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SPn Equations 

u Not news to anyone here but… 
u The SPn equations are a simplified form of the full spherical 

harmonics (Pn) equations for the linear transport equation. 
Ø  The SPn  equations have n+1 angular unknowns in first-order form 
Ø  The Pn equations have (n+1)2 unknowns 

u This large reduction of unknowns comes with a price 
Ø  The SPn solution does not necessarily converge to the transport solution as 

n goes to ∞ 
Ø  As a result there is a order n that gives the optimal solution 

•  Another way of saying that: the error between the SPn solution and the 
transport solution is lowest for some finite n. 

u A colloquial rule of thumb: “Where diffusion is ok, SPn is better. 
Where diffusion is bad, SPn is worse.” 
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What do the SPn equations represent? 

u The SPn equations were originally derived by Gelbard in 1960 by  
Ø  Taking the 1-D Pn equations  
Ø  Replacing 1-D spatial derivatives  

•  With a gradient in the odd order equations 
•  With a divergence in the even order equations 

Ø  Interpreting odd order unknowns as vectors and even order unknowns as 
scalars 

u Despite this ad hoc “derivation” the SPn equations have the 
property that 
Ø  For an infinite medium, the SPn solution is equivalent to the Pn solution 

provided that the total cross-section is constant and sources are isotropic 
Ø  This fact has been used to solve some problems to high accuracy. 

•  Gelbard used it to compute the leakage from a cylinder by surrounding the 
cylinder with a pure absorber. 
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Example: Uniform medium with local sources 
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(d) SP5

Figure 1: Scalar flux, �0, from several methods for the test problem. Note that the color scales are di�erent
for the N = 5 and N = 1 solutions.

Our analysis above assumed that boundaries did not influence the solution, therefore, we used periodic
boundary conditions for the test problem. Mathematically, this is equivalent to solving the PDEs on a torus.

This test problem is not well approximated by di�usion, so we expect that a high order of N will be
needed to obtain an accurate solution. Also, the test problem will have an inherently multi-dimensional
solution because the problem definition is rather asymmetric. The SPN equations were solved in even-parity
form using a simple finite-di�erence discretization. Hence, in each computational cell there are 1

2 (N + 1)
unknowns. The PN equations used a linear discontinuous Galerkin discretization that is a linear, steady
version of the discretization of that presented in Ref. [2]. The PN equations were solved in there full form,
rather than even-parity form, because a full PN code was readily available. In full form for a 2-D problem,
the PN equations have 1

2 (N2+3N)+1 unknowns per cell (in even-parity form there would be 1
4 (N2+2N +1)

unknowns per cell). For our spatial grid we used Nx = Ny = 100.
In Fig. 6 the PN and SPN solutions to the test problem are compared at N = 1, and 5. In these figures

one can see that, despite using completely di�erent numerical methods, the PN and SPN solutions appear
to be identical. Moreover, there is a significant di�erence between the N = 1 and N = 5 solutions. To more
precisely demonstrate that the PN and SPN solutions are equivalent for this problem we look at the solution
along the diagonal x = y in Fig. 6. In this figure we see that the SPN and PN solutions lie on top of each
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Example: Uniform medium with local sources 
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Figure 2: Scalar flux along the diagonal of the test problem. For most of the lines the SPN solution is
obscured by the PN solution.

other. We have found that the maximum pointwise relative di�erence between the PN and SPN solution is
about 0.1%. This is remarkable agreement considering the di�erent numerical methods used and the large
di�erences between the solutions at di�erent N .

We did not solve the problem with P7 or higher approximations. The principle reason for this is that the
problem size becomes intractable for serial computing. For the linear discontinuous Galerkin method with
Nx = Ny = 100, the P7 solution requires 1.44 � 106 unknowns. On the other hand, SP7 calculations with
this many computational cells can be easily accomplished on a laptop computer.

7 Conclusions

We have shown the equivalence of PN and SPN in a homogeneous medium. In some sense this is a remarkable
fact because SPN has so many fewer unknowns than PN . Also, given that in a homogeneous medium these
two systems give the same scalar flux PDE, the correct boundary and initial conditions should make the
SPN solution the same as the PN solution for a multi-material problem.
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What do the SPn equations represent? 

u The SPn equations aren’t just some ad hoc equations that happen 
to be correct in some limits. 

u The SPn equations can also be derived via an asymptotic 
expansion 
Ø  One approach does a similar expansion to that used to derive the diffusion 

limit (Larsen, Morel, and Miller) 
•  That is, scattering is large and absorption and sources are small. 
•  This explains the rule of thumb expressed earlier 

Ø  The other approach expands the dependence of the solution in 2 of 3 
spatial directions (Pomraning) 
•  This derivation shows that if the transport solution is “locally 1-D” the SPn 

solution will be accurate. 

u Variational derivations also exist for the  
Ø  SP2 equations (Larsen and Tomasevic) 
Ø  SP3 equations (Larsen and Brantley) 
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Why look for Pn Equilavent Forms of SPn 

u We know that in a uniform, infinite medium the Pn and SPn equations give the 
same scalar flux. 

u Therefore, if we think of a heterogeneous materials in  a finite problem as a 
patchwork of uniform media 
Ø  The only difference between the Pn and SPn solutions comes down  

•  Material interface conditions 
•  Boundary conditions 

u If we can express the Pn conditions at boundaries and interfaces using SPn 
unknowns 
Ø  We can derive an SPn system that is equivalent to the Pn system in the scalar flux 

solution. 
u Of course, this might not be possible. 
u At low order, one might have hope because the SPn and Pn unknowns are the 

same through first-order 
Ø  The scalar flux and the current unknowns are the same in both systems. 
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P3-Equivalent SP3 Equations have been claimed in the past. 

u In a terse ANS transactions paper in 1970, Selengut claimed to have derived a 
form of the P3 approximation 
Ø  That could be expressed entirely in terms of the SP3 unknowns in second-order 

form 
Ø  This approximation included interface conditions. 
Ø  No boundary conditions though. 

u The brevity of the derivation makes reproducing the result difficult.  
u No numerical results were presented 

Ø  I’m not aware of any attempts to solve these equations.  
u Some more recent analysis suggests that the solution used to construct these 

SP3 equations might not be the most general solution. 

Selengut, D. S. (1970). A new form of the P3 approximation. Trans. Am. Nucl. Soc. 13:625.  
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u This is the entirety of the 
technical content in Selengut’s 
ANS transactions. 
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The linear transport equation and SP2 equations 

u We’ll begin the derivation of a P2-equivalent form of the SP2 
equations with a steady, one-speed transport equation with 
isotropic scattering 

u In this situation the SP2 equations are 

(� ·⇥+ ⇥t)⌅ =
1

4�
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The P2 Equations in 2-D Cartesian geometry 

u If we restrict our system to 2-D x-z geometry, the full P2 equations 
are 

u The moments are defined as  
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Simplifying these equations 

u The first step to writing the P2 equations in SP2 form defines 

u Then we add the          equation to one-half times the         equation 
to get  

u Upon defining the current to be                                    , this 
equation becomes 

u This is exactly the last equation in the SP2 system. 
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The            equations are not so easily simplified. 

u From the original equations we can add equations to make 
simplifications  
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The            equations are not so easily simplified. 

u We make the substitutions 

u  This leads to the equations 
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Putting this together leads to the SP2 equations, almost 

u At this point we have the standard SP2 equations with a strange 
right-hand side 

u The RHS can be rewritten in terms of common vector calculus 
operators. 
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Simplifying the RHS (Yes, that is the curl operator) 

• First, we separate the RHS into a piece where �t is constant and a piece
where �t is spatially varying using the product rule
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The final SP2 equations are then 
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The SP2 equations with constant cross-section 

u In the case when the total cross-section is constant, the right 
hand of the current equation simplifies, but does not go to zero: 

 
 
u However, these terms do not influence the scalar flux 

Ø  Because the divergence of J does not contain them  

Ø  Therefore there are modes in the solution that are in the P2 equations but 
not the SP2 equations. 
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The Differences between the SP2 equations and the P2 equations 

u The extra terms in the reduced P2 equations, do not influence the 
scalar flux 
Ø  Because the divergence of a curl is zero.  

u Equivalently, the null space of the P2 equations is not the same as 
that of the SP2 equations 

u The scalar flux in the SP2 equations is the same as the P2 
equations 

u The current is not necessarily the same in the two systems. 
u Of course, unless boundary/interface conditions introduce these 

modes 
Ø  These modes won’t be created. 

u Yet, if we solve the SP2 equations, w/o the extra terms but with 
the correct interface/boundary conditions 
Ø We would get the same scalar flux as the P2 equations 
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Deriving material interface conditions 

u To get interface conditions we write the P2 equations as a 
hyperbolic system 

u We can derive interface conditions by hypothesizing an interface 
in either the x or z directions 
Ø  And then diagonalizing the appropriate Jacobian 
Ø  To find the waves that move in each direction 

u These interface conditions can then be expressed in terms of the 
SP2 unknowns. 

u This approach to obtaining boundary conditions will yield Mark-
type boundary conditions 
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 Deriving Interface Conditions 

u The eigenvalues for both the Jacobians are 
 

Ø  The zero eigenvalues means that there are two waves that do not move for each 
direction 

Ø  These zero-eigenvalues can cause problems in numerical calculations 
Ø  These are also a reason why even-over Pn expansions are generally avoided 

u From the eigenvectors we get that across an interface in the z direction, the 
following are continuous 

 
u In the x direction, these are continuous 

u It’s not clear how to enforce these conditions using just       and  
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Summary 

u Using some simple manipulations the P2 equations in 2-D 
geometry can be written as an SP2 system 
Ø With some extra terms that don’t influence the scalar flux 
Ø  Except through boundary and interface conditions 

u These equations demonstrate that even though the scalar flux 
between the two equations is consistent in a uniform media 
Ø  The solution for the current is, in general, different. 

u What about 3-D? 
Ø  I’ve not had any luck getting a similar manipulation to work in 3-D for the P2 

equations 
u P3 or higher order? 

Ø  Same story; partially due to the fact that in 2-D P3 has 4 more unknowns 
than P2 


