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ABSTRACT

We present a method for implementing temperature extrapolation in Implicit Monte Carlo solutions to
radiation hydrodynamics problems. The method is based on a BDF-2 type integration to estimate a
change in material temperature over a time step. We present results for radiation only problems in an
infinite medium and for a 2-D Cartesian hohlraum problem. Additionally, radiation hydrodynamics
simulations are presented for an RZ hohlraum problem and a related 3D problem. Our results indicate
that improvements in noise and general behavior are possible. We present considerations for future
investigations and implementations.
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1. INTRODUCTION

In this paper we are dealing with transport problems for thermal x-ray radiation in the context of radiation
hydrodynamics. In such problems the radiation can carry a significant amount of energy relative to the
internal energy of the materials. Also, the problems are nonlinear in that the emission of radiation is a
function of material internal energy which is affected by the absorption and emission of radiation.

A well-known (and used) method for solving the radiation transport in these problems is the Implicit
Monte Carlo (IMC) method of Fleck and Cummings [1]. This method has been around since the 1970s and
it can give accurate solutions when run correctly. Nevertheless, IMC has errors, and these errors occur even
in the limit of an infinite number of particles. As discussed in Densmore and Larsen [2], the error in IMC is
composed of mesh errors, time discretization errors, and linearization errors. These errors can be
counterintuitive, even to the most-hardened transport expert. For instance, in diffusive media, IMC can give
better answers with larger mesh cells and time steps to the way the “implicit” character of the method
behaves as a function of time step size.

Over the years there has been much research into improving this method (see, for example, [5–9]). This
paper will detail an approach to deal with time and linearization errors. Fundamentally, though IMC has
implicit in the title there are some quantities that are evaluated explicitly. In particular the blackbody
source and material opacity are evaluated using the previous time step’s temperature. This can lead to
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errors in problems where there are rapid transients in the material temperatures. For example in the
classical Marshak wave problem, the cold optically thick material in front of the wave will often behave
abnormally. This is a result of the fact that the material does not “know” that during a time step it is heating
up and becoming optically thin.

The idea that we explore in this work is to use the two previous time-steps temperatures to center the
linearization inherent in IMC about a mid-time temperature instead of the previous time step’s value. We
do this based on the BDF-2 method [3] for integrating the material temperature equation. BDF-2 is a time
integration method that implicitly computes a second-order update by differently differencing the time
derivative operator. This also allows us to evaluate the opacity at a mid-time-step temperature. The result
of this change is a method that, in terms of implementation, looks identical to IMC with a slight change to
the Fleck factor, the temperatures evaluated at an average of the previous two time steps.

This work is an extension of the work presented at the 2012 ANS Winter Meeting [10]. We give thorough
detailing of the behaviour of the method that was not possible in that forum. We also extend the method
and test it on radiation hydrodynamics problems (i.e., where the radiation is transporting through a moving
material).

2. DERIVATION OF THE METHOD

Consider a gray radiative transfer problem∗, defined by an equation for the specific intensity of radiation,
ψ(r,Ω, t),

1

c

∂ψ

∂t
+ Ω · ∇ψ + σ(T )ψ =

σ(T )acT 4

4π
+
Q

4π
, (1)

and a temperature equation
∂Em

∂t
= cσ(T )(Er − aT 4), (2)

where Em(r, t) is the material specific internal energy which is related to the temperature by an equation of
state:

∂Em

∂t
= Cv(T )

∂T

∂t
.

Also in Eq. (2), Er(r, t) is the radiation energy density (a quantity proportional to the zeroth angular
moment of the specific intensity):

Er(r, t) =
1

c

∫
4π

ψ(r,Ω, t) dΩ. (3)

In Eq. (1) we have neglected scattering for convenience; including scattering is straightforward and does
not change our method.

We wish to develop a set of linearized equations that are suitable for solution via a Monte Carlo technique.
To do this we will find a means of approximating the T 4 term. First, we difference the time derivative in
Eq. (2) using a backward difference formula of order 2 (the BDF-2 method) [3]. This method takes a
differential equation of the form

du(t)

dt
= f(u(t)),

∗Our derivation is concerned with gray problems out of a desire for the clearest presentation of the method. The extension to
multifrequency transport is completely straightforward as in standard IMC.
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and integrates over a time step ∆t using the formula

un+1 − 4
3u

n + 1
3u

n−1

∆t
=

2

3
f(un+1),

where un is the value of u after the nth time step. This method is second-order accurate in time, provided
that any nonlinearity on the right-hand side is converged, and the method is L-stable.

Applying the BDF-2 method to Eq. (2) gives

Cv

∆t

(
Tn+1 − 4

3
Tn +

1

3
Tn−1

)
=

2c

3
σ
(
Tn+1

) (
En+1

r − a(Tn+1)4
)
. (4)

We then make the approximation that En+1
r ≈ Er(t) and expand the term σ

(
Tn+1

)
a(Tn+1)4 using a

Taylor series and then apply the chain rule:

σ
(
Tn+1

)
a(Tn+1)4 = σ

(
Tn+1/2

)
a(Tn+1/2)4 +

∆t

2

∂

∂t

[
σ(T ) aT 4

]
t=tn+1/2

= σ
(
Tn+1/2

)
a(Tn+1/2)4 +

(
Tn+1 − Tn+1/2

) ∂

∂T

[
σ(T ) aT 4

]
T=Tn+1/2 . (5)

The temperature derivative term can be expanded as

∂

∂T

[
σ(T ) aT 4

]
T=Tn+1/2 = 4aσ(Tn+1/2)

(
Tn+1/2

)3
+ a(Tn+1/2)4 ∂σ

∂T

∣∣∣∣
T=Tn+1/2

. (6)

Next, we write

Tn+1/2 =
4

3
Tn − 1

3
Tn−1, (7)

and use this result in Eq. (5) to get

σ
(
Tn+1

)
a(Tn+1)4 = σ

(
4

3
Tn − 1

3
Tn−1

)
a

(
4

3
Tn − 1

3
Tn−1

)4

+

(
Tn+1 − 4

3
Tn +

1

3
Tn−1

)(
4aσ

(
4

3
Tn − 1

3
Tn−1

)(
4

3
Tn − 1

3
Tn−1

)3

+ a

(
4

3
Tn − 1

3
Tn−1

)4 ∂σ

∂T

∣∣∣∣
T=Tn+1/2

)
.

(8)

Solving this equation for
(
Tn+1 − 4

3T
n + 1

3T
n−1
)

gives(
Tn+1 − 4

3
Tn +

1

3
Tn−1

)
=

σ
(
Tn+1

)
a(Tn+1)4 − σ

(
Tn+1/2

)
a(Tn+1/2)4

4aσ
(
Tn+1/2

) (
Tn+1/2

)3
+ a

(
Tn+1/2

)4 ∂σ
∂T

∣∣
T=Tn+1/2

, (9)

where we have used Eq. (7) for convenience. We can use Eq. (9) in the left-hand side of Eq. (4), and then
solve for (Tn+1)4 to get

a(Tn+1)4 = ma
(
Tn+1/2

)4
+ (1−m)Er, (10)

where

m =
1

1 + 2
3βcσ

(
Tn+1/2

)
∆t

, (11)
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and

β =
4a
(
Tn+1/2

)3
Cv

+

(
Tn+1/2

)4
Cv

d

dT
log(σ)

∣∣∣∣∣
T=Tn+1/2

. (12)

Then substituting Eq. (10) into the original radiation and material equations—Eqs. (1) and (2)
respectively—we arrive at the system of equations

1

c

∂ψ

∂t
+ Ω · ∇ψ + σ

(
Tn+1/2

)
ψ =

(1−m)c σ
(
Tn+1/2

)
Er

4π
+
mσ

(
Tn+1/2

)
ac
(
Tn+1/2

)4
4π

+
Q

4π
, (13a)

∂Em

∂t
= mcσ

(
Tn+1/2

)(
Er − a

(
Tn+1/2

)4
)
, (13b)

where Tn+1/2 is defined in terms of Tn and Tn−1 by Eq. (7). The system given in (13) contains the
equations we seek to solve with a particle-based Monte Carlo method. This procedure closely follows that
of standard IMC as presented by Fleck and Cummings. Equation (13a) is a time-dependent, linear transport
equation with a known source: this equation can be solved using standard Monte Carlo procedures on
prescribed spatial grid [1,4]. In this equation mσ is an effective absorption cross-section for thermal
radiation and (1−m)σ is the effective scattering for thermal radiation. During the Monte Carlo solution of
the radiation equation, the energy in the thermally-emitted particles is tracked and the energy in the
absorbed particles is also tracked. The update to the material specific internal energy is then given in each
grid cell by

∆Em =

# absorptions∑
i=0

(hν)i −
# emissions∑

i=0

(hν)i, (14)

where (hν)i is the energy of the particle involved in event i.

2.1. Time-lumping

We generalize the form of m found in Eq. (11) to be

m =
1

1 + θβcσ
(
Tn+1/2

)
∆t

, (15)

where θ is a parameter between 2
3 and 1. The value of 2

3 gives the BDF-2 scheme as derived. Using a
different value for θ adds a first-order in ∆t error to the temperature update, though, as numerical
experiments have bourne out, using a value of 1 gives more robust solutions. We call this approach time
lumping because it resembles lumping in finite element methods where an error term is added to enhance
stability.

2.2 Varying ∆t

In the case where ∆t is varying we need a different formula for Tn+1/2 than that given in Eq. (7). One can
derive the BDF-2 method using variable step sizes and find that in this case

Tn+1/2 =

(
1 +

ρ2

3

)
Tn − ρ2

3
Tn−1, (16)

where
ρ =

∆tn

∆tn−1
. (17)
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3. PROPERTIES OF THE METHOD

The above method has many similarities to the so-called Implicit Monte Carlo (IMC) method originally
promulgated by Fleck and Cummings [1] and later advanced by many authors (see, for instance,
Refs. [5,11,2,6–9] ). In IMC the absorption/emission process during a time step is modeled by an effective
scattering process in the same way as the BDF-2 based method. The IMC procedure defines an f factor,
called the Fleck factor in the parlance of our times, as

f =
1

1 + ασ (Tn) β̂c∆t
, (18)

with α a parameter between 0 and 1 known as the implicitness and

β̂ =
4a (Tn)3

Cv
. (19)

Gentile [7] explored the inclusion of the derivative of the opacity in a slightly different form than above and
found that including this information could lead to a more accurate method. Nevertheless, the β̂ described
above is the most common formulation.

3.1. Initializing the method

The BDF-2 is not self-starting, that is, it cannot be used for the very first time step of a calculation because
two previous solutions are needed, and in the first time step only the initial condition is available. One
approach is to use the IMC method to get a mid-step value of the temperature, and then use this mid-step
temperature and the initial condition to do a full BDF-2 update.

To initialize our BDF-2 scheme we first integrate from time 0 to time ∆t/2 using the IMC method:

1

c

∂ψ

∂t
+ Ω · ∇ψ + σ

(
T 0
)
ψ =

(1− f)c σ
(
T 0
)
Er

4π
+
f σ
(
T 0
)
ac
(
T 0
)4

4π
+
Q

4π
, (20a)

∂Em

∂t
= fc σ

(
T 0
) (
Er − a

(
T 0
)4)

, (20b)

where in the calculation of f ∆t→ ∆t/2. The result of this step is values at the 1/2 time level. This is
followed with a BDF-2 step from ∆t/2 to ∆t:

1

c

∂ψ

∂t
+ Ω · ∇ψ + σ

(
T 3/4

)
ψ =

(1−m)c σ
(
T 3/4

)
Er

4π
+
mσ

(
T 3/4

)
ac
(
T 3/4

)4
4π

+
Q

4π
, (21a)

∂Em

∂t
= mcσ

(
T 3/4

)(
Er − a

(
T 3/4

)4
)
, (21b)

where
T 3/4 =

4

3
T 1/2 − 1

3
T 0, (22)

m =
1

1 + θβcσ
(
T 3/4

)
∆t
2

, (23)

and

β =
4a
(
T 3/4

)3
Cv

+
1

Cv

d

dT
log(σ)

∣∣∣∣
T=T 3/4

. (24)
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The rest of the calculation proceeds using the method described in Sec. 2.

This initialization approach is in similar spirit to the trapezoidal BDF-2 (TBDF-2) method recently in
vogue in deterministic transport calculations [12]. The TBDF-2 method uses a trapezoidal integration
scheme to get a mid-step value and then BDF-2 to complete the step. This method has several benefits,
second-order accuracy, L-stability, and it is self-starting—at the cost of requiring two solutions per time
step. This type of approach could be adapted for Monte Carlo simulations of radiative transfer, and future
work should investigate any benefits of this approach.

4. INFINITE MEDIUM TEST

In an infinite medium Eq. (1) can be simplified into a ODE for the radiation energy density:

dEr

dt
= −cσ(T )

(
Er − aT 4

)
+Q. (25)

Upon applying Eq. (10) to the emission term to Eqs. (25) and (2), one gets the system

dEr

dt
= −mcσ

(
Tn+1/2

)(
Er − a

(
Tn+1/2

)4
)

+Q. (26a)

dEm

dt
= mcσ

(
Tn+1/2

)(
Er − a

(
Tn+1/2

)4
)

+Q. (26b)

Given the value of Enr the exact solution to Eq. (26a) for a constant Cv at time level n+ 1 is

En+1
r =

(
Ern − a(Tn+1/2)4

)
e−cmσ(T

n+1/2)∆t + a
(
Tn+1/2

)4
+
Q(1− e−cmσ(Tn+1/2)∆t)

cmσ
(
Tn+1/2

) , (27)

this equation represents the solution the Monte Carlo procedure would obtain in the limit of an infinite
number of particles. Then we integrate Eq. (26b) to get

Tn+1 = Tn +

(
a
(
Tn+1/2

)4 − Enr ) e−c∆tmσ(Tn+1/2) − a
(
Tn+1/2

)4
+ Enr

Cv

+
Q
(
c∆tmσ

(
Tn+1/2

)
+ e−c∆tmσ(Tn+1/2) − 1

)
cCvmσ

(
Tn+1/2

) . (28)

The solutions in Eqs. (27) and (28) are valid for any treatment of σ(T ) as long as the value does not change
during the time step.

The first test we will perform has Cv = 0.01 GJ/cm3-keV, σ(T ) = 100 cm−1, and an initial radiation
temperature, Tr = (Er/a)1/4 = 0.5 keV and an initial material temperature of T = 0.4 keV. This problem
was first solved by Densmore and Larsen to examine the behavior of different Monte Carlo methods in the
diffusion limit [2]. This test problem will isolate the effect of the BDF-2 approach on the emission term
because the opacity is not temperature dependent.

The results for this problem using standard IMC and BDF-2 with two values of θ are shown in Figure 1.
From these plots we see a stark contrast between the IMC and BDF-2 schemes. The IMC scheme has the
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(c) BDF-2, θ = 1

Figure 1. Infinite medium solutions to a problem with Cv = 0.01 GJ/cm3-keV, σ(T ) = 100 cm−1, and
an initial radiation temperature, Tr = (Er/a)1/4 = 0.5 keV and an initial material temperature of
T = 0.4 keV. The time step size is ∆t = 0.001 sh.

material temperature overshoot the radiation temperature in the first time step. This is a nonphysical result
as the true solution has the radiation and material temperatures approach the equilibrium temperature
monotonically. The BDF-2 results do not have the material temperature overshoot the radiation
temperature in the initial time step. We do note, however, both the IMC and BDF-2 solutions have slight
oscillations around the equilibrium temperature. This oscillation is more pronounced in the BDF-2 solution
when θ = 2

3 compared to the solution with θ = 1. We have seen similar phenomenon in a variety of test
problems, and we therefore recommend using θ = 1.

We can slightly modify the problem to have a larger difference between the initial material and radiation
temperatures by setting the initial values as Tr = 0.5, and T = 0.01. The results from the modified
problem are shown in Figure 2. For this larger difference in initial temperature, the IMC solution has the
radiation temperature go well below the material temperature in the first time step. The BDF-2 solution
does not have this behavior.

To add further complexity to the test problem we now allow the opacity to vary with the temperature.
Specifically, we modify the problem to have σ(T ) = 100T−3 cm−1 with T in keV and increase the initial
radiation temperature to Tr = 1.0 keV. Having temperature dependent opacities allows us to test the impact
of the logarithmic derivative term in the definition of β in Eq. (12). In Figure 3 we examine the solution
from standard IMC and BDF-2 with and without the logarithmic derivative term. In the standard IMC
solution the material temperature goes above the initial radiation temperature. This is a violation of the
maximum principle [13]. The BDF-2 solutions do not violate the maximum principle, though they do
oscillate around the equilibrium temperature. These oscillations are more pronounced when the derivative
of σ(T ) is included in β. We note, however, that the IMC solution does have oscillations around the
equilibrium, but they are less noticeable due to the different scale in the plot.

We next turn to a problem with a temperature dependent opacity. As first posed by Gentile [7], the problem
we will solve has Cv = 0.05 GJ/cm3-keV, σ(T ) = 0.001T−5 cm−1 with T in keV, and an initial radiation
temperature, Tr = (Er/a)1/4 = 1.465122 keV and an initial material temperature of T = 0.01 keV; our
solutions to this problem appear in Figure 4. This problem has an equilibrium temperature of 1 keV, though
the equilibrium temperature is approached very slowly because the opacity decreases rapidly with
increasing temperature—an interesting aspect of this problem is that the material emits less radiation as it
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Figure 2. Infinite medium solutions to a problem with Cv = 0.01 GJ/cm3-keV, σ(T ) = 100 cm−1, and
an initial radiation temperature, Tr = (Er/a)1/4 = 0.5 keV and an initial material temperature of
T = 0.01 keV. The time step size is ∆t = 0.001 sh.
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(b) BDF-2, θ = 1, with derivative of σ(T )
term in β
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(c) BDF-2, θ = 1, without derivative of σ(T )
term in β

Figure 3. Infinite medium solutions to a problem with Cv = 0.01 GJ/cm3-keV, σ(T ) = 100T−3 cm−1

with T in keV, and an initial radiation temperature, Tr = (Er/a)1/4 = 1.0 keV and an initial material
temperature of T = 0.01 keV. The time step size is ∆t = 0.001 sh.
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(b) BDF-2, θ = 1, with derivative of σ(T )
term in β
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(c) BDF-2, θ = 1, without derivative of σ(T )
term in β

Figure 4. Cv = 0.05 GJ/cm3-keV, σ(T ) = 0.001T−5 cm−1 with T in keV, and an initial radiation
temperature, Tr = (Er/a)1/4 = 1.465122 keV and an initial material temperature of T = 0.01 keV.
The time step size is ∆t = 0.001 sh.

heats up. In the IMC results (Figure 4(a)) we see a vexing phenomenon, first identified by Gentile, whereby
the radiation and material temperatures “flip” in the first time step: though the initial material temperature
is well below the initial radiation temperature, after the first time step the material temperature is well
above the radiation temperature. The material temperature remains above the radiation temperature until
equilibrium is reached. This phenomenon occurs even with very small time steps and motivated Gentile to
include the derivative of the opacity in the IMC linearization. In our BDF-2 results we see that the BDF-2
solution does not have this flip of the temperatures, regardless of whether or not the derivative of the
opacity is included in the simulation. Also, the behavior of the BDF-2 solutions is consistent with the
analytic solution provided by Gentile in his work; the IMC solution takes much longer to reach equilibrium
than the analytic solution. Therefore, we conclude that the use of the derivative of the opacity is not
necessary to capture the correct behavior when using the BDF-2 method.

5. RADIATION HYDRODYNAMICS RESULTS

5.1. Implementation of a Prototype in the Cassio code

The tests so far have been radiation-only. To test the BDF-2-based extrapolation in a
radiation-hydrodynamics setting, we implemented a prototype of the BDF-2-based extrapolation method in
the Cassio code to test it on an ICF problem. The Cassio code is an Inertial Confinement Fusion (ICF) code
in Los Alamos National Laboratory’s Eulerian Applications Project. Utilizing a Godunov hydrodynamics
scheme in an Eulerian frame on a unit-aspect ratio adaptive-mesh-refinement (AMR) mesh, Cassio
currently has two main radiation packages for radiation-hydrodynamics simulations. It has its base
diffusion capability, or it can call the Wedgehog Implicit Monte Carlo (IMC) package from the LANL’s
Jayenne Project [15]. The Jayenne Project IMC codes are based on the method of Fleck and Cummings [1].

Cassio uses an operator split approach where the hydrodynamics solve comes before the radiation solve
withing each timestep. After the hydrodynamics solve, the temperature that is sent to the radiation package
was considered to be the beginning-of-timestep temperature that we saved for the next cycle and that we
used to extrapolate into the current timestep. The old temperature vector needed to be remapped to the
newly refined/coarsened AMR mesh at the end of each timestep after the radiation solve. There are several
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other particular items to note about this prototype:

1. We used regular IMC for the first cycle. Therefore, this prototype could not solve Gentile’s
equilibration problem. Normal Cassio usage starts with a small timestep size and ramps up, so this
limitation should not be an issue with source-driven ICF problems that start near equilibration.

2. The emission and opacity were evaluated at the extrapolated temperature, but the heat capacity was
not. This heat capacity is what is used in the calculation of the Fleck factor in the Wedgehog IMC
package, not the heat capacity used to update the material state after the IMC package returns its net
energy deposition.

3. No opacity derivatives were considered.

4. We used time lumping, setting the implicitness to 1.0

5. The extrapolated temperature was optionally limited to some fraction of the beginning-of-timestep
temperature. Considerations were 20%, 100%, and no ceiling along with a cold floor to avoid
negativities.

6. The old temperature vector was not advected with the hydrodynamics step.

The timestep control in Cassio considers many different constraints and selects the minimum value. One
timestep control is some fraction of the Courant timestep limit. Another one of the controls is a velocity
constraint that limits the timestep to keep material from moving more than some fraction of a cell width.
Thus, a refined mesh anywhere in the problem reduces the timestep. The implication is that this
BDF-2-based extrapolation will become relatively less necessary and effective as a given mesh is refined.
If there were no detriment to the hydrodynamics, loosening both of these cell-size-based timestep controls
could result in the BDF-2-based extrapolation showing more benefit, but then any errors from not
advecting the old temperature vector could become larger.

We used a few different source biasing models in this problem. These source bias models are simple in that
they merely adjust unbiasedly the numbers and weights of emission, surface source, and census particles at
the beginning of each timestep according to a user supplied model. The Jayenne Project IMC algorithm
nominally attempts, without source biasing, to give the same energy-weight to each particle in the problem.
That means that small energy, or small volume, cells can be undersampled. With a 1/rn source bias model,
we can put more particles near the z-axis in RZ geometry to avoid propagating an undersampling error
through the radiation-hydrodynamics algorithms. Once a source bias is used, the particles’ energy-weights
are not uniform across the problem, such that, especially in thin material, high-weight particles can
transport across several cells in a single timestep to a region with much lower-weight particles. Splitting
and Russian roulette, which have not been implemented yet, would alleviate this problem.

5.2. Hohlraum Problem in Cassio

We used the Cassio BDF-2 prototype on a problem that was based on an earlier adaptation [5] of Brunner’s
radiation-only ICF-like test problem [14]. In RZ geometry, a hohlraum is constructed, as shown in Fig. 5,
with 0.05cm thickness, with an outer radius of 0.65cm and 1.3cm long. A block at the center of the
hohlraum’s interior is 0.45cm in radius and 0.4cm long. At one end, the hohlraum has an annular opening

10/15



Temperature Extrapolation for IMC-Rad Hydro using BDF-2

R

Z

0.3cm
0.35cm

0.45cm
0.6cm

0.75cm

1.15cm

1.55cm
1.6cm
1.7cm

0.66cm

0.65cm

radiation

Figure 5. Schematic of a hohlraum rad-hydro test problem in RZ.

BDF‐2 IMC

Figure 6. Material locations at 1ns. Black is aluminum, green is CH.

from 0.45cm to 0.6cm radius. A constant Planckian Blackbody surface is applied on one end of the
problem, 0.3cm away from the end with the annular opening.

The Cassio hohlraum problem had an Aluminum wall and block at 2.7 g/cc and, everywhere else,
Carbon-Hydrogen at a density of 1.0e-4 g/cc, all with an initial temperature of 1 eV. The drive for this
problem was 400 eV. We used a multigroup opacity treatment with 102 logarithmically spaced opacity
groups. Ramping linearly in time from 1e5 particles to 1e6 particles over about a nanosecond, a
[Router/r]

2 source bias model was applied over each cell in the entire problem. Results at 1 ns show that
the BDF-2 extrapolation was somewhat smoother. Figure 6 is a material plot that shows the Al as black and
the CH as green, and that the interface appears to be slightly smoother for the BDF2-based extrapolation. A
closeup of the sourced side of the hohlraum in Fig. 7 shows the regular IMC displaying more noise in the
thin CH, although the BDF2-base extrapolation seems to have more axis effects inside the hohlraum.
Figure 8 shows the material temperature being smoother on the Al surface in the back corner. Figure 9
shows that the BDF-2-based extrapolation gave larger timesteps for a large portion of the runtime, such that
the IMC took 495 cycles and the BDF-2 396 cycles to reach 1.0 ns, requiring about 26 minutes and 22
minutes, respectively, on 32 processors of LANL’s Tri-Lab Computing Cluster, Moonlight, an
Opteron+GPGPU architecture from Appro.
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BDF‐2 IMC

Figure 7. Near the radiation source at 1.0ns, the CH has less noise in the BDF-2-based prototype than
in IMC.

BDF‐2 IMC

Figure 8. In the back corner of the hohlraum at 1.0ns, the BDF-2-based prototype appears to have
less noise than in IMC.

12/15



Temperature Extrapolation for IMC-Rad Hydro using BDF-2

Figure 9. Longer timesteps are possible with the BDF-2-based prototype, given the same timestep
constraints.

5.3. 1D Wall Problem in 3D

We next define a subset of the hohlraum problem, a 1D slab problem of 400-eV Planckian radiation
traveling through 0.1cm of CH at density 1.0e-3 g/cc and impinging on a 0.02cm-thick aluminum wall.
With a zeroth-level mesh of 0.01cm cubed, we looked at 4, 6, and 8 levels of refinement at the material
interface, which translates to cell widths of 0.00125 cm, 0.0003125 cm, and 0.000078125 cm, respectively.
Whereas the various refinement levels significantly affected the behavior of the simulation, the BDF-2
prototype appeared to have little impact on the solution. Fig. 10 shows, at the top, a close-up side view of
the material temperature for the 8-levels-of-refinement problem at 0.0132ns. Both the IMC and
BDF-2-based prototype look nearly the same, regardless of whether the extrapolation was limited to be
within 20% of the current temperature or unbounded. The two lower plots in Fig. 10 are the IMC and
BDF-2-prototype material temperatures at a cross-section slide perpendicular to the flow at x=0.099cm,
which is 0.001cm in front of where the material interface originated. Visually scrutinizing the lower left
subfigure of Fig. 10, it does seem that the BDF-2-based extrapolation has less overheated clumpiness.

5.4. Comments on the Radiation-Hydrodynamics problems

The BDF-2 prototype seemed to stabilize the behavior of the hohlraum problem where the CH density was
1.0e-4 g/cc. Other problems, namely where the density was higher, did not benefit as much. We discussed
above how small AMR spatial cells can drive the timestep down such that the BDF-2-based extrapolation
has a reduced effect. Even when the timestep was forced to be large, there appeared to be little BDF-2
improvement for many variation on the ICF problem. Therefore, another consideration is the material. The
frequency integrated opacity of the CH was nonmonotonic for cold temperatures, having a large spike in
the domain a few eV’s. Once it heats up, though, the opacity drops significantly. Thus, stability due to
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Tmat, eV

Figure 10. For a highly refined wall problem, the BDF-2 prototype had little effect. The top panel is
a side view of the material temperature. The bottom left panel is a cross-sectional view at x=0.099cm,
with BDF-2-based extrapolation on the left and IMC on the right.

opacity changes may not be the dominant concern here. (We did not consider any of the CH foam models
that are available.) Should Cassio ever incorporate a refinement-level-dependent timestep, the
BDF-2-based extrapolation could prove important for the coarser levels.

The impact of not advecting the old temperature vector each timestep needs to be investigated. It is
possible that, especially for the material heterogeneities present in these ICF test problems, this is an
important effect.

6. CONCLUSIONS

We have presented a new temperature extrapolation for time-Implicit Monte Carlo methods used in
radiation hydrodynamics simulations. It is based on the backward difference formulation of order 2
(BDF-2) time-integration method. We have tested the method both in radiation-only and
radiation-hydrodynamics simulations and shown improvements in stability.
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