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INTRODUCTION

The Implicit Monte Carlo (IMC) method solves Thermal
Radiative Transport problems by simulating the history of in-
dividual photons. These simulated photons have properties
set by sampling from distribution functions in space, angle,
frequency and time. Because the sampling process is random
there is no guarantee that all portions of phase space will be
represented. Stratified sampling overcomes this deficiency by
subdividing all of phase space into bins such that the total num-
ber of bins represent the number of simulated photons. We
show that this method improves the convergence rate and figure
of merit (FOM) for various gray problems.

DESCRIPTION OF ACTUAL WORK

IMC Equations

The IMC as derived by Fleck and Cummings [1] method
effectively linearizes the TRT equations. The gray IMC equa-
tions for the radiative and material energy balance are:
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The intensity is a function of six variables. When a photon
is created it is given some representative energy-weight and
then its properties are sampled from probability density func-
tions (PDFs). Within a discrete cell, photons are assumed to
be emitted uniformly in angle (that is, uniform in the cosine of
the polar angle and uniform in the azimuthal angle), space and
time. If the problem is not gray the frequency is sampled from
a Planckian at the temperature of the discrete cell. The PDFs
differ if photons are being emitted from a non-uniform source
or if some form of tilting is used.

Stratified Sampling

The impetus behind stratified sampling is to represent as
much phase space as possible with a finite number of samples.
(!! Include Author of sampling paper!!) showed that if stratified
sampling is used for Monte Carlo integration the convergence

rate of the solution improves to O(N−(1+2/D)) where D is the
number of dimensions that have been stratified. To employ
stratified sampling the PDFs for space, angle and time must be
divided into some number of bins: xb, yb, zb, µb, φb, tb. Phase
space is thus represented as a cube where the total number of
bins is

Nbins = xbybzbµbφbtb. (3)

Within each of these bins, the dimension is sampled uniformly,
e.g. a photon in the 8th x bin would have some random position
between the 8th and 9th bin. In an ideal case the total number
of bins would be equal to the number of simulated photons,
Np = Nbins and each dimension of phase space would be divided
into an equal number of bins. In that case the number of bins
for a given dimension would be:

xb = yb = zb = µb = φb = tb = N
1
6
photons. (4)

In practice, the number of photons in a given discrete cell
of the problem does not have an integer sixth root. It would
be possible to make more photons in a cell with less energy-
weight to satisfy Eq. (4) but having photons with differing
energy weights from cell to cell would likely negatively offset
the benefit of stratified sampling. Instead, we take the floor
of the sixth root and then increase the number of bins in a
given dimensions by a factor of two until this would cause
Nbins > Nphotons. When sampling we then use all bins in our
now rectangular six dimensional parameter space and then
randomly reuse bins until we have sampled all photons.

RESULTS AND ANALYSIS

Stratified sampling was implemented in the FINMCOOL
code developed by Nuclear Engineering students at Texas A&M
University. The results in this paper compare absolute error
and simulation run time and total figure of merit to evaluate the
efficacy of the algorithm. The figure of merit could be better
than the results shown here as the authors make no claim that
the implementation of stratified sampling in the code is ideal.

0D Equilibrium

For a truly zero dimensional problem grey problem there
is no need to stratify any of the variables except time. Because
the solution is only a function of one variable we can stratify
that variable exactly (tb = Nphotons). Here a 0D problem at 1.0
keV was run with a 1 nanosecond time step. Figure (1) shows
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Fig. 1. Error vs. number of photons for a 0D problem at equilibrium after one timestep

Method Photons Run Time (s) Error FOM
Stratified IMC 5e7 108.53 0.0069 1.335

IMC 5e7 106.16 0.01337 0.704

that we obtain roughly the ideal improvement in convergence
rate as shown in Eq. (!!!!).

Infinite Medium Equilibrium

A simple infinite medium problem at equilibrium was run
to test the algorithm with all six dimensions stratified. In this
problem the initial and final temperature is 1.0 keV. A 1.0 cm
cube was used with five spatial zones in each dimension. The
opacity is 1.0 cm−1 and the heat capacity is 1.0e7 jk

g keV . The
heat capacity is set unphysically high to eliminate effective
scattering so the benefits of angular stratification can be tested.
Fig. (2) shows the results after one 0.01 sh time step. A linear
fit gives a slope of about -0.58 for the IMC with stratified
sampling. The ideal -0.66 convergence rate predicted in Eq.
(!!) is for an infinite number of particles. The convergence rate
does seem to improve–the slope between 1e7 photons and 5e7
photons is about -0.68. Fig. (3) shows that the implementing
stratified sampling does not significantly impact run time. The
Figure of Merit for 5e7 photons is shown in the following table:

A second equilibrium problem was run with more realistic
parameters. The opacity was set to 1.0 cm−1, the heat capacity
to 0.1 jk

g keV and the same time step size was used. This problem
has a Fleck factor of about 0.79, so the scattering ratio is about
20%. After one time step the error for varying number of

photons is shown in Fig. 4. Fig 4 shows that even with some
degree of scattering convergence rates improve but scattering
does decrease the rate of convergence with stratified sampling.

CONCLUSIONS

Stratified sampling can be used to improve the convergence
rate and Figure of Merit for TRT problems. The algorithm is
not expensive to implement and when the problem is optically
thin FOM can be improved by a factor of two. The degree
of scattering in the problem will tend to make stratification
in angle less important–angle is resampled uniformly after a
scattering interaction, thus the solution will behave as if the
angular variables were not stratified.

Stratified sampling could easily be extended to frequency
dependent problems. It also may be possible to obtain better
results on problems with high scattering ratios by turning off
stratification in angle at a certain point to create more bins in
space and time.
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Fig. 2. Error vs. number of photons for a 0D problem at equilibrium after one timestep
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Fig. 3. Runtime vs. number of photons for a purely absorbing infinite medium problem at equilibrium after one time step



104 105 106 107 108

Photons

10-1

100

L
1
 N

or
m

Stratified IMC, slope: -0.528
IMC, slope: -0.500

Fig. 4. Error vs. number of photons for an infinite medium problem with effective scattering at equilibrium after one time step


