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. . . . . .

Deterministic Transport Methods

Two common deterministic methods for treating the angular
variable in transport problems are the discrete ordinates (Sn ) and
spherical harmonics (Pn ) methods.
Each of these methods has it’s drawbacks:

Sn has ray effects, areas in the solution where no particles get to
because of the finite number of angles.
Pn has wave effects that can cause the solution to go negative and
oscillate when the solution is not smooth in angle.

These artifacts come from the fact the underlying types of each
method.

Sn is a collocation method in angle. Without enough points, issues
can arise.
Pn is a global, spectral method in angle. This leads to Gibbs’
oscillations.
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. . . . . .

Deterministic Transport Methods

As such, standard refinement in angle for each scheme cannot
remove the limitations of the method.
For Sn , adding more and more angles to your discretization is
often necessary.

Even this won’t work if the problem has little scattering and the
sources are localized.
That said, there has been interesting work in developing obscenely
high order quadrature sets that can be locally refined (the LDFE
methods of Jarrell and Adams and the QR sets of Abu-Shumays)

In Pn increasing n will not remove oscillations as long as the
solution is non-smooth in angle.
From my perspective, we should be asking how we can break
free of the shackles of each method’s foundation.
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. . . . . .

Breaking the Shackles

For Pn this would be mean giving up spectral convergence in
favor of robustness.

It turns out this is not much of a sacrifice. You won’t get spectral
convergence for non-smooth solutions anyway.

In the case of Sn , it might mean allowing angles to ”talk” to each
other in the absence of scattering.

This blasphemy sounds horribly non-physical, and in a sense it is.
Nevertheless, away from localized sources, in the absence of
scattering we don’t believe the Sn answer anyway.

Both of these approaches hew to the maxim: “It’s better to be
approximately right than exactly wrong.”
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Filtered Spherical Harmonics Methods

There has been work to remove oscillations by treating the
standard spherical harmonics expansion using filters.
RGM and Cory Hauck showed that spherical spline filters could
give answers comparable to Monte Carlo solutions when used on
a P7 expansion on some challenging test problems.
Radice, Abdikamalov, et al. built upon this work to show that the
Lanczos filter is also an effective filter for these solutions.
The implementation of filters can be done in such a way that it is

Extensible to any order of expansion
Preserves the equilibrium diffusion limit
Preserves the convergence of Pn to the transport solution as
n → ∞.

These works used explicit time-stepping algorithms, and implicit
implementations are a work in progress.
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The drawbacks of Pn are well-studied in the spectral

methods literature

“Truncating a [spherical harmonics] series is a rather
stupid idea.”

John P. Boyd
Chebyshev and Fourier Spectral Methods
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Gibbs Errors

The reason a truncated expansion is a bad idea is the
introduction of Gibbs’ errors.
These are oscillations in the solution near sharp features in the
solution.

An cartoon from Boyd’s book helps illustrate why these are bad:

What filters do, is ensure that that the expansion coefficients are
decaying before the series is truncated.

McClarren & Ayzman (Texas A&M) Filtered Sn ICTT2013 8 / 32



. . . . . .

Gibbs Errors

The reason a truncated expansion is a bad idea is the
introduction of Gibbs’ errors.
These are oscillations in the solution near sharp features in the
solution.
An cartoon from Boyd’s book helps illustrate why these are bad:

What filters do, is ensure that that the expansion coefficients are
decaying before the series is truncated.

McClarren & Ayzman (Texas A&M) Filtered Sn ICTT2013 8 / 32



. . . . . .

The Fruits of Filtered Pn

A illustrative example of the power of filtering can be seen in the
line source problem.
This problem has a delta-function initial condition in a 2-D, purely
scattering medium.
The time-dependent solution is a delta-function wave front of
uncollided particles followed by a smooth region of scattered
particles.
Experience has shown that almost no deterministic method can
do a reasonable job on this problem.
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Line source solutions at ct = 1

near zero. Thus, in additional to damping the oscillations in the PN reconstruction, the filter slows down the speed at which
information is propagated.
! The source term in (16) is a diagonal matrix. For each fixed l, its effect is to multiply components Im

l , jmj 6 l, by the factor

sl ¼
1

cDt
al2kðlþ 1Þ2k

1þ al2kðlþ 1Þ2k
: ð18Þ

For the form of a given in (11) and with x ¼ cDt
Dx ,

sl ¼
cl2ðlþ 1Þ2

dxN2ðrtLþ NÞ2 þ cdtl2ðlþ 1Þ2
ð19Þ

We note that these terms blow up as Dx,Dt ? 0 together. This is a direct result of our choice of x: had we not made that
parameter cDt/Dx, the value of sl would be singular if Dt ? 0 independently. While such singular behavior is unwanted,
it should also be noted that we do not wish to recover the original PN system in the continuum limit either. Indeed, at this
point we are unsure of what the proper continuum limit should be. Even so, we have found the filter gives excellent results
for a relatively wide range of mesh parameters. Further investigation of this issue is ongoing.

Fig. 5. Scalar density / for the line-source problem when ct = 1. Note the changes in color scale to accommodate the different ranges of the S8 and
P7solutions.

R.G. McClarren, C.D. Hauck / Journal of Computational Physics 229 (2010) 5597–5614 5605
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. . . . . .

Line source solutions at ct = 1

We now apply a predictor–corrector time integrator to the FPN system, treating the new source term Su explicitly. Includ-
ing the temperature equation, we have the following5:

unþ1=2 " un

cDt=2
þrx # ðJFunÞ þ Sun þ rtunþ1=2 ¼ Lðraqnþ1=2 þ rsunþ1=2Þ; ð20aÞ

enþ1=2 " en

Dt=2
¼ "raeT

0ðq
nþ1=2 " unþ1=2Þ; ð20bÞ

unþ1 " un

cDt
þrx # ðJFunþ1=2Þ þ Sunþ1=2 þ rtunþ1 ¼ Lðraqnþ1 þ rsunþ1Þ; ð20cÞ

enþ1 " en

Dt
¼ "raeT

0ðq
nþ1 " unþ1Þ: ð20dÞ

In the streaming limit (rt ? 0), this is a second order approximation of the modified Eq. (16) and the temperature equation.
It can be understood in terms of the original filter F through a rearrangement of terms in the time differencing:

unþ1=2 " 1
2 ðFþ IdÞun

cDt=2
þrx # ðJFunÞ þ rtunþ1=2 ¼ Lðraqnþ1=2 þ rsunþ1=2Þ; ð21aÞ

enþ1=2 " en

Dt=2
¼ "raeT

0ðq
nþ1=2 " unþ1=2Þ; ð21bÞ

ðunþ1 " Funþ1=2Þ þ ðunþ1=2 " unÞ
cDt

þrx # ðJFunþ1=2Þ þ rtunþ1 ¼ Lðraqnþ1 þ rsunþ1Þ; ð21cÞ

enþ1 " en

Dt
¼ "raeT

0ðq
nþ1 " unþ1Þ: ð21dÞ

This form makes it clear how the algorithm combines filter and non-filtered components of u.

6. Numerical results

Our numerical results demonstrate that the filtered PN expansions do indeed enhance the robustness and quality of spher-
ical harmonics solutions. In all of the results that follow, we use x ¼ cDt

Dx and L = 1 cm. The problems we solve are 2D Cartesian
problems, and to solve PN equations in this geometry we set @I

@y ¼ 0.

6.1. The line-source problem

The first problem we solve is the so-called ‘‘line-source problem”. Here we have an initial condition of

Iðx; z;X; tÞ ¼ 1
4pdðxÞdðzÞ;
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Fig. 6. Scalar density / for the line-source problem along the diagonal line x = z when ct = 1.

5 It should be noted that the predictor value en + 1/2 is not needed in the corrector step and therefore, not explicitly computed.

5606 R.G. McClarren, C.D. Hauck / Journal of Computational Physics 229 (2010) 5597–5614
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. . . . . .

The Fruits of Filtered Pn

There are similar results on many problems.
For example, in a radiative transfer problem on a Cartesian
hohlraum, the filtered method tracks the implicit Monte Carlo
solution without the noise.
See the relevant papers for more information

...1 McClarren, R. G., & Hauck, C. D. (2010). Journal of Computational
Physics, 229(16), 5597-5614.

...2 McClarren, R. G., & Hauck, C. D. (2010). Physics Letters A,
374(22), 2290-2296.

...3 Radice, D., Abdikamalov, E., Rezzolla, L., & Ott, C. D. (2013).
Journal of Computational Physics, 242, 648-669.

McClarren & Ayzman (Texas A&M) Filtered Sn ICTT2013 12 / 32



. . . . . .

Cartesian Hohlraum problem

that although IMC has high angular fidelity, it is not the exact solution even in the limit of an infinite number of sampled
particles. This is due to the fact that IMC has spatial and temporal discretization errors that can lead to issues in diffusive
regimes [39] and non-physical material heating [12,13].
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Fig. 11. Radiation temperature Trad for the hohlraum problem at t = 1 ns.
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Fig. 12. Radiation temperature Trad for the hohlraum problem at t = 1 ns along the line z = 0.125 cm.
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. . . . . .

Can we apply Filters to Sn

The filters can be interpreted in two ways.
As adding artificial viscosity in angle. That is adding a small
amount of diffusion in angle.
As adding forward-peaked scattering to the problem. Particles
scatter as they travel.

Therefore we should be able to use a filter to correct the fact that
under resolved Sn solutions need the angles to talk to each other
to remove ray effects.
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. . . . . .

Applying the Pn prescription

The most straightforward way to apply a filter is to
...1 Take our Sn solution,
...2 Convert it to a Pn representation,
...3 Filter the Pnmoments,
...4 Reconstruct the discrete ordinates from the filtered
Pn representation.

This will have the effect of smoothing the Sn representation of the
angular flux.
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. . . . . .

Applying the Pn prescription

In performing this filtering we want several properties.
First, if no filtering is done, then the procedure should return the
initial angular flux.
In diffusive regions, filtering should not affect the asymptotic limit
of the Snmethod.
As the Sn order goes to ∞ it should not affect the limit.
We can accomplish all of these.
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. . . . . .

Galerkin Quadratures

For a given quadrature set, and a set of discrete ordinates, ψ⃗,
A set of moments, ϕ⃗, can be obtained by multiplying ψ⃗ by a
discrete-to-moment matrix D.
The set of moments depends on the quadrature set and D.
Also, one maps from moments to discrete ordinates using a
moment-to-discrete matrix, M as ψ⃗ = Mϕ⃗.
In most cases the mapping from ordinates to moments is not
invertible, (i.e., MD ̸= I).
However, Galerkin quadrature sets (Morel, NSE 1989) are defined
to have this property.
We will use this property to define our filtered Snmethod.
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. . . . . .

Applying the Filter

Using Galerkin quadratures, in each spatial zone of an Sn code
we will apply the filter.
For a spherical harmonic moment of order lm we define the filter
as

(Fϕ⃗)ml =
ϕml

1 + αl(l+ 1)

Where α is given by
α =

ω

N(σs + N)2

where ω is a filter strength parameter and N is the quadrature
order.
This prescription for α turns off the filter in the diffusion limit and
has the effect of causing the filter strength to go to zero as
N → ∞.
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. . . . . .

Filtering Algorithm

Using Galerkin quadratures, in each spatial zone of an Sn code
we take the current iterate of the angular flux and

...1 Compute the moments as ϕ⃗ = Dψ⃗.

...2 Apply the filter, ϕ̂ = Fϕ⃗

...3 Create the filtered angular flux ordinates, ψ̂ = Mϕ̂.

Note that if the filter strength is zero (F = I), then the filtering
procedure does nothing.
We still have not shown how we include the filter in our
Sn solution technique.
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. . . . . .

Naïve Implementation

Given a standard source-iteration approach to solving the
Sn equations:

Lψ⃗l+1 = MSDψ⃗l,

where L is the discretized streaming plus removal operator, and S
is the scattering operator,
We can obtain the filtered solution by adding a source to the
RHS, and changing the solution used in the scattering term:

Lψ⃗l+1 = MSDψ̂l − L
(
ψ̂l − ψ⃗l

)
,

Therefore (if?) when the iterations converge the solution will be ψ̂.
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. . . . . .

Numerical Results

We have implemented our scheme using a first-order upwind
method (commonly called the step method).
All of our meshes are highly resolved because we are using a
low-order spatial method.
On the following problems we used source-iteration to solve the
discretized equations.
We do not have a prescription for choosing the parameter ω. We
ran several different values.
We did notice slower convergence for larger values of ω. This is
most likely the result of their being a large difference between ψ
and ψ̂ in these problems.
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Simple Test Problem

We solve a similar problem to one from a previous paper on
ray-effect mitigation techniques (Morel, Wareing, Lowrie and
Parsons 2003).
The problem has a localized source in a larger medium.
In this problem σt = 0.75, σs = 0.5,
The domain is a 4 by 4 square with a source of strength 0.25 of
dimensions 0.5 by 0.5 in the middle of the geometry.
We look at the solution along the top quarter of the domain (y = 4
and x ∈ [2, 4]).
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Solutions for several values of ω with S8.
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Hohlraum Problem

2-D Cartesian hohlraum layout
from Brunner.
Blue regions have σa = 10

White regions have
σt = σs = 1.
Source at left edge.

Figure 6: The hohlraum. The blue regions are pure absorbers regions where σa =
100 cm−1 and ρCv = 5.0 × 105 J/m3 K. the white region is a vacuum.

match, but they do not here because the P1 code uses a higher order method which
essentially gives more resolution on the same grid size as the diffusion calculation.
Again, the discrete ordinates solution is dominated by the ray-effects in Figure 5(e),
even in steady state. The negative waves in the P7 solution disappear in steady
state in Figure 5(d). This will always be true; the PN wave-effects always vanish in
steady state, while the SN ray-effects can be present in both time dependent and
steady state problems.

4.3 A Hohlraum
This hohlraum problem is loosely based on a typical hohlraum for the Z-machine
at Sandia. The radiation field is coupled to the the material energy through Eq. 3.
Unlike a real hohlraum, this problem is described in Cartesian coordinates. The
system, shown in Figure 6, is thirteen millimeters square with a thin wall of ma-
terial around the outside edge. There are two two millimeter openings on ei-
ther left side of the hohlraum, and there is a rectangular block of material in the
center of the system. The material is a pure absorber with σa = 100 cm−1 and
ρCv = 5.0 × 105 J/m3 K. The rest of the problem is a vacuum. Some codes used
for this problem could not model a pure void, so the heat capacity was set ex-
tremely large, ρCv = 1.0 × 1099 J/m3 K. The opacities were all set to zero in the
void. The initial material and radiation temperatures were set to T0 = 300 K. A
source boundary condition is applied along the entire left hand side. The source
has a temperature of Tsource = 3.5 × 106 K.

Figures 7-8 show the radiation temperature, as defined by Eq. 8, at times of

27
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The Hohlraum Problem
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4.3 A Hohlraum
This hohlraum problem is loosely based on a typical hohlraum for the Z-machine
at Sandia. The radiation field is coupled to the the material energy through Eq. 3.
Unlike a real hohlraum, this problem is described in Cartesian coordinates. The
system, shown in Figure 6, is thirteen millimeters square with a thin wall of ma-
terial around the outside edge. There are two two millimeter openings on ei-
ther left side of the hohlraum, and there is a rectangular block of material in the
center of the system. The material is a pure absorber with σa = 100 cm−1 and
ρCv = 5.0 × 105 J/m3 K. The rest of the problem is a vacuum. Some codes used
for this problem could not model a pure void, so the heat capacity was set ex-
tremely large, ρCv = 1.0 × 1099 J/m3 K. The opacities were all set to zero in the
void. The initial material and radiation temperatures were set to T0 = 300 K. A
source boundary condition is applied along the entire left hand side. The source
has a temperature of Tsource = 3.5 × 106 K.

Figures 7-8 show the radiation temperature, as defined by Eq. 8, at times of
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(b) Layout (c) S8 No Filter

(d) S2 ω = 100 (e) S48 (f) S8 ω = 100

T. A. Brunner. Tech. Rep. SAND2002-1778, Sandia National Laboratories, Jul 2002.
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Solutions for several values of ω with S8 at x = 12.
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Convergence for filtered and unfiltered solutions.
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Solutions for several values of ω with S8 at x = 4.
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Convergence for filtered and unfiltered solutions.
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Solutions for several values of ω with S8 at y = 11.
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Convergence for filtered and unfiltered solutions.
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Summary of Results

Results from Pn suggest that filtered expansions are effect for
improving solutions.
Using an analogous approach for Sn seems to reduce ray effects,
though not eliminate them altogether.
We haven’t determined how to pick ω yet.

Our experiments seem to indicate that there is an affect of the
mesh size on the effectiveness of the filter.
Smaller ∆x means that the filter does less.

There is still work to be done in the theory and efficient solution
for these methods, but I believe there is some promise here.
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