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DERIVATION OF THE METHOD

Consider a gray radiative transfer problem, defined by an
equation for the specific intensity of radiation, ψ(r,Ω, t),

1
c
∂ψ

∂t
+ Ω · ∇ψ + σ(T )ψ =

σ(T )acT 4

4π
+

Q
4π
, (1)

and a material energy equation

∂Em

∂t
= cσ(T )(Er − aT 4), (2)

where Em(r, t) is the material internal energy density which
is related to the temperature by an equation of state: ∂Em

∂t =

Cv(T ) ∂T
∂t . Also in Eq. (2), Er(r, t) is the radiation energy den-

sity (a quantity proportional to the zeroth angular moment of
the specific intensity): Er(r, t) = 1

c

∫
4πψ(r,Ω, t) dΩ. In Eq. (1)

we have neglected scattering for convenience; including scat-
tering is straightforward and does not change our method.

We will find a means of approximating the T 4 term to
develop a set of linearized equations that are suitable for so-
lution via a Monte Carlo technique. First, we difference the
time derivative in Eq. (2) using a backward difference formula
of order 2 (the BDF-2 method) [1], which takes a differential
equation of the form

du(t)
dt

= f (u(t)),

and integrates over a time step ∆t using the formula

un+1 − 4
3 un + 1

3 un−1

∆t
=

2
3

f (un+1),

where un is the value of u after the nth time step. The
BDF-2 method is second-order accurate in time, provided that
any nonlinearity on the right-hand side is converged, and the
method is L-stable. Our derivation assumes constant time step
sizes, although this can be relaxed in a straightforward manner.

Applying the BDF-2 method to Eq. (2), and linearizing
about T n+1/2 written as

T n+1/2 =
4
3

T n −
1
3

T n−1, (3)

leads to the expression

a(T n+1)4 = ma
(
T n+1/2

)4
+ (1 − m)Er, (4)

where
m =

1
1 + 2

3βcσ
(
T n+1/2) ∆t

, (5)

β =
4a

(
T n+1/2

)3

Cv
+

(
T n+1/2

)4

Cv

d
dT

log(σ)

∣∣∣∣∣∣∣∣
T=T n+1/2

. (6)

Then substituting Eq. (4) into the original radiation and mate-
rial equations—Eqs. (1) and (2) respectively—we arrive at the
system of equations
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(
T n+1/2

)
ψ =

(1 − m)cσ
(
T n+1/2

)
Er

4π
+
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(
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)4
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, (7a)

∂Em

∂t
= mcσ

(
T n+1/2

) (
Er − a

(
T n+1/2

)4
)
, (7b)

where T n+1/2 is defined in terms of T n and T n−1 by Eq. (3). The
system given in (7) contains the equations we seek to solve
with a particle-based Monte Carlo method. This procedure
closely follows that of standard IMC as presented by Fleck
and Cummings [2]. Equation (7a) is a time-dependent, linear
transport equation with a known source: this equation can be
solved using standard Monte Carlo procedures on a prescribed
spatial grid [2, 3]. In this equation, mσ is an effective absorp-
tion cross-section for thermal radiation and (1 − m)σ is the
effective scattering for thermal radiation. The Monte Carlo so-
lution transports the thermally emitted particles and tallies net
energy deposition to the material.

We can generalize the form of m found in Eq. (5) to

m =
1

1 + θβcσ
(
T n+1/2) ∆t

, (8)

where θ is a parameter between 2
3 and 1. The value of 2

3 gives
the BDF-2 scheme as derived. Using a different value for θ
adds a first-order in ∆t error to the temperature update, though,
as numerical experiments have bourne out, using a value of 1
gives more robust solutions. We call this approach “time lump-
ing” because it resembles lumping in finite element methods
where an error term is added to enhance stability.

PROPERTIES OF THE METHOD

The above method has many similarities to the Implicit
Monte Carlo (IMC) method originally promulgated by Fleck
and Cummings [2] and later advanced by many authors (see,
for instance, Refs. [4, 5, 6, 7, 8, 9, 10] ). In IMC the absorp-
tion/emission process during a time step is partially modeled
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(a) IMC
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(b) BDF-2, θ = 2
3
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(c) BDF-2, θ = 1

Fig. 1. Infinite medium solutions to a problem with Cv = 0.01
GJ/cm3-keV, σ(T ) = 100 cm−1, and an initial radiation tem-
perature, Tr = (Er/a)1/4 = 0.5 keV and an initial material
temperature of T = 0.4 keV. The time step size is ∆t = 0.001
sh.

by an effective scattering process. The IMC procedure defines
the Fleck factor, as

f =
1

1 + ασ (T n) β̂c∆t
, (9)

with α an implicitness parameter between 0 and 1. Typically,
β̂ = 4a (T n)3/Cv, although Gentile [8] explored the inclusion
of the derivative of the opacity in a slightly different form than
Eq. (6) and found that including this information could lead to
a more accurate method. Nevertheless, the β̂ described above
is the most common formulation.

The BDF-2 is not self-starting, that is, it cannot be used
for the very first time step of a calculation because two pre-
vious solutions are needed, and in the first time step only the
initial condition is available. One approach is to use the IMC
method to get a mid-step value of the temperature for the first
time step, and then use this mid-step temperature and the in-
titial condition to do a full BDF-2 update. This is the method
we use to start the calculations in this summary.

INFINITE MEDIUM TESTS

In an infinite medium our method can be simplified into a
system of ODEs

dEr

dt
= −mcσ

(
T n+1/2

) (
Er − a

(
T n+1/2

)4
)

+ Q. (10a)

dEm

dt
= mcσ

(
T n+1/2

) (
Er − a

(
T n+1/2

)4
)
. (10b)

The solution of these equations represents the solution the
Monte Carlo procedure would obtain in the limit of an infinite
number of particles.

The first test we will perform has Cv = 0.01 GJ/cm3-
keV, σ(T ) = 100 cm−1, and an initial radiation temperature,
Tr = (Er/a)1/4 = 0.5 keV and an initial material temperature
of T = 0.4 keV. We use units where c = 299.9 cm/sh (1 sh
= 10−8 s) and a = 0.01372 GJ/cm3· keV4. This problem was
first solved by Densmore and Larsen to examine the behavior
of different Monte Carlo methods in the diffusion limit [6].
This test problem will isolate the effect of the BDF-2 approach
on the emission term because the opacity is not temperature
dependent.

The results for this problem using standard IMC and BDF-
2 with two values of θ are shown in Figure 1. From these plots
we see a stark contrast between the IMC and BDF-2 schemes.
The IMC scheme has the material temperature overshooting
the radiation temperature in the first time step. This is a non-
physical result as the solution should have the radiation and
material temperatures approach the equilibrium temperature
monotonically. The BDF-2 results do not have the material
temperature overshoot the radiation temperature in the initial
time step. We do note, however, both the IMC and BDF-2
solutions have slight oscillations around the equilibrium tem-
perature. This oscillation is more pronounced in the BDF-2
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(a) IMC
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(b) BDF-2, θ = 1, with derivative of σ(T ) term in β
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(c) BDF-2, θ = 1, without derivative of σ(T ) term in β

Fig. 2. Cv = 0.05 GJ/cm3-keV, σ(T ) = 0.001T−5 cm−1 with T
in keV, and an initial radiation temperature, Tr = (Er/a)1/4 =

1.465122 keV and an initial material temperature of T = 0.01
keV. The time step size is ∆t = 0.001 sh. Note in (a), the
radiation temperature is below the material temperature.

solution when θ = 2
3 compared to the solution with θ = 1. We

have seen similar phenomenon in a variety of test problems,
which suggest that θ = 1 is more stable.

We next turn to a problem with a temperature dependent
opacity. As first posed by Gentile [8], the problem we will
solve has Cv = 0.05 GJ/cm3-keV, σ(T ) = 0.001T−5 cm−1 with
T in keV, and an initial radiation temperature, Tr = (Er/a)1/4 =

1.465122 keV and an initial material temperature of T = 0.01
keV; our solutions to this problem appear in Figure 2. This
problem has an equilibrium temperature of 1 keV, though the
equilibrium temperature is approached very slowly because
the opacity decreases rapidly with increasing temperature—an
interesting aspect of this problem is that the material emits less
radiation as it heats up. In the IMC results (Figure 2(a)) we see
a vexing phenomenon, first identified by Gentile, whereby the
radiation and material temperatures “flip” in the first time step
and never recover. The material temperature remains above
the radiation temperature until equilibrium is reached. This
phenomenon motivated Gentile to include the derivative of the
opacity in the IMC linearization. In our BDF-2 results we see
that the BDF-2 solution does not have this flip of the tempera-
tures, regardless of whether or not the derivative of the opacity
is included in the simulation. Also, the behavior of the BDF-2
solutions is consistent with the analytic solution provided by
Gentile in his work; the IMC solution takes much longer to
reach equilibrium than the analytic solution. Therefore, we
conjecture that the use of the derivative of the opacity is not
necessary to capture the correct behavior when using the BDF-
2 method.
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