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Radiative Transfer Problems 

n  Here we’re solving transport problems for thermal x-rays as part of a 
radiation hydrodynamics simulation. 
•  These x-rays behave like particles (or at least we pretend they do). 

n  The difference is that when the x-rays are absorbed, they heat up the 
background material. 

n  The material also emits x-rays (i.e., acts as a source) depending on its 
temperature. 
•  This is what makes it nonlinear 

n  The problems are also typically time dependent. 

n  This work is an extension of work presented at the ANS winter meeting 
last year. 
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Implicit Monte Carlo is not the truth. (shhh, don’t tell anyone) 

n  Implicit Monte Carlo (IMC) has been around since the 1970’s and it can 
give accurate solutions when run correctly. 

n  Nevertheless, IMC has errors 
•  Even in the limit of an infinite number of particles (phauxtons) 
•  Mesh Errors, time discretization errors, linearization errors. 

n  Some of the errors are weird 
•  In diffusive media, IMC can give better answers with larger mesh cells and time 

steps 
—  If the number of particles is not increased. 

n  Given all this, IMC is the method that refuses to die, despite much effort 
at improvement at LANL, LLNL, AWE, and beyond. 

n  This talk will detail an approach to deal with time and linearization 
errors. 
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denoted in the figure by f, has the material temperature exceeding the equilibrium temperature after one time step. Succes-
sive time steps have the Fleck and Cummings solution nonphysically oscillating about the equilibrium value. These results
for Fleck and Cummings indicate that it is allowing too much absorption in the first time step, causing the material to heat up
too much. At the other extreme, the m1 solution only slightly heats up over the entire simulation time. For m1 there is too
much effective scattering so there is no heating in the problem. The m10 solution is similar to the m1 solution in that there is
not enough heating and the solution does not reach the equilibrium solution in the simulated time. The m3 and m4 solutions
do not overshoot the equilibrium value and approach the equilibrium solution monotonically from below, but they do not
reach equilibrium in one time step.
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Fig. 2. Infinite medium material temperature with initial TR ¼ 0:5 keV; Dt ¼ 0:01 ns for different factors, either f or ml .
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Fig. 3. Infinite medium material temperature with initial TR ¼ 0:5 keV; Dt ¼ 0:001 ns.
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What can these errors do? 

n  The figure on the right shows 
how IMC behaves in a simple, 
infinite medium problem. 

n  In this problem, initially the 
radiation temperature is 0.5 keV, 
and the material temperature is 
0.4 keV.  

n  Note how IMC (the “f” line) 
oscillates around the exact 
solution. 

n  The main problem here is that 
IMC is linearizing about the 
previous time step’s 
temperature (implying not 
enough emission). 

McClarren and Urbatsch, 2009. 
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What is going on in IMC 
n  IMC takes the emission term in the radiative transfer equations and 

“linearizes” about a suitably appropriate time averaged value of the 
emission source. 
•  The time averaging can be switched from semi-implicit to fully explicit using the, 

implicitness parameter, α 
•  α = 1 is fully implicit, α = 0 is explicit, and α = ½ is formally second-order 

n  In practice, α=1 is almost always used because it is the most robust. 
•  The lack of robustness for α = ½ was pointed out in the original Fleck and 

Cummings paper. 

n  This lack of robustness comes from the fact that IMC linearizes about 
the previous time step’s emission source. 

n  In effect, the material does not know if the emission term will increase 
or decrease during a time step (thereby over or undershoots can 
occur). 

n  Moreover, the important quantity is σT4.   
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Linearizing about a different time 

n  The idea that we explore in this work is to use the two previous time-
steps’ temperatures to center the linearization about a mid-time 
temperature. 

n  We do this based on the BDF-2 method 
•  A time integration method that implicitly computes a second-order update by 

differently differencing the time derivative operator. 

n  This also allows us to evaluate the opacity at a mid-time-step 
temperature. 

n  Also, this change looks the same as IMC 
•  With a slight change to the Fleck factor, 
•  And temperatures evaluated at an average of the previous two time steps. 
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The BDF-2 Method 
n  Consider the differential equation, 

n  The BDF-2 discretization (for a constant time step) is 

n   This method is both second-order and L-stable 
•  L-stability meaning that any size of time step is stable and that oscillations are 

damped in time. 

n  This method is not “self-starting” (i.e. for the first time step we can’t 
use BDF-2).  

n  In practice, we will deal with this by taking a standard IMC step to the 
mid of the first time step, and use that to start the calculation. 
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1 Derivation of the Method

Consider a gray radiative transfer problem, defined by an equation for the specific intensity of radiation,
 (r,⌦, t),
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In Eq. (1) we have neglected scattering for convenience; including scattering is straightforward and does not
change our method.

We wish to develop a set of linearized equations that are suitable for solution via a Monte Carlo technique.
To do this we will find a means of approximating the T 4 term. First, we difference the time derivative in
Eq. (2) using a backward difference formula of order 2 (the BDF-2 method) [1]. This method takes a
differential equation of the form
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where un is the value of u after the nth time step. This method is second-order accurate in time, provided
that any nonlinearity on the right-hand side is converged, and the method is L-stable.

Applying the BDF-2 method to Eq. (2) gives
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Applying BDF-2 to the IMC equations 

n  The gray radiative transfer equations are 

n  With the relations  

n  Applying the BDF-2 method to the material energy equation gives 
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1 Derivation of the Method

Consider a gray radiative transfer problem, defined by an equation for the specific intensity of radiation,
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Applying BDF-2 to the IMC equations (cont.) 

n  Next, we expand the emission term about the n+½ time step to get  

n  The temperature derivative is then written as  

n  We then write the mid-step temperature as  

We then make the approximation that En+1

r ⇡ Er(t) and expand the term �
�
Tn+1

�
a(Tn+1

)

4 using a Taylor
series and then apply the chain rule:

�
�
Tn+1

�
a(Tn+1

)

4

= �
⇣
Tn+1/2

⌘
a(Tn+1/2

)

4

+

�t

2

@

@t

⇥
�(T ) aT 4

⇤
t=tn+1/2

= �
⇣
Tn+1/2

⌘
a(Tn+1/2

)

4

+

⇣
Tn+1 � Tn+1/2

⌘ @

@T

⇥
�(T ) aT 4

⇤
T=Tn+1/2 . (5)

The temperature derivative term can be expanded as

@

@T

⇥
�(T ) aT 4

⇤
T=Tn+1/2 = 4a�(Tn+1/2

)

⇣
Tn+1/2

⌘
3

+ a(Tn+1/2
)

4

@�

@T

����
T=Tn+1/2

. (6)

Next, we write
Tn+1/2

=

4

3

Tn � 1

3

Tn�1, (7)

and use this result in Eq. (5) to get

�
�
Tn+1

�
a(Tn+1

)

4

= �

✓
4

3

Tn � 1

3

Tn�1

◆
a

✓
4

3

Tn � 1

3

Tn�1

◆
4

+

✓
Tn+1 � 4

3

Tn
+

1

3

Tn�1

◆ 
4a�

✓
4

3

Tn � 1

3

Tn�1

◆✓
4

3

Tn � 1

3

Tn�1

◆
3

+ a

✓
4

3

Tn � 1

3

Tn�1

◆
4 @�

@T

����
T=Tn+1/2

!
.

(8)

Solving this equation for
�
Tn+1 � 4

3

Tn
+

1

3

Tn�1

�
gives

✓
Tn+1 � 4

3

Tn
+

1

3

Tn�1

◆
=

�
�
Tn+1

�
a(Tn+1

)

4 � �
�
Tn+1/2

�
a(Tn+1/2

)

4

4a�
�
Tn+1/2

� �
Tn+1/2

�
3

+ a
�
Tn+1/2

�
4 @�

@T

��
T=Tn+1/2

, (9)

where we have used Eq. (7) for convenience. We can use Eq. (9) in the left-hand side of Eq. (4), and then
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Then substituting Eq. (10) into the original radiation and material equations—Eqs. (1) and (2) respectively—
we arrive at the system of equations
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where Tn+1/2 is defined in terms of Tn and Tn�1 by Eq. (7). The system given in (13) contains the equations
we seek to solve with a particle-based Monte Carlo method. This procedure closely follows that of standard
IMC as presented by Fleck and Cummings. Equation (13a) is a time-dependent, linear transport equation
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where Tn+1/2 is defined in terms of Tn and Tn�1 by Eq. (7). The system given in (13) contains the equations
we seek to solve with a particle-based Monte Carlo method. This procedure closely follows that of standard
IMC as presented by Fleck and Cummings. Equation (13a) is a time-dependent, linear transport equation

2



Operated by Los Alamos National Security, LLC for NNSA 

1876 

Applying BDF-2 to the IMC equations (cont.) 
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Then substituting Eq. (10) into the original radiation and material equations—Eqs. (1) and (2) respectively—
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where Tn+1/2 is defined in terms of Tn and Tn�1 by Eq. (7). The system given in (13) contains the equations
we seek to solve with a particle-based Monte Carlo method. This procedure closely follows that of standard
IMC as presented by Fleck and Cummings. Equation (13a) is a time-dependent, linear transport equation
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where Tn+1/2 is defined in terms of Tn and Tn�1 by Eq. (7). The system given in (13) contains the equations
we seek to solve with a particle-based Monte Carlo method. This procedure closely follows that of standard
IMC as presented by Fleck and Cummings. Equation (13a) is a time-dependent, linear transport equation
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where Tn+1/2 is defined in terms of Tn and Tn�1 by Eq. (7). The system given in (13) contains the equations
we seek to solve with a particle-based Monte Carlo method. This procedure closely follows that of standard
IMC as presented by Fleck and Cummings. Equation (13a) is a time-dependent, linear transport equation
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Then substituting Eq. (10) into the original radiation and material equations—Eqs. (1) and (2) respectively—
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where Tn+1/2 is defined in terms of Tn and Tn�1 by Eq. (7). The system given in (13) contains the equations
we seek to solve with a particle-based Monte Carlo method. This procedure closely follows that of standard
IMC as presented by Fleck and Cummings. Equation (13a) is a time-dependent, linear transport equation
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Then substituting Eq. (10) into the original radiation and material equations—Eqs. (1) and (2) respectively—
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where Tn+1/2 is defined in terms of Tn and Tn�1 by Eq. (7). The system given in (13) contains the equations
we seek to solve with a particle-based Monte Carlo method. This procedure closely follows that of standard
IMC as presented by Fleck and Cummings. Equation (13a) is a time-dependent, linear transport equation
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Applying BDF-2 to the IMC equations (cont.) 

n  The final result is then 

n  Notice that these equations are the same as the standard IMC 
equations except for the Fleck factor and the fact that we evaluate the 
opacity and emission terms at the middle of the time step. 

n   If the time step is changing, then we use 
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Then substituting Eq. (10) into the original radiation and material equations—Eqs. (1) and (2) respectively—
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where Tn+1/2 is defined in terms of Tn and Tn�1 by Eq. (7). The system given in (13) contains the equations
we seek to solve with a particle-based Monte Carlo method. This procedure closely follows that of standard
IMC as presented by Fleck and Cummings. Equation (13a) is a time-dependent, linear transport equation
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with a known source: this equation can be solved using standard Monte Carlo procedures on prescribed
spatial grid [2, 3]. In this equation m� is an effective absorption cross-section for thermal radiation and
(1�m)� is the effective scattering for thermal radiation. During the Monte Carlo solution of the radiation
equation, the energy in the thermally-emitted particles is tracked and the energy in the absorbed particles
is also tracked. The update to the material specific internal energy is then given in each grid cell by
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where ✓ is a parameter between 2
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and 1. The value of 2
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gives the BDF-2 scheme as derived. Using a different
value for ✓ adds a first-order in �t error to the temperature update, though, as numerical experiments have
bourne out, using a value of 1 gives more robust solutions. We call this approach time lumping because it
resembles lumping in finite element methods where an error term is added to enhance stability.

1.2 Varying �t

In the case where �t is varying we need a different formula for Tn+1/2 than that given in Eq. (7). One can
derive the BDF-2 method using variable step sizes and find that in this case
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2 Properties of the Method

The above method has many similarities to the so-called Implicit Monte Carlo (IMC) method originally
promulgated by Fleck and Cummings [2] and later advanced by many authors (see, for instance, Refs. [4,
5, 6, 7, 8, 9, 10] ). In IMC the absorption/emission process during a time step is modeled by an effective
scattering process in the same way as the BDF-2 based method. The IMC procedure defines an f factor,
called the Fleck factor in the parlance of our times, as
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Gentile [8] explored the inclusion of the derivative of the opacity in a slightly different form than above and
found that including this information could lead to a more accurate method. Nevertheless, the ˆ� described
above is the most common formulation.
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Time Lumping 

n  We can modify the definition of m, with θ in [2/3, 1], as 

n  When θ=2/3, we recover the BDF-2 factor. 

n  In practice we have noticed that setting θ=1 is more robust, though 
formally this will not be second-order. 

n  We call this effect time lumping, because we sacrifice an order of 
accuracy for robustness 
•  Similar to techniques used in finite element methods when dealing with spatial 

stencils. 
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Infinite Medium Tests 

n  Test problem with 

n   Initial conditions of Tr = 0.5 keV, and Tm = 0.4 keV. 

n  This is the same problem solved by Densmore and Larsen (2004) and 
McClarren and Urbatsch (2009). 

n   This problem has a constant opacity, so including the opacity 
derivative has no effect. 

Given the value of En
r the exact solution to Eq. (26a) for a constant Cv at time level n+ 1 is

En+1

r =

⇣
Ern � a(Tn+1/2

)

4
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)
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4

+

Q(1� e�cm�
(

Tn+1/2
)

�t
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cm�
�
Tn+1/2

� , (27)

this equation represents the solution the Monte Carlo procedure would obtain in the limit of an infinite
number of particles. Then we integrate Eq. (26b) to get

Tn+1

= Tn
+
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a
�
Tn+1/2
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4 � En

r

⌘
e�c�tm�
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4
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Q
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�
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) � 1

⌘

cCvm�
�
Tn+1/2

� . (28)

The solutions in Eqs. (27) and (28) are valid for any treatment of �(T ) as long as the value does not change
during the time step.

The first test we will perform has Cv = 0.01 GJ/cm3-keV, �(T ) = 100 cm�1, and an initial radiation
temperature, Tr = (Er/a)1/4 = 0.5 keV and an initial material temperature of T = 0.4 keV. This problem
was first solved by Densmore and Larsen to examine the behavior of different Monte Carlo methods in the
diffusion limit [6]. This test problem will isolate the effect of the BDF-2 approach on the emission term
because the opacity is not temperature dependent.

The results for this problem using standard IMC and BDF-2 with two values of ✓ are shown in Figure
1. From these plots we see a stark contrast between the IMC and BDF-2 schemes. The IMC scheme has
the material temperature overshoot the radiation temperature in the first time step. This is a nonphysical
result as the true solution has the radiation and material temperatures approach the equilibrium temperature
monotonically. The BDF-2 results do not have the material temperature overshoot the radiation temperature
in the initial time step. We do note, however, both the IMC and BDF-2 solutions have slight oscillations
around the equilibrium temperature. This oscillation is more pronounced in the BDF-2 solution when ✓ =

2

3

compared to the solution with ✓ = 1. We have seen similar phenomenon in a variety of test problems, and
we therefore recommend using ✓ = 1.

We can slightly modify the problem to have a larger difference between the initial material and radiation
temperatures by setting the initial values as Tr = 0.5, and T = 0.01. The results from the modified problem
are shown in Figure 2. For this larger difference in initial temperature, the IMC solution has the radiation
temperature go well below the material temperature in the first time step. The BDF-2 solution does not
have this behavior.

To add further complexity to the test problem we now allow the opacity to vary with the temperature.
Specifically, we modify the problem to have �(T ) = 100T�3 cm�1 with T in keV and increase the initial
radiation temperature to Tr = 1.0 keV. Having temperature dependent opacities allows us to test the impact
of the logarithmic derivative term in the definition of � in Eq. (24). In Figure 3 we examine the solution from
standard IMC and BDF-2 with and without the logarithmic derivative term. In the standard IMC solution
the material temperature goes above the initial radiation temperature. This is a violation of the maximum
principle [12]. The BDF-2 solutions do not violate the maximum principle, though they do oscillate around
the equilibrium temperature. These oscillations are more pronounced when the derivative of �(T ) is included
in �. We note, however, that the IMC solution does have oscillations around the equilibrium, but they are
less noticeable due to the different scale in the plot.

We next turn to a problem with a temperature dependent opacity. As first posed by Gentile [8], the
problem we will solve has Cv = 0.05 GJ/cm3-keV, �(T ) = 0.001T�5 cm�1 with T in keV, and an initial
radiation temperature, Tr = (Er/a)1/4 = 1.465122 keV and an initial material temperature of T = 0.01
keV; our solutions to this problem appear in Figure 4. This problem has an equilibrium temperature of 1
keV, though the equilibrium temperature is approached very slowly because the opacity decreases rapidly
with increasing temperature—an interesting aspect of this problem is that the material emits less radiation

5
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Infinite Medium Tests, temperature vs. time 
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Figure 1: Infinite medium solutions to a problem with Cv = 0.01 GJ/cm3-keV, �(T ) = 100 cm�1, and an
initial radiation temperature, Tr = (Er/a)1/4 = 0.5 keV and an initial material temperature of T = 0.4 keV.
The time step size is �t = 0.001 sh.
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Figure 1: Infinite medium solutions to a problem with Cv = 0.01 GJ/cm3-keV, �(T ) = 100 cm�1, and an
initial radiation temperature, Tr = (Er/a)1/4 = 0.5 keV and an initial material temperature of T = 0.4 keV.
The time step size is �t = 0.001 sh.
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The time step size is �t = 0.001 sh.
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Infinite Medium Test: temperature dependent opacity 

n  Problem introduced by Gentile (2011): 

n  Initially,  
•  Radiation Tr = 1.465122 keV,  
•  Material Tm = 0.01 keV  
•  (chosen so that the equilibrium temperature is 1 keV). 

Given the value of En
r the exact solution to Eq. (26a) for a constant Cv at time level n+ 1 is

En+1

r =

⇣
Ern � a(Tn+1/2

)

4

⌘
e�cm�

(

Tn+1/2
)

�t
+ a

⇣
Tn+1/2

⌘
4

+

Q(1� e�cm�
(

Tn+1/2
)

�t
)

cm�
�
Tn+1/2

� , (27)

this equation represents the solution the Monte Carlo procedure would obtain in the limit of an infinite
number of particles. Then we integrate Eq. (26b) to get

Tn+1

= Tn
+

⇣
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�
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�
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r

⌘
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�
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�
+ e�c�tm�

(
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) � 1

⌘

cCvm�
�
Tn+1/2

� . (28)

The solutions in Eqs. (27) and (28) are valid for any treatment of �(T ) as long as the value does not change
during the time step.

The first test we will perform has Cv = 0.01 GJ/cm3-keV, �(T ) = 100 cm�1, and an initial radiation
temperature, Tr = (Er/a)1/4 = 0.5 keV and an initial material temperature of T = 0.4 keV. This problem
was first solved by Densmore and Larsen to examine the behavior of different Monte Carlo methods in the
diffusion limit [6]. This test problem will isolate the effect of the BDF-2 approach on the emission term
because the opacity is not temperature dependent.

The results for this problem using standard IMC and BDF-2 with two values of ✓ are shown in Figure
1. From these plots we see a stark contrast between the IMC and BDF-2 schemes. The IMC scheme has
the material temperature overshoot the radiation temperature in the first time step. This is a nonphysical
result as the true solution has the radiation and material temperatures approach the equilibrium temperature
monotonically. The BDF-2 results do not have the material temperature overshoot the radiation temperature
in the initial time step. We do note, however, both the IMC and BDF-2 solutions have slight oscillations
around the equilibrium temperature. This oscillation is more pronounced in the BDF-2 solution when ✓ =

2

3

compared to the solution with ✓ = 1. We have seen similar phenomenon in a variety of test problems, and
we therefore recommend using ✓ = 1.

We can slightly modify the problem to have a larger difference between the initial material and radiation
temperatures by setting the initial values as Tr = 0.5, and T = 0.01. The results from the modified problem
are shown in Figure 2. For this larger difference in initial temperature, the IMC solution has the radiation
temperature go well below the material temperature in the first time step. The BDF-2 solution does not
have this behavior.

To add further complexity to the test problem we now allow the opacity to vary with the temperature.
Specifically, we modify the problem to have �(T ) = 100T�3 cm�1 with T in keV and increase the initial
radiation temperature to Tr = 1.0 keV. Having temperature dependent opacities allows us to test the impact
of the logarithmic derivative term in the definition of � in Eq. (24). In Figure 3 we examine the solution from
standard IMC and BDF-2 with and without the logarithmic derivative term. In the standard IMC solution
the material temperature goes above the initial radiation temperature. This is a violation of the maximum
principle [12]. The BDF-2 solutions do not violate the maximum principle, though they do oscillate around
the equilibrium temperature. These oscillations are more pronounced when the derivative of �(T ) is included
in �. We note, however, that the IMC solution does have oscillations around the equilibrium, but they are
less noticeable due to the different scale in the plot.

We next turn to a problem with a temperature dependent opacity. As first posed by Gentile [8], the
problem we will solve has Cv = 0.05 GJ/cm3-keV, �(T ) = 0.001T�5 cm�1 with T in keV, and an initial
radiation temperature, Tr = (Er/a)1/4 = 1.465122 keV and an initial material temperature of T = 0.01
keV; our solutions to this problem appear in Figure 4. This problem has an equilibrium temperature of 1
keV, though the equilibrium temperature is approached very slowly because the opacity decreases rapidly
with increasing temperature—an interesting aspect of this problem is that the material emits less radiation

5
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Infinite Medium: temperature-dependent opacity 
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Figure 4: Cv = 0.05 GJ/cm3-keV, �(T ) = 0.001T�5 cm�1 with T in keV, and an initial radiation temper-
ature, Tr = (Er/a)1/4 = 1.465122 keV and an initial material temperature of T = 0.01 keV. The time step
size is �t = 0.001 sh.
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ature, Tr = (Er/a)1/4 = 1.465122 keV and an initial material temperature of T = 0.01 keV. The time step
size is �t = 0.001 sh.

9

10−3 10−2 10−1 100 1010

0.2

0.4

0.6

0.8

1

1.2

1.4

t (sh)

T 
(k

eV
)

 

 

Tr

T

(a) IMC

10−3 10−2 10−1 100 1010

0.2

0.4

0.6

0.8

1

1.2

1.4

t (sh)

T 
(k

eV
)

 

 

Tr

T

(b) BDF-2, ✓ = 1, with derivative of �(T ) term in �

10−3 10−2 10−1 100 1010

0.2

0.4

0.6

0.8

1

1.2

1.4

t (sh)

T 
(k

eV
)

 

 

Tr

T

(c) BDF-2, ✓ = 1, without derivative of �(T ) term in �

Figure 4: Cv = 0.05 GJ/cm3-keV, �(T ) = 0.001T�5 cm�1 with T in keV, and an initial radiation temper-
ature, Tr = (Er/a)1/4 = 1.465122 keV and an initial material temperature of T = 0.01 keV. The time step
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n  In the standard IMC results, the material 
and radiation temperatures “flip” in the 
first time step and never revert. 

n  In other words, after the first time step 
the material is hotter than the radiation 
until equilibrium is reached 
•  This is clearly incorrect. 
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Implementation in Cassio 

n  We implemented a prototype of the BDF-2-based extrapolation method 
in the Cassio code to test it on an ICF problem.  

n  The Cassio code is an Inertial Confinement Fusion (ICF) code in Los 
Alamos National Laboratory’s Eulerian Applications Project.  

n  The code uses a Godunov hydrodynamics scheme in an Eulerian frame 
on a unit-aspect ratio adaptive-mesh-refinement (AMR) mesh. 

n  Cassio can simulate thermal radiation transport with a diffusion 
approximation, IMC, or, nearly in production, Sn. 
•  The IMC is the Wedgehog Implicit Monte Carlo package, based on the Fleck and 

Cummings method, from the LANL’s Jayenne Project.  



Operated by Los Alamos National Security, LLC for NNSA 

1876 

Implementation in Cassio 

n  Cassio uses an operator split approach where the hydrodynamics solve 
comes before the radiation solve within each timestep.  

n  After the hydrodynamics solve, the temperature that is sent to the 
radiation package was considered to be the beginning-of-timestep 
temperature that we saved for the next cycle and that we used to 
extrapolate into the current timestep.  

n  The old temperature vector needed to be remapped to the newly 
refined/coarsened AMR mesh at the end of each timestep after the 
radiation solve. 
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Peculiarities with the implementation 

n  We used regular IMC for the first cycle.  

n  The emission and opacity were evaluated at the extrapolated 
temperature, but the heat capacity was not.  

n  No opacity derivatives were considered. 

n  We used time lumping, setting the implicitness to 1.0 

n  The extrapolated temperature was optionally limited to some fraction of 
the beginning-of-time step temperature. Considerations were 20%, 
100%, and no ceiling along with a cold floor to avoid negativities. 

n  The old temperature vector was not advected with the hydrodynamics 
step. 



Operated by Los Alamos National Security, LLC for NNSA 

1876 

Timestep Control 

n  The timestep control in Cassio considers many different constraints 
and selects the minimum value.  

n  One timestep control is some fraction of the Courant timestep limit for 
the hydro.  

n  Thus, a refined mesh anywhere in the problem reduces the timestep.  

n  The implication is that this BDF-2-based extrapolation will become 
relatively less necessary and effective as a given mesh is refined.  

n  If there were no detriment to the hydrodynamics, loosening the cell-
size-based timestep controls could result in the BDF-2-based 
extrapolation showing more benefit, but then any errors from not 
advecting the old temperature vector could become larger. 
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Holhraum Problem 
Temperature Extrapolation for IMC-Rad Hydro using BDF-2
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Figure 5. Schematic of a hohlraum rad-hydro test problem in RZ.

BDFͲ2 IMC

Figure 6. Material locations at 1ns. Black is aluminum, green is CH.

from 0.45cm to 0.6cm radius. A constant Planckian Blackbody surface is applied on one end of the
problem, 0.3cm away from the end with the annular opening.

The Cassio hohlraum problem had an Aluminum wall and block at 2.7 g/cc and, everywhere else,
Carbon-Hydrogen at a density of 1.0e-4 g/cc, all with an initial temperature of 1 eV. The drive for this
problem was 400 eV. We used a multigroup opacity treatment with 102 logarithmically spaced opacity
groups. Ramping linearly in time from 1e5 particles to 1e6 particles over about a nanosecond, a
[R

outer

/r]2 source bias model was applied over each cell in the entire problem. Results at 1 ns show that
the BDF-2 extrapolation was somewhat smoother. Figure 6 is a material plot that shows the Al as black and
the CH as green, and that the interface appears to be slightly smoother for the BDF2-based extrapolation. A
closeup of the sourced side of the hohlraum in Fig. 7 shows the regular IMC displaying more noise in the
thin CH, although the BDF2-base extrapolation seems to have more axis effects inside the hohlraum.
Figure 8 shows the material temperature being smoother on the Al surface in the back corner. Figure 9
shows that the BDF-2-based extrapolation gave larger timesteps for a large portion of the runtime, such that
the IMC took 495 cycles and the BDF-2 396 cycles to reach 1.0 ns, requiring about 26 minutes and 22
minutes, respectively, on 32 processors of LANL’s Tri-Lab Computing Cluster, Moonlight, an
Opteron+GPGPU architecture from Appro.

11/15

•  This problem has radiation striking a 
hohlraum with an annular opening. 

•  The radiation is a blackbody source at 
400 eV. 

•  We used 102 logarithmically spaced 
energy groups. 

•  Ramping linearly in time from 1e5 
particles to 1e6 particles over about a 
nanosecond, a [Router/r]2 source bias 
model was applied over each cell in 
the entire problem.  

Aluminum 
2.7 g/cc 

CH Foam 
0.0001 g/cc 
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Figure 5. Schematic of a hohlraum rad-hydro test problem in RZ.

BDFͲ2 IMC

Figure 6. Material locations at 1ns. Black is aluminum, green is CH.

from 0.45cm to 0.6cm radius. A constant Planckian Blackbody surface is applied on one end of the
problem, 0.3cm away from the end with the annular opening.

The Cassio hohlraum problem had an Aluminum wall and block at 2.7 g/cc and, everywhere else,
Carbon-Hydrogen at a density of 1.0e-4 g/cc, all with an initial temperature of 1 eV. The drive for this
problem was 400 eV. We used a multigroup opacity treatment with 102 logarithmically spaced opacity
groups. Ramping linearly in time from 1e5 particles to 1e6 particles over about a nanosecond, a
[R

outer

/r]2 source bias model was applied over each cell in the entire problem. Results at 1 ns show that
the BDF-2 extrapolation was somewhat smoother. Figure 6 is a material plot that shows the Al as black and
the CH as green, and that the interface appears to be slightly smoother for the BDF2-based extrapolation. A
closeup of the sourced side of the hohlraum in Fig. 7 shows the regular IMC displaying more noise in the
thin CH, although the BDF2-base extrapolation seems to have more axis effects inside the hohlraum.
Figure 8 shows the material temperature being smoother on the Al surface in the back corner. Figure 9
shows that the BDF-2-based extrapolation gave larger timesteps for a large portion of the runtime, such that
the IMC took 495 cycles and the BDF-2 396 cycles to reach 1.0 ns, requiring about 26 minutes and 22
minutes, respectively, on 32 processors of LANL’s Tri-Lab Computing Cluster, Moonlight, an
Opteron+GPGPU architecture from Appro.
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•  Aluminum is black 

•  CH Foam is green 

•  The BDF-2 solution 
appears to be slightly 
smoother along the 
interface. 
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Ryan G. McClarren and Todd J. Urbatsch

BDFͲ2 IMC

Figure 7. Near the radiation source at 1.0ns, the CH has less noise in the BDF-2-based prototype than
in IMC.

BDFͲ2 IMC

Figure 8. In the back corner of the hohlraum at 1.0ns, the BDF-2-based prototype appears to have
less noise than in IMC.

12/15

At 1ns, the BDF-2-based extrapolation appears to 
have less overheating in the CH. 
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Ryan G. McClarren and Todd J. Urbatsch

BDFͲ2 IMC

Figure 7. Near the radiation source at 1.0ns, the CH has less noise in the BDF-2-based prototype than
in IMC.

BDFͲ2 IMC

Figure 8. In the back corner of the hohlraum at 1.0ns, the BDF-2-based prototype appears to have
less noise than in IMC.
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The solution behind the target @ 1ns shows the 
BDF-2-based extrapolation to be smoother. 
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Solution behind the target @ 1ns 
The BDF-2 material temperature is smoother on the Al surface 
in the back corner  

Looking at the multigroup CH absorption coefficient, we see 
different dependencies on temperature. 



Operated by Los Alamos National Security, LLC for NNSA 

1876 We see that certain parts of the opacity spectrum have a stronger 
temperature dependence, where the extrapolation could help. 
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large portion of the runtime Temperature Extrapolation for IMC-Rad Hydro using BDF-2

Figure 9. Longer timesteps are possible with the BDF-2-based prototype, given the same timestep
constraints.

5.3. 1D Wall Problem in 3D

We next define a subset of the hohlraum problem, a 1D slab problem of 400-eV Planckian radiation
traveling through 0.1cm of CH at density 1.0e-3 g/cc and impinging on a 0.02cm-thick aluminum wall.
With a zeroth-level mesh of 0.01cm cubed, we looked at 4, 6, and 8 levels of refinement at the material
interface, which translates to cell widths of 0.00125 cm, 0.0003125 cm, and 0.000078125 cm, respectively.
Whereas the various refinement levels significantly affected the behavior of the simulation, the BDF-2
prototype appeared to have little impact on the solution. Fig. 10 shows, at the top, a close-up side view of
the material temperature for the 8-levels-of-refinement problem at 0.0132ns. Both the IMC and
BDF-2-based prototype look nearly the same, regardless of whether the extrapolation was limited to be
within 20% of the current temperature or unbounded. The two lower plots in Fig. 10 are the IMC and
BDF-2-prototype material temperatures at a cross-section slide perpendicular to the flow at x=0.099cm,
which is 0.001cm in front of where the material interface originated. Visually scrutinizing the lower left
subfigure of Fig. 10, it does seem that the BDF-2-based extrapolation has less overheated clumpiness.

5.4. Comments on the Radiation-Hydrodynamics problems

The BDF-2 prototype seemed to stabilize the behavior of the hohlraum problem where the CH density was
1.0e-4 g/cc. Other problems, namely where the density was higher, did not benefit as much. We discussed
above how small AMR spatial cells can drive the timestep down such that the BDF-2-based extrapolation
has a reduced effect. Even when the timestep was forced to be large, there appeared to be little BDF-2
improvement for many variation on the ICF problem. Therefore, another consideration is the material. The
frequency integrated opacity of the CH was nonmonotonic for cold temperatures, having a large spike in
the domain a few eV’s. Once it heats up, though, the opacity drops significantly. Thus, stability due to
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To reach 1 ns: 

•  IMC:  
•  495 cycles, 26 min 

•  BDF-2: 
•  396 cycles, 22 min  

 

 

Run on 32 processors of 
LANL’s Tri-Lab Computing 
Cluster, Moonlight, an 
Opteron+GPGPU 
architecture from Appro  
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1-D Hohlraum problem (in 3-D) 

n  We next define a subset of the hohlraum problem, a 1D slab problem of 
400-eV Planckian radiation  

n  Traveling through 0.1cm of CH at density 1.0e-3 g/cc and impinging on 
a 0.02cm-thick aluminum wall.  

n  With a zeroth-level mesh of 0.01cm cubed, we looked at 4, 6, and 8 
levels of refinement at the material interface,  
•  This translates to cell widths of 0.00125 cm, 0.0003125 cm, and 0.000078125 cm, 

respectively.  
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Whereas the various refinement levels significantly affected the behavior 
of the simulation, the BDF-2 prototype appeared to have less impact on 
the solution except that it may be displaying less clumping of hot spots. 
 

Ryan G. McClarren and Todd J. Urbatsch

Tmat,�eV

Figure 10. For a highly refined wall problem, the BDF-2 prototype had little effect. The top panel is
a side view of the material temperature. The bottom left panel is a cross-sectional view at x=0.099cm,
with BDF-2-based extrapolation on the left and IMC on the right.

opacity changes may not be the dominant concern here. (We did not consider any of the CH foam models
that are available.) Should Cassio ever incorporate a refinement-level-dependent timestep, the
BDF-2-based extrapolation could prove important for the coarser levels.

The impact of not advecting the old temperature vector each timestep needs to be investigated. It is
possible that, especially for the material heterogeneities present in these ICF test problems, this is an
important effect.

6. CONCLUSIONS

We have presented a new temperature extrapolation for time-Implicit Monte Carlo methods used in
radiation hydrodynamics simulations. It is based on the backward difference formulation of order 2
(BDF-2) time-integration method. We have tested the method both in radiation-only and
radiation-hydrodynamics simulations and shown improvements in stability.
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Conclusions 

n  We have implemented a temperature extrapolation in LANL’s Cassio 
code which calls the Jayenne Project’s Wedgehog IMC package. 

n  The extrapolation is based on a backward difference formulation of 
order 2 (BDF-2) time-integration method.   

n  The extrapolation shows some improvement in the radiation-
hydrodynamics code Cassio.  

n  The prototype may benefit from advecting the old temperature each 
timestep. 
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Abstract 

We have implemented a temperature extrapolation in LANL’s Cassio IMC 
code.  The extrapolation is based on a backward difference formulation of 
order 2 (BDF-2) time-integration method.  The extrapolation shows marked 
improvement in radiation-only test problems and some improvement in the 
radiation-hydrodynamics code Cassio.  We show Cassio results for an 
Aluminum/Carbon-Hydrogen hohlraum problem whose geometry is based 
on an existing test problem (but has real materials).  We suggest further 
enhancements that may be necessary to improve this particular 
implementation. 


