛽𝑡 𝑒−𝛽/2𝑑𝛽

∞

−∞

and 𝑃 𝛽 =
𝜌(𝛽)

2𝛽 sinh(𝛽/2)
 

 
The 𝜌(𝛽) is the phonon spectra in terms of 𝛽. 
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Parameterized Model and Model Tests 
 Some existing spectra 

 
Phonon spectra for H in ZrHx Phonon spectra for Zr in ZrHx 
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Debye distribution 
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Parameterized Model and Model Tests 
 Some existing spectra 

 
Phonon spectra for H in ZrHx Phonon spectra for Zr in ZrHx 

Debye distribution 

Pink: Gaussian 

distribution 

Black dashed line: 

three Gaussian 

specific for ZrH1.58 
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Parameterized Model and Model Tests 
 Some existing spectra 

 

FWHM 

Branching Ratio 

Optical Peak 

Paosition Debye Temperature 

Phonon spectra for H in ZrHx Phonon spectra for Zr in ZrHx 

Debye Temperature 
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Parameterized Model and Model Tests 
 Parameterized Phonon Spectra (PPS) 

 For H: 

𝜌 𝜔 H =

3𝑏

2𝑇DH
3 𝜔2, 𝜔 < 𝑇DH

3𝑏

2𝑇DH
3 (𝜔 − 2𝑇DH)

2, 𝑇DH ≤  𝜔 ≤ 2𝑇DH

𝑐(𝑏)

2𝜋𝜎
exp −

𝜔 − 𝑝 2

2𝜎2
, 2𝑇DH ≤  𝜔 ≤ 𝜔max,H

 

 For Zr: 

𝜌 𝜔 Zr =

𝑟(1 + 𝑐)

𝑇DZr
1+𝑐 𝜔𝑐, 𝜔 ≤ 𝑇DZ𝑟

 
1 + 𝑐 𝑟

𝑇DZr
exp

1 + 𝑐 𝑟

1 − 𝑟
1 −

𝜔

𝑇DZr
, 𝑇DZ𝑟 ≤ 𝜔 ≤ 𝜔max,Zr

 

 Parameters:  

𝑇DH, 𝑏, 𝑝, FWHM, 𝑟, 𝑐 and 𝑇DZr 

 

13 



Parameterized Model and Model Tests 
 Some existing spectra for H in ZrHx 

 

Branching Ratio 

Optical Peak Positioin 

Phonon spectra for H in ZrHx 
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Parameterized Model and Model Tests 
 Latin Hypercube sampling design (LHS) 

 Sampled 3000 sets of parameters over the seven dimensional input space 

 Generated 3000 realizations  of phonon spectrum based on the LHS 

design 

 Each realization gives unique phonon spectra for H and Zr, respectively. 
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Parameterized Model and Model Tests 
 For each realization, we get a unique phonon spectrum 

 
Phonon spectra for H in ZrHx Phonon spectra for Zr in ZrHx 
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Parameterized Model and Model Tests 

 Model Tests: 𝜇 ZrH1.84  
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Parameterized Model and Model Tests 

 Model Tests: 𝜎
g′
tot,ZrH1.5229  
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Calibration based on MCNP Simulations 
 Calculation and Analysis Procedure 
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Calibrations based on 

score estimations 

Parameterized 

phonon spectra 

generation 
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Calibration based on MCNP Simulations 
 Geometry in MCNP 

 TRIGA lattice model at TAMU 

 3000 MCNP simulations 

 QOIs 

 𝜌: reactivity  

 FRD: fission rate density 
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Calibration based on MCNP Simulations 
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 Scatterplot on reactivity(𝜌)-

FRD plane 

 Reference results are 

surrounded by PPS model 

results 

 Two reference results stay in 

different parts of the plot 



Calibration based on MCNP Simulations 
 ANOVA indicated reactivity 

is sensitive to the parameters 

 Cross-validation for 

reactivity 𝜌 

 To test the indicated 

sensitivities 

 2400 realizations were used 

to get the regression models 

based on the parameters 

 Use the regression models to 

predict outputs for the rest 

600 realizations and compare 

the predictions with the 

simulations  
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Calibration based on MCNP Simulations 
 Sensitivity for reactivity 𝜌 

 Sensitive to  proposed 

parameters 

 Most sensitive to two main 

factors 

 Main factors: 

 Optical peak position in H 

 Branching ratio of acoustic 

mode to optical mode in H 

 By “main”, it means QOIs are 

most sensitive to it (them) 

Branching Ratio 

Optical Peak Position 

Phonon spectra for H in ZrHx 
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Acoustic mode 
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Calibration based on MCNP Simulations 
 Geometry in MCNP 

 Simplified full-core TRIGA model at 
TAMU 

 Configuration: to make TRIGA near 
critical (keff =1.00000±0.00013 
with ENDF) 

 QOIs 

 𝜌: reactivity (not the phonon 
spectrum!) 

 Λ: neutron mean generation time 

 𝛼𝑇fuel: fuel temperature feedback 
coefficient 

 𝛽eff: effective delayed neutron 
fraction 

 𝑅abs: ex-core detector absorption 
rate 
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Calibration based on MCNP Simulations 
 Cross-validation test the significances 

of the factors indicated by ANOVA 

 1331 MCNP simulation results in total 

 1064 for forming regression models 

 267 for comparing simulations and 

predictions based on regression models 

 Complex model (right upper): based 

on all “significant” factors from ANOVA 

 Main-factor model (right lower): based 

on optical peak position and branching 

ratio of acoustic mode to optical mode 

in H 

 Reactivity is most sensitive to these 

two factors 
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Calibration based on MCNP Simulations 
 Calculation and Analysis Procedure 
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Calibration based on MCNP Simulations 
 Calibration 

 MC quantities of interest (QOIs): given in forms of normal distributions 

 Score estimation: overlaps of QOI distributions 

 It measures how close each realization is to the reference QOI 
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Calibration based on MCNP Simulations 
 Score Estimation for Calibration 

 ENDF and IKE scattering data were 

used as calibration examples 

 X2: standardized form of branching 

ratio of acoustic mode to optical mode 

in H in ZrHx 

 X3: standardized form of optical peak 

position in H in ZrHx 

 They have different high score regions 

 What if we have multiple QOIs 

sensitive to proposed parameters? 
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Calibration based on MCNP Simulations 
 Score Estimation for Calibration 

 ENDF and IKE scattering data were 

used as calibration examples 

 They have different high score regions 

 What if we have multiple QOIs 

sensitive to proposed parameters? 

 Multiplications of multiple score 

distributions 

 Calibrated parameter ranges shrink 
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Calibration based on MCNP Simulations 
 An example of the products 
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Conclusions and Future Work 
 Model tests: 

 It would be reasonable to hypothesize PPS models for ZrHx phonon spectra 

 Methodology: 

 NJOY-MCNP chain is compatible with this UQ study; 

 ANOVA and cross-validations are effective to determine the main-factor affecting 
QOIs and find the relationship between the parameters and QOIs;  

 Score estimation may be appropriate to take the calibration. 

 QOI sensitivities: 

 Several QOIs (e.g. 𝜌, 𝛼𝑇fuel, Λ, etc.) are found to be sensitive to proposed 
parameters 

 Future work: 

 Investigate in-core neutron detectors to further constrain the parameters in the 
model. 

 Calibrate parameters for TRIGA reactor at TAMU for different temperatures. 

 Tabulate 𝑆(𝛼, 𝛽, 𝑇) for TRIGA reactor at TAMU 
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