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SP, Equations

€ Not news to anyone here but...

@ The SP, equations are a simplified form of the full spherical
harmonics (P,) equations for the linear transport equation.

> The SP, equations have n+1 angular unknowns in first-order form
> The P, equations have (n+1)?> unknowns

@ This large reduction of unknowns comes with a price
> The SP, solution does not necessarily converge to the transport solution as
n goes to «

> As a result there is a order n that gives the optimal solution
 Another way of saying that: the error between the SP, solution and the
transport solution is lowest for some finite n.

@ A colloquial rule of thumb: “Where diffusion is ok, SP,, is better.
Where diffusion is bad, SP, is worse.”
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What do the SP_ equations represent?

@ The SP_ equations were originally derived by Gelbard in 1960 by

» Taking the 1-D P, equations
» Replacing 1-D spatial derivatives
* With a gradient in the odd order equations
 With a divergence in the even order equations
> Interpreting odd order unknowns as vectors and even order unknowns as
scalars

@ Despite this ad hoc “derivation” the SP_ equations have the
property that
> For an infinite medium, the SP_ solution is equivalent to the P, solution
provided that the total cross-section is constant and sources are isotropic

» This fact has been used to solve some problems to high accuracy.
* Gelbard used it to compute the leakage from a cylinder by surrounding the
cylinder with a pure absorber.
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Example: Uniform medium with local source
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Example: Uniform medium with local sources
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What do the SP_ equations represent?

€ The SP, equations aren’t just some ad hoc equations that happen
to be correct in some limits.

@ The SP,_ equations can also be derived via an asymptotic
expansion

» One approach does a similar expansion to that used to derive the diffusion
limit (Larsen, Morel, and Miller)
» That is, scattering is large and absorption and sources are small.
 This explains the rule of thumb expressed earlier
> The other approach expands the dependence of the solution in 2 of 3
spatial directions (Pomraning)
 This derivation shows that if the transport solution is “locally 1-D” the SPn
solution will be accurate.

@ Variational derivations also exist for the

> SP2 equations (Larsen and Tomasevic)
> SP3 equations (Larsen and Brantley)
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Why look for P, Equilavent Forms of SP,

€ We know that in a uniform, infinite medium the P, and SP, equations give the
same scalar flux.

@ Therefore, if we think of a heterogeneous materials in a finite problem as a
patchwork of uniform media

> The only difference between the P, and SP, solutions comes down
Material interface conditions
Boundary conditions

@ If we can express the P, conditions at boundaries and interfaces using SP,,
unknowns

> We can derive an SP,, system that is equivalent to the P, system in the scalar flux
solution.

@ Of course, this might not be possible.

@ At low order, one might have hope because the SP, and P, unknowns are the
same through first-order

> The scalar flux and the current unknowns are the same in both systems.
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P,-Equivalent SP, Equations have been claimed in the past.

® In a terse ANS transactions paper in 1970, Selengut claimed to have derived a
form of the P, approximation

> That could be expressed entirely in terms of the SP; unknowns in second-order
form

» This approximation included interface conditions.
» No boundary conditions though.

@ The brevity of the derivation makes reproducing the result difficult.
€ No numerical results were presented
> I’'m not aware of any attempts to solve these equations.

€ Some more recent analysis suggests that the solution used to construct these
SP, equations might not be the most general solution.

Selengut, D. S. (1970). A new form of the P3 approximation. Trans. Am. Nucl. Soc. 13:625.
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626 Transport The

The neutron angular distribution can be written
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related to the second moment of y, and Oy Is the I'th
component of a unit vector along the neutron velocity,

Requiring conservation of the zero'th and second
moments of Eq. (2) ylelds the tensor P, equations
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the known 4'th-order differential equauon for the flux,
which holds for both the complete and simplified forms
of P; theory,

Applying Gauss' theorem to Eq. (2) implies that n.
02 (Z)" v .0y and (n-0)"Y, must be continuous at inter-
faces between media, where n is the unit normal to the .
lurln:e Thls l«gds to the continuity of et
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o To evaluate these interface conditions in terms of the
flux, we can write the solution to Eq. (4) as
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The flux Eq. (5) can now be solved using a coupled
diffuston-theory code, after which the angular distributicn
is given explicitly by Eqgs, (1), (3), and (7).

A convenlent way to carry this out is to introduce the
““pseudollux'’ § to obtain

9 3
’_sszv"l Lo+Z98

9 2, 5
+aEE VeI Zag s (&)

subject to the coatinuity at interfaces of

¢, Favieen, o-gioxor(Foes),

and
1
‘i""‘t -xv)'—n v( a) (%)

The cross-product terms are missing in the simplified

P; approximation; for the case of spherical or cylindrical
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The linear transport equation and SP, equations ﬁwﬂ@

@& We'll begin the derivation of a P,-equivalent form of the SP,
equations with a steady, one-speed transport equation with
isotropic scattering

QY+ )b = 1 (0:0+ Q)

@ In this situation the SP, equations are
Oat + V- 1 = Q,

> 1 2
o1 + gv% + §V¢2 =0,

) =
o1 P2 + gv'% = 0,

R. G. McClarren Texas A&M Nuclear Engineering



__“

The P, Equations in 2-D Cartesian geometry ﬁ,wﬂ@

@ If we restrict our system to 2-D x-z geometry, the full P2 equations

are ) )
a0 + —¢10 + —¢11 = Q,

o 10
o010 + Ep ( Yoo + ¢20> gaiﬂm = 0,
o0 10
o111 + — ( Yoo — —¢20 —¢22) + §%w21 = 0,

2 0 1 0

o120 + ga—%o - 58—%1
3 0 3 0

oo + ga—@bn ——%0

6 0
Ot22 + 58—%1

& The moments are definedas  ¥in = /4 WYlm(QW(Q) ds
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Simplifying these equations

@ The first step to writing the P2 equations in SP2 form defines

¢2:¢20+%

@ Then we add the 5 equation to one-half times the )55 equation

to get
Tt P2 + ¢10 %1

@ Upon defining the currentto be J = (111, 0, 110 )}, this
equation becomes

oudy +V - J =0,

@ This is exactly the last equation in the SP, system.
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The 1, equations are not so easily simplified.

€ From the original equations we can add equations to make
simplifications

9, 9,
Tato0 + @%0 + %1@11 = Q,
9,

1 2 1
otP10 + B (g%o + §¢20) + 3 (%%1 = 0,
o 1 1 1 1 0
o111 + e (§¢00 — §¢20 + 6%2) + §$¢21 = 0,
2 0 10
o0 + 5@%0 — 5%%1 =0,
30 3 0
ota1 + 5%1511 + g%%o = 0,
6 O
o2 + 5%¢11 = 0.
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The 1., equations are not so easily simplified. ﬁ,wﬂ@

€ We make the substitutions
1 1
—§¢20 + 6¢22 = =

(N
N\
-
(\V)
q\w
SR
5
-
N———

® This leads to the equations

0 2 o 1 0 o 1 0 o 2 0
o0 + o= ( oo + §¢2> = 92 5o 82%1 + 9z 5o ax?ﬂm T 9. 5o, ax%b

1, 2 o 1 0 o 1 0 o 2 0
otPn + Or ( Yoo + §¢2) 0z 5oy 82%1 + 0z Hoy 8x¢10 - Ox 5o &zww'
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Putting this together leads to the SP2 equations, almos

@ At this point we have the standard SP2 equations with a strange
right-hand side

Oa¢0+v'51:Qa

0 1 1 2
O-tgbl + qubo + §ng2 = ) ()
1 1 2
ox 50y 82¢11 + 833 S04, 8$¢10 82 50¢ ﬁmwll

o2 + gv'$1 =0,
with ¢ = 0 and J = (¢11,0,110)".

@ The RHS can be rewritten in terms of common vector calculus
operators.
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Simplifying the RHS (Yes, that is the curl operator)

e First, we separate the RHS into a piece where o; is constant and a piece
where o is spatially varying using the product rule

o 1 8 o 1 8 2 52 52

5 o 92011 + 55 o e 10 = Fr o g ¥i0 | [ =t — Faaz o
0 - 0

S5\ o1 06 1 o 2 0 Bop \ g2 52
e sV T Bn o 310 — aF = g D10 — 595 Y11
0 ;51 o

9 ( ¢10) oz 9 1 ( Y11 + ax¢10) 029

— = 0 + — 0

P\ (Zou) Zort) 0 (0 + 29u) Loy

e We note that

9> 5>

@%1 — 3x3Z¢10 _
0 = -V XV X ¢;.

9> ok

W%o — m?ﬁn
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The final SP2 equations are then

Ja¢0+v'q§1:Q7

—

- 1 2
o1 + §V¢o + §V¢2 ——V XV X @1 —

50—1:

(7)o

(( Y11) 520¢ - — (55%10) 04 1)

= 0 ,
( %0) ai ( ¢11) 5201t '

2 .
Ut¢2+gv‘¢120-
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The SP2 equations with constant cross-section ﬁwﬂ@

® In the case when the total cross-section is constant, the right
hand of the current equation simplifies, but does not go to zero:

- 1 2
otP1 + =V + Vg = ——V X V X b1,
3 3 Hot

¥ However, these terms do not influence the scalar flux
> Because the divergence of J does not contain them

7 2 2
V- ¢1 — v ¢0 — v ¢2 )
30t 30t
> Therefore there are modes in the solution that are in the P2 equations but
not the SP2 equations.
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The Differences between the SP2 equations and the P2 equations

@ The extra terms in the reduced P2 equations, do not influence the
scalar flux

> Because the divergence of a curl is zero.

@ Equivalently, the null space of the P2 equations is not the same as
that of the SP2 equations

@ The scalar flux in the SP2 equations is the same as the P2
equations

@ The current is not necessarily the same in the two systems.

@ Of course, unless boundary/interface conditions introduce these
modes

» These modes won’t be created.

@ Yet, if we solve the SP2 equations, w/o the extra terms but with
the correct interface/boundary conditions

> We would get the same scalar flux as the P2 equations
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Deriving material interface conditions

@ To get interface conditions we write the P2 equations as a
hyperbolic system

0 0 -
(A % -+ A a— + Ut) ¢ — 5l05m0 (O-S¢O + Q)

€ We can derive interface conditions by hypothesizing an interface
in either the x or z directions

» And then diagonalizing the appropriate Jacobian
» To find the waves that move in each direction

@ These interface conditions can then be expressed in terms of the
SP2 unknowns.

@ This approach to obtaining boundary conditions will yield Mark-
type boundary conditions
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Deriving Interface Conditions

@ The eigenvalues for both the Jacobians are

3 3 1 1
5 \/;7 _%7 %7 07 0 )

> The zero eigenvalues means that there are two waves that do not move for each
direction

» These zero-eigenvalues can cause problems in numerical calculations
» These are also a reason why even-over Pn expansions are generally avoided

€ From the eigenvectors we get that across an interface in the z direction, the

following are continuous A
(¢ + g¢20, Y10, P11, %1)

@ In the x direction, these are continuous

(¢ — %%0 + 2%2, Y10, Y11, %1)

@ It’s not clear how to enforce these conditions using just ® and @2
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Summary

@ Using some simple manipulations the P2 equations in 2-D
geometry can be written as an SP2 system

> With some extra terms that don’t influence the scalar flux
> Except through boundary and interface conditions

@ These equations demonstrate that even though the scalar flux
between the two equations is consistent in a uniform media
» The solution for the current is, in general, different,

& What about 3-D?

» I've not had any luck getting a similar manipulation to work in 3-D for the P2
equations

@ P3 or higher order?

» Same story; partially due to the fact that in 2-D P3 has 4 more unknowns
than P2
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