$\mathbf{P}_{\mathbf{2}}$-Equivalent form of the $\mathbf{S P}_{\mathbf{2}}$ Equations

Including boundary and interface conditions
Ryan G. McClarren
Texas A\&M University

$\mathbf{P}_{\mathbf{2}}$-Equivalent form of the $\mathbf{S P}_{\mathbf{2}}$ Equations

Including boundary and interface conditions
Ryan G. McClarren
Texas A\&M University

Unindicted co-conspirators
Marvin Adams, Jim Morel, Cory Hauck

SP_{n} Equations

Not news to anyone here but...

- The $S P_{n}$ equations are a simplified form of the full spherical harmonics $\left(P_{n}\right)$ equations for the linear transport equation.
$>$ The $S P_{n}$ equations have $n+1$ angular unknowns in first-order form
$>$ The P_{n} equations have $(n+1)^{2}$ unknowns
- This large reduction of unknowns comes with a price
$>$ The $S P_{n}$ solution does not necessarily converge to the transport solution as n goes to ∞
$>$ As a result there is a order n that gives the optimal solution
- Another way of saying that: the error between the $\mathbf{S P}_{\mathrm{n}}$ solution and the transport solution is lowest for some finite n.
A colloquial rule of thumb: "Where diffusion is ok, $\mathbf{S P}_{\mathrm{n}}$ is better. Where diffusion is bad, $\mathbf{S P}_{\mathrm{n}}$ is worse."

What do the $\mathbf{S P}_{\mathrm{n}}$ equations represent?

\checkmark The SP_{n} equations were originally derived by Gelbard in 1960 by
$>$ Taking the 1-D P_{n} equations
$>$ Replacing 1-D spatial derivatives

- With a gradient in the odd order equations
- With a divergence in the even order equations
$>$ Interpreting odd order unknowns as vectors and even order unknowns as scalars
Despite this ad hoc "derivation" the SP $_{\mathrm{n}}$ equations have the property that
$>$ For an infinite medium, the $S P_{n}$ solution is equivalent to the P_{n} solution provided that the total cross-section is constant and sources are isotropic
$>$ This fact has been used to solve some problems to high accuracy.
- Gelbard used it to compute the leakage from a cylinder by surrounding the cylinder with a pure absorber.

Example: Uniform medium with local sources

Example: Uniform medium with local sources

diagonal position

What do the SP_{n} equations represent?

- The $\mathbf{S P}_{\mathrm{n}}$ equations aren't just some ad hoc equations that happen to be correct in some limits.
- The SP_{n} equations can also be derived via an asymptotic expansion
> One approach does a similar expansion to that used to derive the diffusion limit (Larsen, Morel, and Miller)
- That is, scattering is large and absorption and sources are small.
- This explains the rule of thumb expressed earlier
$>$ The other approach expands the dependence of the solution in 2 of 3 spatial directions (Pomraning)
- This derivation shows that if the transport solution is "locally 1-D" the SPn solution will be accurate.
- Variational derivations also exist for the
$>$ SP2 equations (Larsen and Tomasevic)
$>$ SP3 equations (Larsen and Brantley)

Why look for P_{n} Equilavent Forms of $\mathbf{S P _ { n }}$

\checkmark We know that in a uniform, infinite medium the P_{n} and $S P_{n}$ equations give the same scalar flux.

- Therefore, if we think of a heterogeneous materials in a finite problem as a patchwork of uniform media
$>$ The only difference between the P_{n} and $S P_{n}$ solutions comes down
- Material interface conditions
- Boundary conditions
\checkmark If we can express the P_{n} conditions at boundaries and interfaces using $S P_{n}$ unknowns
$>$ We can derive an $S P_{n}$ system that is equivalent to the P_{n} system in the scalar flux solution.
\checkmark Of course, this might not be possible.
- At low order, one might have hope because the SP_{n} and P_{n} unknowns are the same through first-order
> The scalar flux and the current unknowns are the same in both systems.

P_{3}-Equivalent SP_{3} Equations have been claimed in the past.

\checkmark In a terse ANS transactions paper in 1970, Selengut claimed to have derived a form of the P_{3} approximation
$>$ That could be expressed entirely in terms of the SP_{3} unknowns in second-order form
$>$ This approximation included interface conditions.
$>$ No boundary conditions though.

- The brevity of the derivation makes reproducing the result difficult.
- No numerical results were presented
> I'm not aware of any attempts to solve these equations.
Some more recent analysis suggests that the solution used to construct these SP_{3} equations might not be the most general solution.

Selengut, D. S. (1970). A new form of the P3 approximation. Trans. Am. Nucl. Soc. 13:625.

- This is the entirety of the technical content in Selengut's ANS transactions.

The neutron angular distribution can be written $\psi(r, \Omega)=\left(1-\frac{1}{2} \mathrm{a} \cdot \nabla\right) \psi_{\mathrm{e}}(\mathrm{r}, \Omega)$,
where the even part satisfles the second-order Boltzmanh
$-\mathbf{Q} \cdot \nabla \frac{1}{\Sigma} \mathbf{Q} \cdot \nabla \psi_{\mathrm{e}}+\Sigma \psi_{\mathrm{e}}=\frac{1}{4 \pi} \Sigma_{s} \int \mathrm{~d} \psi_{\mathrm{e}}+\frac{1}{4 s} \mathrm{~s}$.
The P, approximation follows from setting
$\psi_{e}(r, \Omega) \cong \frac{1}{4 \pi} \psi(r)+\frac{15}{8 \pi} \sum_{j=1} p_{1 j}(r) \Omega_{1} \Omega_{j}$,
Where ρ_{11} is 2 traceless second-rank Cartesian tensor
related to the second moment of ψ, and O_{i} is the 1 'th related to the secood moment of ψ, atd i_{i} is the itt
component of a unit vector along the neutron velocity. Requiring conservation of the zero'th and second moments of Eq. (2) yields the tensor P, equations
$P_{i j}=\frac{15}{8 z} \sum_{k i m n} \omega_{i j k l m n} D_{k j} \rho_{m n}$
$+\frac{1}{4 \pi} \sum_{k i} \omega_{1 j k l} D_{k l \mid}+\frac{1}{3 \Sigma} \delta_{1 j}\left(\mathrm{~s}-\Sigma_{\mathrm{a}}()\right.$, (4)
where $w_{1 j k}{ }^{2}=\int \operatorname{dan}_{1} \Omega_{j} \rho_{k}$.... is a family of isotropic ensors which can be evaluated explicitly and D_{i} (2)
operator Dije and using the trace of Eq. (4), one obtains
$\frac{3}{35 \Sigma^{x}} \nabla^{\phi} \phi+\frac{I T}{21 \Sigma} v^{2}\left(s-\Sigma_{\alpha} \phi\right)-\frac{1}{3 \Sigma} v^{2} \phi=s-\Sigma_{\alpha} \phi,(5)$
the known 4 th-order differential equation for the flux,
which holds for both the complete and simpltited form
it P , theory.
Applying Gauss' theorem to Eq. (2) implies that n
$\mathbf{a}(\Sigma)^{1}, v \cdot \mathbf{0} \psi_{\mathrm{e}}$ and $(\mathrm{g} \cdot \mathbf{a})^{2} \psi_{\mathrm{e}}$ must be continuous at inter
taces between medra, where a is the unit normal to the
surface. This leads to the continuity of
$\phi \sum_{i j} n_{i p i j j_{j}}^{l}, \underbrace{\frac{1}{32} n \cdot v_{\phi}+\sum_{i j}^{\frac{1}{2} n_{i} v_{j p i j}}}$,

To evaluate these interface conditions in terms of the
flux, we can write the solution to Eq. (4) as
$\rho_{(1)}=\delta_{11}\left[\frac{11}{42 \Sigma}\left(s-\Sigma_{a}()+\frac{3}{70 \Sigma^{2}} \nabla^{2} \phi\right]\right.$
$+\mathrm{D}_{\mathrm{i}}\left[\frac{2}{15} \phi-\frac{121}{294 \Sigma}\left(\mathrm{~s}-\Sigma_{2} \phi\right)-\frac{33}{490 \Sigma^{2}} v^{2} \phi\right] . \quad(7)$
The nux Eq. (5) can now be solved using a coupled diffusion-theory code, after which the angular distributio
is given explicilly by EqF. (1), (3), and (7).
A convenient way to carry this out is to introduce the "pseudodux" θ to obtain
$-\frac{9}{55 \Sigma} \nabla^{2} \phi-\frac{7}{11} \Sigma \theta+\Sigma_{a} \phi=s$
$+\frac{9}{28 \Sigma} v^{2} \theta-\frac{5}{4} \Sigma \theta+\Sigma_{a} \phi=s$
(8)
object to the coatinuity at interfaces
$\phi, \frac{1}{2} \mathbf{n} \cdot \nabla(\phi+\theta), \quad \theta-\frac{1}{2^{2}}(\mathbf{a x V})^{2}\left(\frac{28}{55} \phi+\theta\right)$,
and $\quad \frac{1}{2} \mathrm{n} \cdot \mathrm{v} \theta+\frac{1}{2^{2}(\mathbf{n x v})^{2}} \frac{1}{2} \mathrm{n} \cdot \mathrm{v}\left(\frac{2}{3} \phi+\frac{55}{42} \theta\right)$
The cross-product terms are missing in the simplitiod
P , approximation; for the case of spherical or cylindrical

The linear transport equation and SP_{2} equations

- We'll begin the derivation of a P_{2}-equivalent form of the SP_{2} equations with a steady, one-speed transport equation with isotropic scattering

$$
\left(\Omega \cdot \nabla+\sigma_{\mathrm{t}}\right) \psi=\frac{1}{4 \pi}\left(\sigma_{\mathrm{s}} \phi+Q\right)
$$

$\left\langle\right.$ In this situation the $\mathbf{S P}_{2}$ equations are

$$
\begin{gathered}
\sigma_{\mathrm{a}} \phi_{0}+\nabla \cdot \vec{\phi}_{1}=Q, \\
\sigma_{\mathrm{t}} \vec{\phi}_{1}+\frac{1}{3} \nabla \phi_{0}+\frac{2}{3} \nabla \phi_{2}=0, \\
\sigma_{\mathrm{t}} \phi_{2}+\frac{2}{5} \nabla \cdot \vec{\phi}_{1}=0,
\end{gathered}
$$

The P_{2} Equations in 2-D Cartesian geometry

- If we restrict our system to 2-D x-z geometry, the full P2 equations are

$$
\begin{gathered}
\sigma_{\mathrm{a}} \psi_{00}+\frac{\partial}{\partial z} \psi_{10}+\frac{\partial}{\partial x} \psi_{11}=Q \\
\sigma_{\mathrm{t}} \psi_{10}+\frac{\partial}{\partial z}\left(\frac{1}{3} \psi_{00}+\frac{2}{3} \psi_{20}\right)+\frac{1}{3} \frac{\partial}{\partial x} \psi_{21}=0 \\
\sigma_{\mathrm{t}} \psi_{11}+\frac{\partial}{\partial x}\left(\frac{1}{3} \psi_{00}-\frac{1}{3} \psi_{20}+\frac{1}{6} \psi_{22}\right)+\frac{1}{3} \frac{\partial}{\partial z} \psi_{21}=0 \\
\sigma_{\mathrm{t}} \psi_{20}+\frac{2}{5} \frac{\partial}{\partial z} \psi_{10}-\frac{1}{5} \frac{\partial}{\partial x} \psi_{11}=0 \\
\sigma_{\mathrm{t}} \psi_{21}+\frac{3}{5} \frac{\partial}{\partial z} \psi_{11}+\frac{3}{5} \frac{\partial}{\partial x} \psi_{10}=0 \\
\sigma_{\mathrm{t}} \psi_{22}+\frac{6}{5} \frac{\partial}{\partial x} \psi_{11}=0
\end{gathered}
$$

- The moments are defined as $\quad \psi_{l m}=\int_{4 \pi} Y_{l m}(\Omega) \psi(\Omega) d \Omega$

Simplifying these equations

- The first step to writing the P2 equations in SP2 form defines

$$
\phi_{2}=\psi_{20}+\frac{\psi_{22}}{2}
$$

- Then we add the ψ_{20} equation to one-half times the ψ_{22} equation to get

$$
\sigma_{\mathrm{t}} \phi_{2}+\frac{2}{5} \frac{\partial}{\partial z} \psi_{10}+\frac{2}{5} \frac{\partial}{\partial x} \psi_{11}=0
$$

-Upon defining the current to be $\vec{J}=\left(\psi_{11}, 0, \psi_{10}\right)^{t}$, this equation becomes

$$
\sigma_{\mathrm{t}} \phi_{2}+\nabla \cdot \vec{J}=0
$$

\checkmark This is exactly the last equation in the $\mathbf{S P}_{2}$ system.

The $\psi_{1 m}$ equations are not so easily simplified.

\checkmark From the original equations we can add equations to make simplifications

$$
\begin{gathered}
\sigma_{\mathrm{a}} \psi_{00}+\frac{\partial}{\partial z} \psi_{10}+\frac{\partial}{\partial x} \psi_{11}=Q \\
\sigma_{\mathrm{t}} \psi_{10}+\frac{\partial}{\partial z}\left(\frac{1}{3} \psi_{00}+\frac{2}{3} \psi_{20}\right)+\frac{1}{3} \frac{\partial}{\partial x} \psi_{21}=0, \\
\sigma_{\mathrm{t}} \psi_{11}+\frac{\partial}{\partial x}\left(\frac{1}{3} \psi_{00}-\frac{1}{3} \psi_{20}+\frac{1}{6} \psi_{22}\right)+\frac{1}{3} \frac{\partial}{\partial z} \psi_{21}=0, \\
\sigma_{\mathrm{t}} \psi_{20}+\frac{2}{5} \frac{\partial}{\partial z} \psi_{10}-\frac{1}{5} \frac{\partial}{\partial x} \psi_{11}=0 \\
\sigma_{\mathrm{t}} \psi_{21}+\frac{3}{5} \frac{\partial}{\partial z} \psi_{11}+\frac{3}{5} \frac{\partial}{\partial x} \psi_{10}=0 \\
\sigma_{\mathrm{t}} \psi_{22}+\frac{6}{5} \frac{\partial}{\partial x} \psi_{11}=0
\end{gathered}
$$

The $\psi_{1 m}$ equations are not so easily simplified.

\checkmark We make the substitutions

$$
\begin{aligned}
& -\frac{1}{3} \psi_{20}+\frac{1}{6} \psi_{22}=\frac{2}{3}\left(\phi_{2}+\frac{3}{5 \sigma_{\mathrm{t}}} \frac{\partial}{\partial z} \psi_{10}\right) \\
& \frac{2}{3} \psi_{20}=\frac{2}{3} \phi_{2}-\frac{1}{3} \psi_{22}=\frac{2}{3} \phi_{2}+\frac{2}{5 \sigma_{\mathrm{t}}} \frac{\partial}{\partial x} \psi_{11}
\end{aligned}
$$

- This leads to the equations

$$
\begin{aligned}
& \sigma_{\mathrm{t}} \psi_{10}+\frac{\partial}{\partial z}\left(\frac{1}{3} \psi_{00}+\frac{2}{3} \phi_{2}\right)=\frac{\partial}{\partial x} \frac{1}{5 \sigma_{\mathrm{t}}} \frac{\partial}{\partial z} \psi_{11}+\frac{\partial}{\partial x} \frac{1}{5 \sigma_{\mathrm{t}}} \frac{\partial}{\partial x} \psi_{10}-\frac{\partial}{\partial z} \frac{2}{5 \sigma_{\mathrm{t}}} \frac{\partial}{\partial x} \psi_{11}, \\
& \sigma_{\mathrm{t}} \psi_{11}+\frac{\partial}{\partial x}\left(\frac{1}{3} \psi_{00}+\frac{2}{3} \phi_{2}\right)=\frac{\partial}{\partial z} \frac{1}{5 \sigma_{\mathrm{t}}} \frac{\partial}{\partial z} \psi_{11}+\frac{\partial}{\partial z} \frac{1}{5 \sigma_{\mathrm{t}}} \frac{\partial}{\partial x} \psi_{10}-\frac{\partial}{\partial x} \frac{2}{5 \sigma_{\mathrm{t}}} \frac{\partial}{\partial z} \psi_{10} .
\end{aligned}
$$

Putting this together leads to the SP2 equations, almost

- At this point we have the standard SP2 equations with a strange right-hand side

$$
\begin{gathered}
\sigma_{\mathrm{a}} \phi_{0}+\nabla \cdot \vec{\phi}_{1}=Q, \\
\sigma_{\mathrm{t}} \vec{\phi}_{1}+\frac{1}{3} \nabla \phi_{0}+\frac{2}{3} \nabla \phi_{2}=\binom{\frac{\partial}{\partial z} \frac{1}{5 \sigma_{\mathrm{t}}} \frac{\partial}{\partial z} \psi_{11}+\frac{\partial}{\partial z} \frac{1}{5 \sigma_{\mathrm{t}}} \frac{\partial}{\partial x} \psi_{10}-\frac{\partial}{\partial x} \frac{2}{5 \sigma_{\mathrm{t}}} \frac{\partial}{\partial z} \psi_{10}}{\frac{\partial}{\partial x} \frac{1}{5 \sigma_{\mathrm{t}}} \frac{\partial}{\partial z} \psi_{11}+\frac{\partial}{\partial x} \frac{1}{5 \sigma_{\mathrm{t}}} \frac{\partial}{\partial x} \psi_{10}-\frac{\partial}{\partial z} \frac{2}{5 \sigma_{\mathrm{t}}} \frac{\partial}{\partial x} \psi_{11}} \\
\sigma_{\mathrm{t}} \phi_{2}+\frac{2}{5} \nabla \cdot \vec{\phi}_{1}=0,
\end{gathered}
$$

with $\phi_{0}=\psi_{00}$ and $\vec{J}=\left(\psi_{11}, 0, \psi_{10}\right)^{t}$.

- The RHS can be rewritten in terms of common vector calculus operators.

Simplifying the RHS (Yes, that is the curl operator)

- First, we separate the RHS into a piece where σ_{t} is constant and a piece where σ_{t} is spatially varying using the product rule

$$
\begin{array}{r}
\frac{1}{5}\left(\begin{array}{c}
\frac{\partial}{\partial z} \frac{1}{\sigma_{\mathrm{t}}} \frac{\partial}{\partial z} \psi_{11}+\frac{\partial}{\partial z} \frac{1}{\sigma_{\mathrm{t}}} \frac{\partial}{\partial x} \psi_{10}-\frac{\partial}{\partial x} \frac{2}{\sigma_{\mathrm{t}}} \frac{\partial}{\partial z} \psi_{10} \\
0 \\
\frac{\partial}{\partial x} \frac{1}{\sigma_{\mathrm{t}}} \frac{\partial}{\partial z} \psi_{11}+\frac{\partial}{\partial x} \frac{1}{\sigma_{\mathrm{t}}} \frac{\partial}{\partial x} \psi_{10}-\frac{\partial}{\partial z} \frac{2}{\sigma_{\mathrm{t}}} \frac{\partial}{\partial x} \psi_{11}
\end{array}\right)=\frac{1}{5 \sigma_{\mathrm{t}}}\left(\begin{array}{c}
\frac{\partial^{2}}{\partial z^{2}} \psi_{11}-\frac{\partial^{2}}{\partial x \partial z} \psi_{10} \\
0 \\
\frac{\partial^{2}}{\partial x^{2}} \psi_{10}-\frac{\partial^{2}}{\partial x \partial z} \psi_{11}
\end{array}\right) \\
-\frac{2}{5}\left(\begin{array}{c}
\left(\frac{\partial}{\partial z} \psi_{10}\right) \frac{\partial}{\partial x} \sigma_{\mathrm{t}}^{-1} \\
0 \\
\left(\frac{\partial}{\partial x} \psi_{11}\right) \frac{\partial}{\partial z} \sigma_{\mathrm{t}}^{-1}
\end{array}\right)+\frac{1}{5}\left(\begin{array}{c}
\left(\frac{\partial}{\partial z} \psi_{11}+\frac{\partial}{\partial x} \psi_{10}\right) \frac{\partial}{\partial z} \sigma_{\mathrm{t}}^{-1} \\
0 \\
\left(\frac{\partial}{\partial x} \psi_{10}+\frac{\partial}{\partial z} \psi_{11}\right) \frac{\partial}{\partial x} \sigma_{\mathrm{t}}^{-1}
\end{array}\right)
\end{array}
$$

- We note that

$$
\binom{\frac{\partial^{2}}{\partial z^{2}} \psi_{11}-\frac{\partial^{2}}{\partial x \partial z} \psi_{10}}{\frac{\partial^{2}}{\partial x^{2}} \psi_{10}-\frac{\partial^{2}}{\partial x \partial z} \psi_{11}}=-\nabla \times \nabla \times \overrightarrow{\phi_{1}}
$$

The final SP2 equations are then

$$
\left.\begin{array}{c}
\sigma_{\mathrm{a}} \phi_{0}+\nabla \cdot \vec{\phi}_{1}=Q \\
\sigma_{\mathrm{t}} \vec{\phi}_{1}+\frac{1}{3} \nabla \phi_{0}+\frac{2}{3} \nabla \phi_{2}=-\frac{1}{5 \sigma_{\mathrm{t}}} \nabla \times \nabla \times \vec{\phi}_{1}-\frac{1}{5}\left(\nabla \times \vec{\phi}_{1}\right) \times \nabla \sigma_{\mathrm{t}}^{-1} \\
\\
+\frac{2}{5}\binom{\left(\frac{\partial}{\partial z} \psi_{11}\right) \frac{\partial}{\partial z} \sigma_{\mathrm{t}}^{-1}-\left(\frac{\partial}{\partial z} \psi_{10}\right) \frac{\partial}{\partial x} \sigma_{\mathrm{t}}^{-1}}{\left(\frac{\partial}{\partial x} \psi_{10}\right) \frac{\partial}{\partial x} \sigma_{\mathrm{t}}^{-1}-\left(\frac{\partial}{\partial x} \psi_{11}\right) \frac{\partial}{\partial z} \sigma_{\mathrm{t}}^{-1}} \\
\sigma_{\mathrm{t}} \phi_{2}
\end{array}\right)
$$

The SP2 equations with constant cross-section

\checkmark In the case when the total cross-section is constant, the right hand of the current equation simplifies, but does not go to zero:

$$
\sigma_{\mathrm{t}} \vec{\phi}_{1}+\frac{1}{3} \nabla \phi_{0}+\frac{2}{3} \nabla \phi_{2}=-\frac{1}{5 \sigma_{\mathrm{t}}} \nabla \times \nabla \times \vec{\phi}_{1}
$$

\rightarrow However, these terms do not influence the scalar flux
$>$ Because the divergence of J does not contain them

$$
\nabla \cdot \vec{\phi}_{1}=-\frac{1}{3 \sigma_{\mathrm{t}}} \nabla^{2} \phi_{0}-\frac{2}{3 \sigma_{\mathrm{t}}} \nabla^{2} \phi_{2},
$$

$>$ Therefore there are modes in the solution that are in the P2 equations but not the SP2 equations.

The Differences between the SP2 equations and the P2 equations

- The extra terms in the reduced P2 equations, do not influence the scalar flux
$>$ Because the divergence of a curl is zero.
\checkmark Equivalently, the null space of the P2 equations is not the same as that of the SP2 equations
-The scalar flux in the SP2 equations is the same as the P2 equations
- The current is not necessarily the same in the two systems.
- Of course, unless boundary/interface conditions introduce these modes
$>$ These modes won't be created.
- Yet, if we solve the SP2 equations, w/o the extra terms but with the correct interface/boundary conditions
$>$ We would get the same scalar flux as the $P 2$ equations

Deriving material interface conditions

- To get interface conditions we write the P2 equations as a hyperbolic system

$$
\left(\mathbf{A}_{x} \frac{\partial}{\partial x}+\mathbf{A}_{z} \frac{\partial}{\partial z}+\sigma_{\mathrm{t}}\right) \vec{\psi}=\delta_{l 0} \delta_{m 0}\left(\sigma_{\mathrm{s}} \phi_{0}+Q\right)
$$

- We can derive interface conditions by hypothesizing an interface in either the x or z directions
$>$ And then diagonalizing the appropriate Jacobian
$>$ To find the waves that move in each direction
- These interface conditions can then be expressed in terms of the SP2 unknowns.
- This approach to obtaining boundary conditions will yield Marktype boundary conditions

Deriving Interface Conditions

- The eigenvalues for both the Jacobians are

$$
\left(-\sqrt{\frac{3}{5}}, \quad \sqrt{\frac{3}{5}}, \quad-\frac{1}{\sqrt{5}}, \quad \frac{1}{\sqrt{5}}, \quad 0, \quad 0\right)
$$

> The zero eigenvalues means that there are two waves that do not move for each direction
> These zero-eigenvalues can cause problems in numerical calculations
> These are also a reason why even-over Pn expansions are generally avoided

- From the eigenvectors we get that across an interface in the \mathbf{z} direction, the following are continuous

$$
\left(\phi+\frac{4}{5} \psi_{20}, \psi_{10}, \psi_{11}, \psi_{21}\right)
$$

- In the x direction, these are continuous

$$
\left(\phi-\frac{1}{5} \psi_{20}+\frac{6}{5} \psi_{22}, \psi_{10}, \psi_{11}, \psi_{21}\right)
$$

- It's not clear how to enforce these conditions using just ϕ and

Summary

-Using some simple manipulations the P2 equations in 2-D geometry can be written as an SP2 system
$>$ With some extra terms that don't influence the scalar flux
$>$ Except through boundary and interface conditions

- These equations demonstrate that even though the scalar flux between the two equations is consistent in a uniform media
$>$ The solution for the current is, in general, different.
What about 3-D?
$>$ I've not had any luck getting a similar manipulation to work in 3-D for the P2 equations
-P3 or higher order?
$>$ Same story; partially due to the fact that in 2-D P3 has 4 more unknowns than P2

