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We can use data to approximate operators and improve calculations.

▶ In scientific computing we are used to taking a known operator and
making approximations to it.

▶ It is possible to use the action of an operator and use just the action of
the operator to generate approximations to it.
▶ This is the basis for many Krylov methods.

▶ In this talk I will detail how we can use the action of radiation transport
operators to
▶ Estimate time eigenvalues present in a subcritical system, and
▶ Compute the slowly converging modes in source iteration to accelerate

convergence without the need for diffusion-based preconditioning.
▶ I will also talk about how we can generate a low-rank approximation to the

time-dependent transport system.
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We begin with a sequence of vectors related by an operator.

▶ Consider a sequence of vectors {y0, y1, . . . , yK} where yk ∈ RN.
▶ The vectors are related by a potentially unknown linear operator of size

N × N, A, as
yk+1 = Ayk.

▶ If we construct the N × K data matrices Y+ and Y−,

Y+ =

 | | |
y1 y2 . . . yK
| | |

 Y− =

 | | |
y0 y1 . . . yK−1
| | |


we can write

Y+ = AY−.

▶ At this point we only need to know the data vectors yk, they could come
from a calculation, measurement, etc.

▶ As K → ∞ we could hope to infer properties about A.
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The SVD gives a representation of the data matrices.

▶ We take the thin singular value decomposition (SVD) of Y− to write

Y− = UΣVT,

where U is a N × K orthogonal matrix, Σ is a diagonal K × K matrix with
non-negative entries on the diagonal, and V is a K × K orthogonal matrix.

▶ The SVD requires O(NK2) operations to compute.
▶ Later, we will want K ≪ N, if, for example, N is the number of unknowns

in a transport calculation.
▶ Also, if the column rank of Y− < K, then there is a further reduction in

the SVD size.
▶ The matrix U has columns that forms an orthonormal basis for the row

space of Y− ⊂ RN.
▶ Using the SVD we get

Y+ = AUΣVT.

▶ If there are only r < K non-zero singular values in Σ, we use the compact
SVD where U is N × r, Σ is r × r, and V is K × K.
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DMD gives a low rank approximation to the operator.

▶ We can rearrange the relationship between Y+ and Y− to be

Y+ = AUΣVT → UTAU = UTY+VΣ−1.

▶ Define Ã = UTAU = UTY+VΣ−1. This is a rank K approximation to A.
▶ Using the approximate operator Ã, we can now find out information about

A.
▶ The eigenvalues/vectors of Ã,

Ãw = λw,

are used to define the dynamic modes of A:

φ =
1
λ

UTY+VΣ−1w.

▶ The dynamic mode decomposition (DMD) of the data matrix Y+ is then
the decomposition of into vectors φ. The mode with the largest norm of λ
is said to be the dominant mode.
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Example of operator approximation demonstrates the efficacy.
▶ Consider the sequence

zk+1 = azk + nk,

where a = 0.5, and nk ∼ N (0, 102).
▶ Using K = 500, we estimate a = 0.506552 from the data below.

0 100 200 300 400 500
k

30

20

10

0

10

20

30

40

z k
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Evolution without an operator is possible: DMD infers the operator from
the data.

Left: Data generated by moving a circle in a periodic motion with added noise.
The data has two periods of motion.

Right: Reconstruction generated by approximating Ã using one period of frames
and starting from frame 1.
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The DMD modes of the inferred operator are what we would expect.

Dominant DMD mode: Uφ1

Third DMD mode: Uφ3

Second DMD mode: Uφ2

Fourth DMD mode: Uφ4
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Current methods of estimating time-eigenvalues have issues for subcritical
systems.

▶ In neutron transport for time-dependent problems alpha eigenvalues (also
called time eigenvalues) are important quantities to understand system
dynamics and safety.
▶ These eigenvalues characterize the system evolution in terms of functions of

the form Ceαt.
▶ The more well-known k-eigenvalue gives information about the long-term

behavior of the system, but is less useful for diagnosing many experiments.
▶ Additionally, most alpha eigenvalue solvers have issues with subcritical

problems due to “negative absorption”.
▶ Furthermore, for subcritical systems it has been shown that the rightmost

eigenvalue in the complex plane is not necessarily meaningful.
▶ There can be an eigenvalue with negative real part that is arbitrarily close to

0 and decays arbitrarily slowly.
▶ These eigenvalues correspond to the time scale of slow moving neutrons

crossing the system.
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DMD can be used to estimate eigenvalues of the matrix exponential.

▶ If we consider a sequence of vectors that are solutions to the system of
differential equations,

∂y
∂t = Ay(t),

and are separated by a time, ∆t, the relationship between vectors is

yn+1 = eA∆tyn.

▶ As before we can define Y− and Y+, compute the SVD of Y− = USV∗,
and approximate the matrix exponential:

UTeA∆tU = UTY+VΣ−1.

▶ One can show the following:
▶ The eigenvalues of UTeA∆tU are also eigenvalues of eA∆t.
▶ If α is an eigenvalue of A, then eα∆t is an eigenvalue of eA∆t.
▶ The eigenvectors of A are the same as those from eA∆t.
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We can cast the alpha eigenvalue problem into this framework.
▶ Consider the time-dependent transport equation

∂ψ

∂t = Aψ,

where the discretized transport operator A is given by

A = v(E)(−Ω · ∇+−σt + S + F),

with S and F the scattering and fission operators.
▶ The alpha eigenvalues of the transport equation satisfy the following

relationship
Aψ = αψ,

that is, we are interested in the eigenvalues of the complete transport
operator.

▶ The importance of the alpha eigenvalue can be found by noticing that if
ψ(t) = ψ0eαt, then α is an eigenvalue of the transport operator.
▶ α > 0 implies that the system is supercritical and will have a divergent

number of neutrons as t → ∞.
▶ α = 0 means the system is critical and will reach a non-zero steady state

when a neutron source is not present.
▶ α < 0 implies that the system is subcritical and as t → ∞ the solution will

go to zero without a source.
▶ There is at most one non-negative eigenvalue.
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The time evolution of the angular flux can be used to estimate alpha
eigenvalues.

▶ If we compute K + 1 time steps of size ∆t using a transport solver, we will
have the relation | | |

ψK ψK−1 . . . ψ1
| | |

 = eA∆t

 | | |
ψK−1 ψK−2 . . . ψ0
| | |


or Y+ = eA∆tY− and we can take the SVD of Y− as before.

▶ Therefore, if we estimate the eigenvalues λ of the K × K matrix UTeA∆tU,
we can compute the alpha eigenvalues of the system as

α =
log λ

∆t .

▶ We do not need to a special eigenvalue solver to do this.
▶ If the time discretization used in the time dependent transport solve is

backward Euler (as is common), then a better approximation is

α =
λ− 1
∆tλ ,

because this method approximates

eA∆t ≈ (I − A∆t)−1.
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An example problem will allow us to investigate how these alpha
eigenvalues behave.

▶ We consider a 12-group calculation of an infinite medium of Pu-239 with a
buckling approximation to simulate a finite sphere.

▶ We set the radius in the buckling approximation to make keff = 0.95.
▶ The eigenvalues we get from the full transport operator for this system are

α (sh−1)
-0.179734
-0.291318
-0.346882
-0.48783

-0.756007
-1.33304
-2.64032
-5.52353
-9.00368
-13.7938
-17.4603
-19.7214 10 2 10 1 100 101

E (MeV)

0.2

0.0

0.2

0.4

0.6

0.8

1.0
 (

ar
b 

un
its

)
 = -19.7214
 = -0.3469
 = -0.2913
 = -0.1797

keff Fundamental Mode
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Pulsing the sphere with 14.1 MeV neutrons reveals that the DMD
approximation computes the eigenmodes present in the system.

▶ Using an initial condition of only neutrons in the group containing 14.1
MeV, we run a time dependent problem to a specified final time.

▶ We then use the last 10 time steps to estimate the α eigenvalues.
▶ Early in time the modes corresponding to the spike at 14.1 MeV are

present, late in time we relax to the fundamental, slowly decaying mode.
▶ The α = −0.291318 sh−1 eigenmode is not present because it has a larger

number of thermal neutrons than our system does.
Exact tfinal = 0.01 sh 0.2 sh 2 sh 20 sh

-0.179734 -0.182064 -0.179802
-0.291318
-0.346882 -0.346326 -0.346946
-0.48783

-0.756007 -0.73261
-1.33304 -1.40235 -1.5013
-2.64032 -2.59257
-5.52353 -5.31228
-9.00368 -7.65929 -7.60506
-13.7938
-17.4603
-19.7214 -19.7212 -19.7139

▶ 1 sh = 0.01 µs
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A heterogeneous, subcritical system will test this method on a nontrivial
problem.

▶ We consider a slab-geometry problem where a plastic moderator is
sandwiched between two slabs of plutonium with a small outer reflector.

▶ This system will have α eigenvalues associated with the time scale of slow
neutrons crossing the moderator.

▶ The fundamental mode from a k-eigenvalue problem has many thermal
neutrons in the middle of the problem.

▶ We consider the situation where DT neutrons enter the slab from both
sides at time 0.

▶ Thermal: E < 5 eV, Fast: E > 0.5MeV

HDPE

239Pu 239Pu

1.134 cm

25.25 cm

14.1 MeV

Neutron pulse

0 5 10 15 20 25
x (cm)

102

103

104

105

ne
ut

ro
n 

de
ns

ity

k = 0.97004 fundamental mode

thermal
epithermal
fast
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In 1 µs the spectrum does not approximate the fundamental k-eigenvalue
mode.

Left: Neutron density (ϕ/v) as a function of space and time.
Right: Neutron spectrum at the center of the HDPE and the center of the fuel.
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Using the DMD method at different times finds the predominant
eigenmodes present in the system.

α (sh−1) eigenvalues

−25.0 −22.5 −20.0 −17.5 −15.0 −12.5 −10.0 −7.5
Re(α)

−300

−200

−100

0

100

200

300

Im
(α

)

α computed over t = 0.0005 to 0.0025 μs

−3.25 −3.00 −2.75 −2.50 −2.25 −2.00 −1.75 −1.50
Re(α)

−40

−20

0

20

40

Im
(α

)

α computed over t = 0.01 to 0.012 μs

Scalar Flux for Right-most eigenvector
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Using the DMD method at different times finds the predominant
eigenmodes present in the system.

α (sh−1) eigenvalues

−1.0 −0.8 −0.6 −0.4 −0.2
Re(α)
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0
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Im
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α computed over t = 1 to 1.002 μs
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Re(α)
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Extensions to the method could be made for more dynamic systems.

▶ Because the method finds the eigenmodes that are present in the system it
will not be susceptible to finding unimportant, slowly decaying modes.

▶ One can tailor initial conditions to look for certain eigenvalues.
▶ The DMD approximation can be used for nonlinear operators.
▶ If the system changed over time we could approximate effective

eigenvalues of the changing transport operator:
▶ Thermal expansion
▶ Depletion/Breeding

▶ The theoretical interpretation of these eigenvalues is not obvious.
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The approximate operator can be used to find slowly converging modes in
an iterative method.

▶ The discrete ordinates method for transport is typically solved using source
iteration (Richardson iteration) and diffusion-based
preconditioning/acceleration.

▶ Source iterations converge quickly for problems with a small amount of
particle scattering.

▶ For strongly scattering media, the transport operator has a near nullspace
that can be handled using a diffusion preconditioner.

▶ However, the question of efficiently preconditioning/accelerating transport
calculation on high-order meshes with discontinuous fine elements is an
open area of research.

▶ The approximate operator found from DMD can be used to remove this
same near nullspace and improve iterative convergence without the need
for a separate preconditioner or diffusion discretization/solve.
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We consider source iteration for a simple transport problem.
▶ The steady, single group transport equation with isotropic scattering can

be written as
Lψ =

c
4πϕ+

Q
4π ,

where c is the scattering ratio, Q is a prescribed source, and the streaming
and removal operator is

L = (Ω · ∇+ 1) .
▶ ψ(x,Ω), Ω ∈ S2,

ϕ(x) =
∫

4π
ψ dΩ = ⟨ψ⟩.

▶ Source iteration solves this problem using the iteration strategy

ϕℓ =

⟨
L−1

(
c

4πϕ
ℓ−1 +

Q
4π

)⟩
,

where ℓ is an iteration index.
▶ One iteration is often called a “transport sweep”.
▶ A benefit of source iteration is that the angular flux, ψ does not have to

be stored.
▶ As c → 1, the convergence of source iteration can be arbitrarily slow.
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We can write source iteration as a sequence of vectors related by a linear
operator.

▶ Rearranging the transport equation we see that source iteration is an
iterative procedure for solving

ϕ−
⟨

L−1 c
4πϕ

⟩
= L−1Q,

or
(I − A)ϕ = b.

▶ Therefore, the source iteration vectors are

ϕℓ+1 = Aϕℓ + b,

or
ϕℓ+1 − ϕℓ = A(ϕℓ − ϕℓ−1)

▶ Therefore, we can cast the difference between iterates in a form that is
amenable to the approximation of A using DMD, Y+ = AY−,

Y+ =
[
ϕ2 − ϕ1, ϕ3 − ϕ2, . . . , ϕK − ϕK−1

]
,

Y− =
[
ϕ1 − ϕ0, ϕ2 − ϕ3, . . . , ϕK−1 − ϕK−2

]
.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Source iteration can be accelerated by taking several iterates and
approximating the solution as ℓ → ∞

▶ As before we define an approximate A as the K × K matrix:
Ã = UTAU = UTY+VΣ−1,

▶ We can use Ã to construct the operator (I − Ã)−1 and use this to
approximate the solution:

(I − A)(ϕ− ϕK−1) = b − (I − A)ϕK−1

= b − ϕK−1 + (ϕK − b)
= ϕK − ϕK−1.

▶ The difference ϕ− ϕK−1 is the difference between step K − 1 and the
converged answer. We define a new vector ∆y as the length K vector that
satisfies

ϕ− ϕK−1 = U∆y. (1)
▶ We then substitute and multiply by UT to get

(I − Ã)∆y = UT(ϕK − ϕK−1). (2)
This is a linear system of size K that we can solve to get ∆y and then
compute the update to ϕK−1 as

ϕ ≈ ϕK−1 + U∆y. (3)
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DMD acceleration requires only source iteration and SVD: no diffusion
solver.

▶ The algorithm is as follows
1. Perform R source iterations: ϕℓ = Aϕℓ−1 + b.
2. Compute K source iterations to form Y+ and Y−. The last column of Y−

we call ϕK−1.
3. Compute ϕ = ϕK−1 + U∆y as above.

▶ Each pass of the algorithm requires R + K source iterations.
▶ The R source iterations are used to correct any errors caused by the

approximation of A using the SVD.
▶ It is easiest to assess convergence between the source iterations.
▶ This works regardless of the spatial discretization used.
▶ Other algorithms are possible:

▶ Rather than extrapolate to an infinite number of iterations, we can use Ã to
approximate a finite number of source iterations.

▶ We could use a coarsened vector ϕ̄ in the DMD procedure to reduce the
memory/computational cost.
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DMD works perfectly on a homogenous slab, the ur-demonstration problem
for acceleration schemes.

▶ We consider a slab with vacuum boundaries and a scattering ratio of
c = 0.99 and 1.0 and 400 spatial zones, S8 angular discretization, and the
diamond difference spatial discretization.

▶ Solid lines are c = 0.99 results and dashed lines are c = 1.0
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A comparison of the number of iterations as a function of K and c indicates
that the convergence is nearly independent of c.

▶ On the same problem set up, the number of iterations to converge is
shown below.

K/c 0.1 0.5 0.9 0.99 0.999 0.9999 0.99999 0.999999
3 8 15 39 70 70 70 70 70
5 10 11 28 90 90 90 90 90

10 15 15 29 60 140 140 140 140
20 25 25 25 49 74 76 76 76
50 55 55 55 56 57 57 57 57
SI 6 17 89 637 2439 3681 3889 3911
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Performance does degrade on an insanely heterogeneous problem.
▶ We consider a problem with vacuum boundaries, 1000 cells, unit domain

length, with c = 0.9999 and

σt =

{
2p cell number odd
2−p cell number even

.

▶ Below we see convergence for p = 5 (dashed) and p = 8 (solid), a factor
of about 1000 and 6.5 × 104 between thick and thin cells, respectively.
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A version of the crooked pipe problem is a more realistic test.
▶ We solve a linear, xy-geometry version of the crooked pipe problem where

all materials have a scattering ratio of 0.988 (to simulate a realistic sized
time step).

▶ The density ratio between the tick and thin material is 1000.
▶ Problem solved using fully lumped, bilinear discontinous Galerkin in space

and S8 product quadrature.
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The number of iterations required increases slowly with mesh refinement.

▶ The number of iterations for source iteration and DMD-accelerated
calculations with K = 10 and R = 3.

(Nx × Ny) DMD SI
25 × 15 53 811
50 × 25 52 873

100 × 60 78 974
150 × 90 91 ∞RML

200 × 120 104 ∞RML

∞RML = functionally infinite on my laptop.
▶ The increase seems to be the resolution to the 1/2 power (square root of

the number of cells per dimension).
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There are opportunities to this approach beyond the acceleration strategy
outlined above.

▶ We could use DMD acceleration to compute a low-order transport
acceleration (the so-called TSA method). In this case the we would use
low-order in angle transport sweeps to estimate the slowly converging
modes.

▶ Additionally, it is possible to estimate Ã using independently generated
vectors. This would enable the Y± matrices to be generated using sweeps
computed in parallel.

▶ The big win could be from applying this to other iterative components:
▶ Energy group iterations
▶ Temperature iterations in radiative transfer.

▶ The performance of DMD on meshes with cycles is also a possible impact
area.
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Is there a way to find an efficient, optimal approximation to time-dependent
transport problems?

▶ This work is a collaboration with Cory Hauck (ORNL) and Martin Frank’s
group at Karlsruhe Institute of Technology.

▶ Consider the equation for the evolution of the m × n matrix A(t):

Ȧ ≡ d
dtA = f(A).

▶ We seek to find a rank r approximation to A(t),

Y(t) = U(t)S(t)V(t)T,

where U(t) is m × r, V(t) is n × r with orthonormal columns and S(t) is
r × r and invertible.

▶ This looks like an SVD but it is more general because S(t) is not diagonal
▶ We want to find a dynamic system Ẏ such that

▶ Ẏ lives in the tangent space of rank r matrices,
▶ ∥Ẏ − Ȧ∥ is minimized.
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Is there a way to find an efficient, optimal approximation to time-dependent
transport problems?

▶ The evolution equation in the tangent space can be found by
differentiating Y(t):

Ẏ = U̇(t)S(t)V(t)T + U(t)Ṡ(t)V(t)T + U(t)S(t)V̇(t)T.

▶ We impose the gauge conditions UTU̇ = 0, and VTV̇ = 0.
▶ We can operate on Ẏ by UT and V to get the following three equations

U(t)TẎ = Ṡ(t)V(t)T + S(t)V̇(t)T,

U(t)TẎV(t) = Ṡ(t),
ẎV(t) = U̇(t)S(t) + U(t)Ṡ(t).

▶ These can be rearranged to get

U̇ = (I − UUT)ẎVS−1

V̇ = (I − VVT)ẎTU(S−1)T

Ṡ = U(t)TẎV(t).
▶ The best approximation to Ȧ can be shown to be

Ẏ = (I − UUT)ȦVS−1 + U(t)TȦV(t) + (I − VVT)ȦTU(S−1)T.
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There is a splitting of this equation keeps each step in the low rank space.

▶ Solve the m × r system over a time step from initial data Y0 = U0S0VT
0

K1 = U0S0 + (A(t +∆t)− A(t))V0,

▶ Compute U1S̃ = K1 using QR factorization.
▶ Solve the r × r system

S∗ = S̃ − UT
1 (A(t +∆t)− A(t))V0,

▶ Solve
L1 = V0(S∗)T + (A(t +∆t)− A(t))TU1.

▶ Compute V1ST
1 = L1 using QR factorization.

▶ The value at the end of the step is Y1 = U1S1VT
1 .

▶ Each step can be shown to keep the solution in the rank r space.
▶ This is a first-order algorithm, but higher order algorithms exist.
▶ To be a truly low rank update, we must be able to estimate

(A(t +∆t)− A(t)) = ∆t
∫

f(A) dt without evaluating the full operator.
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A proof of principle calculation indicates there is merit to this algorithm.

▶ We consider the S10 solution to Brunner’s lattice problem and use the full
transport operator to estimate (A(t +∆t)− A(t)).

▶ The data has 280 × 280 degrees of freedom in space and 100 degrees of
freedom in angle.

▶ Figure below has pure scatter in orange, pure absorber in black, and a
source in white. A solution with a logarithmic color scale is on the right.
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Figure 1. Left: Checkerboard problem, material coe�cients: isotropic source
(white), purely scattering �s = 1, �a = 0 (orange and white), purely absorbing
�a = 10, �s = 0 (black). Right: Reference solution at time t = 3.2, showing
the logarithm of the particle density. Computed with 250 ⇥ 250 spatial grid
points and 820 angular degrees of freedom (P39).

Figure 2. Particle density (same log scale as before) as a function of time for
rank 5, rank 10 and full rank (S10) solution, respectively.

particle density is shown.1 The individual components of the solution are very reminiscent of
wavelets. Qualitatively, they appear like the dominating modes one would expect.

1
It would be interesting to look at the angular distribution as well.
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Figure 2. Particle density (same log scale as before) as a function of time for
rank 5, rank 10 and full rank (S10) solution, respectively.

particle density is shown.1 The individual components of the solution are very reminiscent of
wavelets. Qualitatively, they appear like the dominating modes one would expect.

1
It would be interesting to look at the angular distribution as well.
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The low-rank comparisons give promising results on this problem.
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It would be interesting to look at the angular distribution as well.
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The low-rank comparisons give promising results on this problem.
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The low-rank approximations are better at early time.
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The error decreases at second-order in the rank beyond rank 10.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

We need to derive the low-rank approximations to the update.

▶ As mentioned before, if we use the full system to approximate
(A(t +∆t)− A(t)) there is no savings.

▶ We need to express the projections UT
1 (A(t +∆t)− A(t))V0,

UT
1 (A(t +∆t)− A(t))V0, and (A(t +∆t)− A(t))TU1 in terms of the

discretizations in space and angle.
▶ Then the update will only require the smaller memory footprint of the low

rank operators during the update.
▶ We have derived the equations for 1-D slab geometry, but do not have

solutions yet.
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Data-Driven algorithms are widely applicable in transport problems.

▶ Using a DMD approach to compute approximate operators gives one the
ability to
▶ Estimate eigenvalues for the system, and
▶ Accelerate calculations.

▶ Furthermore, we can use similar techniques to derive a low-rank
approximation to the dynamics of transport.

▶ There is much further research to be done, but progress is exciting.
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