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THIS WORK IS A BRIDGE BETWEEN TWO OLD PROBLEMS

Admittedly, It Is An Incomplete Bridge

* The so-called Marshak wave problem is a classic problem in high-energy
density radiative transfer.

» Several variations of the problem exist, but the main theme is that a cold medium
is subject to a source of radiation and a wave propagates through the medium.

* The problem usually imagines a slab geometry configuration.

* One-dimensional models for particle transport in evacuated ducts has been
used to model the transport of particles using a simplified model.

* The transport in the duct is modeled using an effective scattering from the duct
walls.

* There is active research in developing models for Marshak waves in
configurations reminiscent of the duct problem.




THE MARSHAK WAVE PROBLEM

The Classical Work
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The Marshak wave problem

Effect of Radiation on Shock Wave Behavior*
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The fundamental conservation equations governing fluid dynamies and including radiation are

written down. The Rankine-Hugoniot conditions are derived for shock waves subjected to radiation

° flux. Similarity solutions are obtained for the constant density and constant pressure cases. Some

p O I n t . results are stated for the combined radiation-fluid dynamics corresponding to a power law dependence
of the temperature on the time.

Via radiative transfer the

e O NON-EQUILIBRIUM MARSHAK WAVE PROBLEM
medium is heated. THE NON-EQ

G. C. POMRANING

I 'F 't h e m a 't e r i a I i S O pt i C a I | y School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90024,

U.S.A.

thick, as the original works —— — A —

° IJOS ALAMOS SCI ENTIFIC LABORAmRY SIAM J. APPL. MATH. © 1980 Society for Industria
assume, t he governing OF THE UNIVERSITY OF CALIFORNIA _LOS ALAMOS _ NEW MEXICO | Vol 39, No. 2 October 1980 0036-139

REPORT WRITTEN: May 1960

equ ations is a hon | inear REPORT DISTRIBUTED: July 29, 1960 ASYMPTOTIC ANALYSIS OF NONLINEAR

MARSHAK WAVES*

d iffu S i O n e q u at i O n . E. W. LARSENt AND G. C. POMRANING#
Je( I No = =40 —— _—

4 THE PENETRATION OF RADIATION
- ac z WITH CONSTANT DRIVING TEMPERATURE

ot  Ox 3(T) Ox

Petschek demonstrated how

Work Done By: Report Written By:

to find similarity solutions. or . Foscha proeyp—

Ralph E. Williamson Ralph E. Williamson
John K. Wooten, Jr.

Larsen and Pomraning showed ™™ r—

that this is the asymptotic limit

of a non-equilibrium system.




SIMILARITY SOLUTION

Power Law Opacities
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If the opacity has the form
li(T) — K/()T_n

4
00

There exists a similarity
solution T'(¢) where

%
o

o
il

o
oyil [ | | =g il p 4l | e Il 4 ) | U dbs | TR

£ =Cln)—

D
>}
—
=
1B
<
—
b}
Q,
g
b}
4=
=,
<)
R
=
<
—~
o
=

>
O

0{2|| |!|1|0{61 IO!SI
normalized distance &

The similarity solution for a power-law opacity,

the power in the Opacity. from Nelson and Reynolds, LA-UR-09-04551.

The steepness of the
wavefront is controlled by




EXPERIMENTS DO NOT HAVE SLABS WITH A CONSTANT DRIVING TEMPERATURE

Drive Conditions And Radial Losses Change The Picture

PHYSICS OF PLASMAS 13, 113303 (2006)
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material motion into the
model.




DIFFUSION MODELS OF RADIATIVE TRANSFER IN FINITE SYSTEMS

* The Hurricane-Hammer model points out that behind the wave-front the time

dependence of the solution is negligible.

* This makes the problem here an 2-D Laplace equation.
Ve ks =0

* In 2-D Cartesian geometry, with x being the direction that the wave is
propagating, the wavefront will then be a linear combination of cosines, that
determine the curvature of the wavefront.

* Detailed analysis then gives a form for the curvature as a function of boundary
conditions, etc., and an equation for the propagation of the wavefront.

 Hammer and Rosen also use the slow change behind the wavefront, but they
use this to derive the results from changing boundary temperatures for 1-D
problems, and solve problems regarding supersonic and subsonic diffusion
waves.




COMPARISONS WITH EXPERIMENT SHOW THESE MODELS ARE REASONABLE

Improvement |Is Possible
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MEANWRHILE, 1-D MODELS WERE BEING DEVELOPED FOR TRANSPORT IN A DUCT

Sometimes By The Same People

Consider particles traveling in a
duct of material that is surrounded
by a wall that can reflect a fraction,
c, of the particles back into the
duct.

Most of the models were developed
for evacuated ducts where particles One-Dimensional Modelsfor Noutrol Partcle
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EXTENSIONS TO THIS DUCT WORK

A quadratic expansion was
introduced by Garcia, et al. (3
basis functions).

Multigroup models for the
transport also exist.

Prinja modified the model to
allow particles to re-enter the
duct at different places (non-
local reflection).

Many papers on the efficient
solution of the models.
Models used in shielding and
acoustics.
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WALL MIGRATION OF NEUTRONS

Neutrons collisions don't take place
at the wall, rather inside the wall.

As a result, particles
can re-enter duct
ahead of or behind
where the particle
left the duct.

Wall-Scattering now has a non-local kernel
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THE CYLINDER IN THE MARSHAK WAVE PROBLEM IS A DUCT

It Is Just Not An Evacuated Duct

* The radiative transfer in a cylinder is, in some sense, the opposite of the duct model.

« Collisions take place in the cylinder and the walls have a reflection probably that could
be zero.

e The 1-D duct models make no assumptions that the walls must scatter particles back
into the domain.

« Furthermore, as pointed out early on in their history, there is no limitation to
extending to non-evacuated ducts in the models.

« They are just typically applied to evacuated regions.

* The curvature in the wave-front, time-dependence of drive, etc. could be included in
the model.

* This would be a simplified model that captures the effects the 1-D diffusion models
lack.




WE DEVELOP A MODEL FOR TIME-DEPENDENT TRANSPORT
IN A SOLID CYLINDER

* We consider a linear transport problem:
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* We then propose an expansion in basis functions that contain the variation in
X,y, and the azimuthal angle.

U(z,y,2, 1, ¢ Z%zu, i(Z, Y, o).

Here I < 3. The basis functions are
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THE GALERKIN PROJECTION TO A 1-D MODEL

* The function D gives the distance from a point to the edge of the cylinder along the
direction w. For a cylinder this is

D(x,y,gp):r-w—|—[(r-w)2—|—p2—x2—y2]%, r:(x7y70)

* The basis expansion is substituted into the transport equation, and the resulting
equation is integrated against the basis functions to get
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* These equations are a set of coupled 1-D transport equations. The effective total
cross-section depends on .

*The coupling does make the equations look like a multigroup system.




THE MATRIX ELEMENTS ARE NOT NECESSARILY POSITIVE
From Garcia, Ono, And Veira (2000)
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WE SOLVE THE EQUATIONS WITH A DISCRETE ORDINATES SCHEME

Off-Diagonal Terms Are Updated Through Source lteration

* We compute transport sweeps as

3
. x ¢ ¢—1 , 9s 01 .
Uk @%k + (o + ag)y, = Zaij 1% > Hi%k i 7% + Qix
7]
* k is the angle index, and superscript 7 is the iteration index. The asterisks
denote changes made to write the time-dependent equation in quasi-steady

form.
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* One could imagine developing acceleration strategies for these equations, but
we have not needed them in our work to date.




STEADY-STATE RESULTS

Comparison With Monte Carlo
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We solve a problem of a
cylinder of a single material “ ol
with unit total cross-section oof N
and length 10.

We vary the radius between 2
and 6, and the scattering ratio
from O to 1.

A unit incident, isotropic flux is
imposed at z=0.

Comparisons are made with
calculations from Milagro from
LANL.

Contour maps will have MC
results at positive r and 1-D

results at “negative” r.
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1-Basis Function, Radius 6
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3 BASIS FUNCTION SOLUTIONS VERSUS RADIUS




BIGGEST DISCREPANCY IS NEAR RADIAL EDGE

3 Basis Function Solutions, R=6
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3 Basis Functions Solutions At 1 Mean-Free Time Move Too Fast
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EXTENDING MODEL TO RADIATIVE TRANSFER PROBLEMS WILL INVOLVE COMPLICATIONS

Non-Constant Cross-Sections

* Beyond adding the coupling to the material temperature equation, there are
additional complications to solving the 2-D Marshak wave problem in a

cylinder.

* Spatially dependent cross-sections will cause create additional coupling
between the angular fluxes.

* In principle, these can all be handled.
* An interesting question is the diffusion limit of this model.

* Scaling the equations so that scattering is large, and absorption, time-
dependence, sources, and the correction terms are small, | get that the
leading order solution satisfies
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