Physics-based Uncertainty Quantification for ZrH_x Thermal Scattering Law

Weixiong Zheng

Nuclear Engineering, Texas A&M University, 2013 ANS Winter Meeting

Synopsis

- Background
- Motivations
- Introduction
- Parameterized Models and Model Tests
- Calibration based on MCNP Simulations
- Conclusions and Future Work
- References

Background

- Basics for TRIGA Reactors
 - TRIGA reactors are thermal reactors using U-ZrH_x fuel
 - Thermal neutrons, which are heavily affected by thermal scattering, are important
- Scattering Complexity
 - Binding forces affect thermal neutron scattering cross sections
 - Different ZrH_x compositions (different x) result in different bindings, and then different vibration frequency distributions (also called phonon spectrum), thus different scattering cross sections
 - Different temperatures result in different bindings, thus different phonon spectra and cross sections
- Existing data
 - ENDF based on Slaggie's study on ZrH_2 ; IKE simplified the H phonon spectrum for ZrH_2 ; the evaluations use phonon spectra at RT for all temperatures
- Possible Problem
 - x=1.523 (i.e. ZrH_{1.523})
 - Accurate scattering cross scattering data specific for x=1.523 at multiple temperature are needed

Motivations

- Establish valid parameterized phonon spectrum models for H and Zr in ${\rm ZrH}_{\rm x}$
- Find sensitive quantities of interest in the TRIGA simulations which could be used to calibrate the parameters in the phonon spectrum models
- Tabulate the reasonably accurate thermal scattering law table for TRIGA at TAMU for future reactor simulation uses

• Theory

Double differential scattering cross section

$$\sigma(E' \to E, \Omega' \cdot \Omega) = \frac{\sigma_b}{4\pi kT} \sqrt{\frac{E}{E'}} S(\alpha, \beta)$$

where $\alpha \equiv \frac{E + E' - 2\mu\sqrt{EE'}}{AkT}$ and $\beta \equiv \frac{E - E'}{kT}$.

The $S(\alpha, \beta)$ is the scattering law. It can be given by:

$$S(\alpha,\beta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\beta t} e^{-\gamma(t)} dt$$

where

$$\gamma(t) = \alpha \int_{-\infty}^{\infty} P(\beta) \left[1 - e^{-i\beta t} \right] e^{-\beta/2} d\beta \text{ and } P(\beta) = \frac{\rho(\beta)}{2\beta \sinh(\beta/2)}$$

• Theory

Double differential scattering cross section

where
$$\alpha \equiv \frac{E+E'-2\mu\sqrt{EE'}}{AkT}$$
 and $\beta \equiv \frac{E-E'}{kT}$.

The $S(\alpha, \beta)$ is the scattering law. It can be given by:

$$S(\alpha,\beta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\beta t} e^{-\gamma(t)} dt$$

where

$$\gamma(t) = \alpha \int_{-\infty}^{\infty} P(\beta) \left[1 - e^{-i\beta t} \right] e^{-\beta/2} d\beta \text{ and } P(\beta) = \frac{\rho(\beta)}{2\beta \sinh(\beta/2)}$$

• Theory

Double differential scattering cross section

$$\sigma(E' \to E, \Omega' \cdot \Omega) = \frac{\sigma_b}{4\pi kT} \sqrt{\frac{E}{E'}} S(\alpha, \beta)$$

where $\alpha \equiv \frac{E + E' - 2\mu\sqrt{EE'}}{AkT}$ and $\beta \equiv \frac{E - E'}{kT}$.

The $S(\alpha, \beta)$ is the scattering law. It can be given by:

$$S(\alpha,\beta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\beta t} e^{-\gamma(t)} dt$$

where

$$\gamma(t) = \alpha \int_{-\infty}^{\infty} P(\beta) \left[1 - e^{-i\beta t} \right] e^{-\beta/2} d\beta \text{ and } P(\beta) = \frac{\rho(\beta)}{2\beta \sinh(\beta/2)}$$

- Parameterized Phonon Spectra (PPS)
 - For H:

$$\rho(\omega)_{\rm H} = \begin{cases} \frac{3b}{2T_{\rm DH}^3} \omega^2, \omega < T_{\rm DH} \\ \frac{3b}{2T_{\rm DH}^3} (\omega - 2T_{\rm DH})^2, T_{\rm DH} \le \omega \le 2T_{\rm DH} \\ \frac{c(b)}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(\omega - p)^2}{2\sigma^2}\right], 2T_{\rm DH} \le \omega \le \omega_{\rm max, H} \end{cases}$$

• For Zr:

$$\rho(\omega)_{\rm Zr} = \begin{cases} \frac{r(1+c)}{T_{\rm DZr}^{1+c}} \omega^c, \omega \le T_{\rm DZr} \\ \frac{(1+c)r}{T_{\rm DZr}} \exp\left[\frac{(1+c)^r}{1-r} \left(1-\frac{\omega}{T_{\rm DZr}}\right)\right], T_{\rm DZr} \le \omega \le \omega_{\rm max, Zr} \end{cases}$$

• Parameters:

 $T_{\rm DH}$, b, p, FWHM, r, c and $T_{\rm DZr}$

Parameters	FWHM/meV	b	p/meV	T _{DH} /meV	T _{DZr} /meV	r	С
Ranges	[25,31]	[1/361,1/91]	[127,147]	[16,24]	[16,24]	[0.4,0.8]	[2,2.8]

14 Parameterized Model and Model Tests Some existing spectra for H in $\rm ZrH_x$ Phonon spectra for H in ZrH_x 70 H: ENDF-VII IKE Acoustic part x100 Malik 60 **Optical Peak Positioin** 50 ρ(∞) / eV¹ 40 **Branching Ratio** 30 20 10 0 0.05 0.15 0.2 0.25 O. 0.1 ω/eV

- Latin Hypercube sampling design (LHS)
 - Sampled 3000 sets of parameters over the seven dimensional input space
 - Generated 3000 realizations of phonon spectrum based on the LHS design
 - Each realization gives unique phonon spectra for H and Zr, respectively.

• For each realization, we get a unique phonon spectrum

16

• Model Tests: $\bar{\mu}_{ZrH_{1.84}}$

• Model Tests: $\sigma_{g'}^{tot,ZrH_{1.5229}}$

19 Calibration based on MCNP Simulations • Calculation and Analysis Procedure Thermal Sensitivity tests Parameterized and calibration scattering data phonon spectra generations and based score generation simulations estimations

- Geometry in MCNP
 - TRIGA lattice model at TAMU
 - 3000 MCNP simulations
- QOIs
 - *ρ*: reactivity
 - FRD: fission rate density

- Scatterplot on reactivity(ρ) FRD plane
 - Reference results are surrounded by PPS model results
 - Two reference results stay in different parts of the plot

- ANOVA indicated reactivity is sensitive to the parameters
- Cross-validation for reactivity ρ
 - To test the indicated sensitivities
 - 2400 realizations were used to get the regression models based on the parameters
 - Use the regression models to predict outputs for the rest
 600 realizations and compare the predictions with the simulations

- Sensitivity for reactivity ho
 - Sensitive to proposed parameters
 - Most sensitive to two main factors
 - Main factors:
 - Optical peak position in H
 - Branching ratio of acoustic mode to optical mode in H
 - By "main", it means QOIs are most sensitive to it (them)

Phonon spectra for H in ZrH_x

- Geometry in MCNP
 - Simplified full-core TRIGA model at TAMU
 - Configuration: to make TRIGA near critical (k_{eff}=1.00000±0.00013 with ENDF)

• QOIs

- *ρ*: reactivity (not the phonon spectrum!)
- Λ : neutron mean generation time
- $\alpha_{T_{fuel}}$: fuel temperature feedback coefficient
- β_{eff} : effective delayed neutron fraction
- *R*_{abs}: ex-core detector absorption rate

- Cross-validation test the significances of the factors indicated by ANOVA
 - 1331 MCNP simulation results in total
 - 1064 for forming regression models
 - 267 for comparing simulations and predictions based on regression models
 - Complex model (right upper): based on all "significant" factors from ANOVA
 - Main-factor model (right lower): based on optical peak position and branching ratio of acoustic mode to optical mode in H
- Reactivity is most sensitive to these two factors

Calibration

- MC quantities of interest (QOIs): given in forms of normal distributions
- Score estimation: overlaps of QOI distributions
 - It measures how close each realization is to the reference QOI

- Score Estimation for Calibration
 - ENDF and IKE scattering data were used as calibration examples
 - X₂: standardized form of branching ratio of acoustic mode to optical mode in H in ZrH_x
 - X_3 : standardized form of optical peak position in H in ZrH_x
 - They have different high score regions
- What if we have multiple QOIs sensitive to proposed parameters?

31

- Score Estimation for Calibration
 - ENDF and IKE scattering data were used as calibration examples
 - They have different high score regions
- What if we have multiple QOIs sensitive to proposed parameters?
 - Multiplications of multiple score distributions
 - Calibrated parameter ranges shrink

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

An example of the products

Scores for p (near-critical), reference: ENDF

Product of scores for ρ and Λ in ENDF case

Conclusions and Future Work

- Model tests:
 - It would be reasonable to hypothesize PPS models for ZrH_x phonon spectra
- Methodology:
 - NJOY-MCNP chain is compatible with this UQ study;
 - ANOVA and cross-validations are effective to determine the main-factor affecting QOIs and find the relationship between the parameters and QOIs;
 - Score estimation may be appropriate to take the calibration.
- QOI sensitivities:
 - Several QOIs (e.g. ρ , $\alpha_{T_{\text{fuel}}}$, Λ , etc.) are found to be sensitive to proposed parameters
- Future work:
 - Investigate in-core neutron detectors to further constrain the parameters in the model.
 - Calibrate parameters for TRIGA reactor at TAMU for different temperatures.
 - Tabulate $S(\alpha, \beta, T)$ for TRIGA reactor at TAMU

References

- [1] R. Badea, M. D. and C. H. M. Broeders. On the Impact of Phonon Spectrum Shifts of the Hydrogen Binding in ZrH. In International Conference on Nuclear Data for Science and Technology 2007, number 242, 2008.
- [2] G. I. Bell and S. Glasstone. Nuclear Reactor Theory. Krieger Pub Co, 3rd edition, 1985
- [3] A. C. Evans, D. N. Timms, J. Mayers, and S. M. Bennington. Neutron Scattering Study of the Impulse Approximation in ZrH2. Phys. Rev. B, 53:3023–3031, Feb. 1996.
- [4] O. K. Harling and L. C. Clune. Structure in the Neutron Scattering Spectra of Zirconium Hydride. Physical Review B, 4(8):923–934, 1971.
- [5] The MathWorks Inc. anova1, one-way analysis of variance. <u>http://www.mathworks.com/help/stats/anova1.html</u> . [Online; accessed 10-Oct.-2013].
- [6] R. E. MacFarlane. New Thermal Neutron Scattering Files for ENDF/B-VI, Release 2. Technical Report LA-12639-MS(ENDF 356), Los Alamos National Laboratory, 1994.
- [7] S. S. Malik, D. C. Rorer, and G. Brunhart. Optical-phonon structure and precision neutron total cross section measurements of zirconium hydride. J. Phys. F: Met. Phys, 14:73–81, 1984.
- [8] M. Mattes and J. Keinert. Thermal Netron Scattering Data for the Moderator Materials H2O, D2O and ZrHx in ENDF-6 Format and as ACE Library for MCNP(X) Code. Technical Report INDC(NDS)-0470, Institue for Nuclear Technology and Energy System (IKE)-University of Stuttgart, 2005.
- [9] K.S. McKinny, T.R. Anderson, and N.H. Johnson. Optimization of Coating in Boron-10 Lined Proportional Counters. Nuclear Science, IEEE Transactions on, 60(2):860–863, 2013.
- [10] T. J. Santner, B. J. Williams, and W. Notz. The Design and Analysis of Computer Experiments. Springer Series in Statistics. Springer, 2003.
- [11] E. L. Slaggie. Central Force Lattice Dynamical Model for Zirconium Hydride. J. Phys. Chem. Solids, 29:923–934, 1968.
- [12] D.D. Wackerly, W. Mendenhall, and R.L. Scheaffer. Mathematical Statistics with Applications. Thomson, Brooks/Cole, 2008.
- [13] E. W. Weisstein. ANOVA. http://mathworld.wolfram.com/ANOVA.html, 2008. [Online; accessed 10-Oct.-2013].
- [14] Wikipedia. Analysis of Variance Wikipedia, The Free Encyclopedia. <u>http://en.wikipedia.org/wiki/Analysis_of_variance</u>. [Online; accessed 9-Oct.-2013].

•Thank you!

36