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Abstract

The Implicit Monte Carlo (IMC) method solves Thermal Radiative
Transport (TRT) problems by simulating the history of individual photons.
These simulated photons have properties set by sampling from distribution
functions in space, angle, frequency and time. Because the sampling
process is random there is no guarantee that all portions of phase space
will be represented. Stratified sampling overcomes this deficiency by
subdividing all of phase space into bins such that the total number of bins
represent the number of simulated photons. We show that this method
improves the convergence rate and figure of merit (FOM) for various gray
problems.

Alex Long (Texas A&M) ANS Winter 2013 2013-4-4 2 / 27



Overview

1 Introduction
Monte Carlo Integration
Implicit Monte Carlo

2 Method

3 Results

4 Conclusions

Alex Long (Texas A&M) ANS Winter 2013 2013-4-4 3 / 27



There are several methods of Monte Carlo Integration

Functions can be integrated by a Monte Carlo method. The error of the
integral is

ε ∼=
σ21
N1/2

,

where N is the number of samples. There are alternate methods that seek
to reduce σ21:

Importance Sampling: More samples where function is large

Stratified Sampling: The space is divided into strata and points are
sampled in each of the strata

Latin Hypercube Sampling: Further stratification for N samples–use
N bins in each dimension
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Monte Carlo Integration–Standard

Integrating the function f (x) = e−8x , over x = (0, 1). N = 100,
Error = 0.028
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Importance Sampling

Sample from a function, f̃ (x), that’s similar to the exact function. The
integral is obtained by using (from Kalos and Whitlok):

G =

∫
g(x)f (x)

f̃ (x)
f̃ (x)dx (1)

More points where the function is larger

Analytic solution of ODE to sample emission in time

For IMC, difficult to reduce variance in both variables
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Importance Sampling

Integrating the function f (x) = exp−8x over x = (0, 1) with N = 100.
With importance sampling, Error = 0.00625. Without importance
sampling, Error = 0.028.
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Stratified Sampling

Represent as much of phase space as possible with a finite number of
samples. Ideally, the number of desired integration points should be equal
to the total number of strata.

Ns = Nbins = xbybzbµbφbtb. (2)

Mean squared error is O
(
N−(1+2/D)

)
[1], where D is the number of

dimensions that are stratified and N is the number of integration
points

Some strata end up being reused

Scattering reduces improvements

Potential for smooth memory access
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Stratified Sampling

Integrating the function f (x) = cos(x), over x = (0, 1). N = 100,
Error = 0.008529

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y 

Alex Long (Texas A&M) ANS Winter 2013 2013-4-4 9 / 27



Latin Hypercube Sampling

Divide each dimension into N strata and place the integration points such
that each discrete bin is only used once. The algorithm can be set to
increase the spacing between points.

Very computationally expensive to produce points

Sampling pattern is not unique

Scattering reduces improvements
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Latin Hypercube Sampling

Integrating the function f (x) = cos(x), over x = (0, 1). N = 25,
Error = 0.00147
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The Implicit Monte Carlo method solves TRT problems

Thermal Radiative Transfer (TRT) describes interaction of matter
and radiation fields

In 1971 Fleck and Cummings publish a method for solving the TRT
equations via Monte Carlo

Fleck and Cummings method is called Implicit Monte Carlo (IMC)

Source term is linearized

IMC is not actually implicit
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The Thermal Radiative Transfer (TRT) Equations

The familiar TRT equations, without scattering:

1

c

∂I (x , ν,Ω)

∂t
+ Ω · ∇I (x , ν,Ω) + σa(ν)I (x , ν,Ω) = σaB(ν,T ), (3)

∂Um(x ,T , t)

∂t
=

∞∫
0

∫
4π

σaI (x , ν,Ω) dΩ dν −
∞∫
0

σaB(ν,T ) dν. (4)

In frequency integrated problems (grey or “one group” in neutronics
terminology), the IMC method is equivalent to linearizing the Planckian
emission term with a Taylor series expansion:

∞∫
0

σaB(ν,T n+1) dν ≈
∞∫
0

σ

(
B(ν,T n) +

∂B

∂T

∂T

∂t
∆t

)
dν (5)
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The IMC equations introduce effective scattering

After linearizing, an expression for Un+1
r is used in the radiative energy

balance. This leads to the IMC equations:

1

c

∂I

∂t
+ Ω · ∇I + σa(ν)I = f σaB(ν,T ) + (1− f )

∫ ∫
σaI dΩ′ dν ′, (6)

∂Um(x ,T , t)

∂t
=

∞∫
0

∫
4π

f σaI dΩ dν − f

∞∫
σaB(ν,T ) dν. (7)

Here f is usually referred to as the Fleck Factor:

f =
1

1 + σac∆t
4aT 3

cV

(8)
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A simulated photon has a weight equal to its energy

Thermal Radiative Transfer is a function of 7 independent variables
Simulate the life of a “fauxton”: a group of particles with the same
frequency representing some amount of the total energy in the
problem
User-specified number of photons are created that represent the
energy in the radiation field.
In IMC, the energy and frequency of a particle are not the same!
A simulated photon is a group of photons of frequency, ν, having
total energy E
The energy of a particle is its weight
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Variance is there, you just have to look close enough

Because IMC uses random numbers to sample phase space, material
temperature and radiative intensity will have an associated variance

Number of simulated particles differ by a factor of ten in the two lines
below (problem used 100 zones):
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Can sampling the space more effectively reduce variance
appreciably?

Variance is undesirable: it can seed instabilities in coupled physics.

TRT is a global problem

Error can be reduced by running more particles, but it’s O
(√

N
)

Reduce variance by using existing samples more effectively

The future is less memory per core

Trading memory for flops–generating sampling pattern vs. additional
photons
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Create a stratification pattern in each cell

The FINMCOOL IMC code, developed by students at Texas A&M
University was used to test stratified sampling methods.

In each cell, create strata using standard or LHS method

Standard stratification–inexpensive, but samples are reused

LHS stratification–very expensive, all samples independent
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0D IMC problem at equilibrium

IMC holds equilibrium solution but will oscillate around it due to noise.

One dimension, time
Formula predicts O

(
N−3/2

)
error convergence

In 0D, Stratification and LHS are the same
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Infinite Medium

Also at equilibrium, spatial zones are introduced. ∆t = 0.1ns

6 dimensions
Formula predicts O

(
N−2/3

)
error for stratified
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Infinite Medium–LHS Comparison

Also at equilibrium, spatial zones are introduced. ∆t = 0.1ns

6 dimensions
Formula predicts O

(
N−2/3

)
error for stratified

At around 100000 photons, LHS photon ≈ 2.8 standard photons
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Infinite Medium–FOM Comparison

Figure of merit comparison, where FOM = 1
tσ .

Method Photons Run Time (s) Error FOM

Stratified 5× 107 108.53 0.0069 1.335
LHS 5× 104 87.92 0.447 0.025
Standard 5× 107 106.16 0.01337 0.704
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Infinite medium with scattering

Higher temperature reduces Fleck factor and introduces more effective
scattering.

6 dimensions
σ = 1.0 cm−1, f = 0.79
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Conclusions and future work

Conclusions

Stratification can improve the FOM on optically thin problems
More scattering makes angle stratification unimportant
Latin Hypercube Sampling is better than standard stratification but
very computationally expensive

Future Work

Extend to smooth emission IMC of Trahan and Gentile [3]
Other stratification strategies for problems with scattering
Test cache misses with and without stratification
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