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Asymptotic Limits of the Transport Equation

@ There are several well known asymptotic limits of the transport
equation.

e In the limit of limit of large scattering cross-sections and small
absorption cross-sections,
e The linear transport equation becomes a diffusion equation.
@ In this work we look at, what we feel, is a new limit for the transport
equation for thermal neutrons.

o Particularly, we will look at situations of low absorption, small sources
and include full energy dependence.

@ The material will have a temperature dependence that will help drive
the neutron distribution away from a Maxwellian in a particular way.
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Possible application: Heavy Water Column
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Equilibrium Diffusion Limit for Radiative Transfer

@ It is useful to connect this work to previous results for the equilibrium
diffusion limit for radiative transfer.

@ For a gray transport equation coupled to a material energy equation
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@ The asymptotic limit gives a non-linear transport equation in the
material temperature/energy:
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hermalization

@ The radiative transfer problem shares some characteristics with the
thermal neutron problem:
e There is a local temperature equation (in the neutron case it is a

specified temperature)
e The neutron’s behavior is influenced by the local temperature

@ In the neutronics case the scattering is affected by the temperature.
@ The source is affected in the radiative transfer case.
@ Before proceeding it will be useful to remind the audience that in a
source-free, absorption-free, infinite medium, the angular flux becomes

0]
b(x ) = 5 M(E.T)

where £
_E
M(E, T) = We KT .

and T is the material’s temperature.
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Problem Set Up

@ We begin with the slab geometry transport equation,

M%f + (05(E) + 0a(E)) 9(x, 1. E)

_ /dE'/d,/ S Poio) 2L, ENVA(E — E)ou(E') +
(=0

Q
2 2

@ We are going to seek to solve this equation by making the following
changes:
e The scattering cross-section is large: os(E) — os(E)/e.
e The absorption cross-section is small: 0,(E) — €o.(E).
e The source is small: @ — €Q.
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Problem Set Up

o After making these substitutions, we get

6#% + (US(E) + E2Ua(E)) T/J(Xnu» E)

> 20+ 1
—/dE//d// ZPZ(,u,O) ; V(' ENR(E' — E)og(E') +
=0

2 Q
)

@ We then look for solutions in the form of a power series in e:

Yl E) = dpl),

j=0

where the 1/U)(x, u1, E) are as yet undetermined functions.
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The leading-order equations

@ The leading-order equation is an infinite medium equation without
source or scattering:

- 20+1
7u(E00) = [dE" [du > Puuo) 30O EVA(E > Eyon(E”
(=0

@ The solution to this equation is a Maxwellian at the local temperature
with a local normalization:

v, ) = X (e, 7).

@ ®(x) is still undetermined.
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The first-order equations

@ Moving on to the next order in € we get

oy©
a Ox

- / * / a3 Piiuo) SO EN(E — E)o(E) (1)
=0

+ J(E)zp(l)

e Operating on this equation by f_lldu (+) we get

1 0¢g
1-§JM =222
[ 1 3 Ox
where the operator §; is defined as
1
(SIE(E) =~y [ AE aalE' — E)a(E).
os(E) ’ A | TEXAS oM
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The first-order equations

e We'd like to invert the [1 — S;] operator and get a version of Fick's
law, but we first need to show that this operator is invertible.

@ It's not obvious that it would be, for instance we know that [1 — So]
is singular.

@ The solution to
[1 - Solg(E) =0,
is the Maxwellian.

@ It can be shown that this operator is invertible.

I | TEXAS MM

McClarren, Adams & Strack (Texas A&M) Thermal Drift-Diffusion ICTT2013 10 / 24



The operator [1 — Si] is invertible

@ To show this we first need to establish the following 4 items:
@ The operator [1 — Sp] is singular O
(2]
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The operator [1 — Si] is invertible

@ To show this we first need to establish the following 4 items:
@ The operator [1 — Sp] is singular O
@ The spectral radius of Sp is 1
©
o
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The spectral radius of &y is 1

From remark 1, we can directly infer that 1 is an eigenvalue of the
operator.

The eigenvalues of the operator are found by seeking non-trivial
solutions p(E) and A's that satisfy Soe(E) = A@(E), which can be
rewritten as

dE /dE’ 0s0(E" — E)o(E") = Xos(E)p(E)dE. (2)
In physical terms, this equation says

(The scattering rate density into dE about E from all energies) =
A x (The scattering rate density from dE about E)

Physically, for a solution to exist it must be the case that A < 1.
Otherwise, we could not have a steady solution and ¢ would have to
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The operator [1 — Si] is invertible

@ To show this we first need to establish the following 4 items:
@ The operator [1 — Sp] is singular O
@ The spectral radius of Sp is 1 [
© If the spectral radius of S; is less than 1, then the series

1-8)t=1+8+S8+...

converges and the operator (1 — &) is invertible [J
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The operator [1 — Si] is invertible

@ To show this we first need to establish the following 4 items:
@ The operator [1 — Sp] is singular O
@ The spectral radius of Sgis 1 O
© If the spectral radius of S; is less than 1, then the series

1-8S)'=1+8+8+...

converges and the operator (1 — &) is invertible [
@ The spectral radius of S is less than 1 for [ > 0.
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The spectral radius of & is less than 1 for / > 0.

@ The magnitude of an eigenvalue of the operator can be written as

[dE" o5/(E" — E)p(E")
os(E)¢p(E)
@ We also know that for physically realizable cross-sections
O'S/(E) < og for [ > 0.
@ This leads to

A=

(3)

Al < ’de’O’so(E/ — E)p(E") -1, (4)

as(E)p(E)

@ Therefore, all of the eigenvalues of S; are less than 1.
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The operator [1 — Si] is invertible

@ To show this we first need to establish the following 4 items:
@ The operator [1 — Sp] is singular O
@ The spectral radius of Sp is 1 [J
© If the spectral radius of S; is less than 1, then the series

1-8S)'=1+8+8+...

converges and the operator (1 — &) is invertible O
© The spectral radius of S; is less than 1 for / > 0 [

@ These combine to say that [1 — Si] is invertible.
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e Now we can rearrange our first-order equations to get a version of
Fick's Law: )

_1 0¢

O(x,E)y=—-Z[1 - 1

S0 By = 3-8y 2

@ Integrating this over all energy we get

_ 0
IV(x) = —;/ dE[L— 8] ag’x
0

1 0

:—;/ dE[l—Sl]_ ( JM(E, T(x)).

0
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e Using the product rule we can re-write J as

where

and

CZ’(CD(x)} + b(x)b(x)
D(x) = —= [/OOO dE[1 - S| *M(E, T)} (5)

b0 =35 | [ aEn - s G (6)
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The Drift-Diffusion Equation

e Using our equation for J(1) we then can get a drift-diffusion equation
given by:

_C%(D(X) [i(cb(x)} + diib(x)d)(x) + 0. P(x) = Q.

@ This equation tells us how the magnitude of the scalar flux changes as
a function of the variation in the material temperature.

@ We can also show that the energy-dependent scalar flux is a
Maxwellian through first order in .
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Comparison of the Model

@ We would like to compare the drift-diffusion model derived above to
energy-dependent transport results in a material with a temperature
gradient.

@ We have not done these yet, but have derived how to represent the
quantities D(x) and b(x) based on multi-group data.

@ First we will need.

1 11 1 21 1 _G—=1 7
T o1%1 T510s1 5191
1 12 1 G2
A —=0 —=0
[I—S]_] — 0'3 sl o'g sl
1 155G 1 _G-1-G 1 _G—G
~569sG 569G 1 26951 |

McClarren, Adams & Strack (Texas A&M) Thermal Drift-Diffusion ICTT2013 21 /24



Multi-group Form

@ Using this we can define

(o] G —
D(x) = f% [/0 dE[1— S| *M(E, T)] = f% S U-81m

g=1

=3[ o s ] T 1Sy

where

E;—1
ME :/ dE M(E, T)
E,

g

OME 1
= E-—(E, T
oT /E d aT(’ )
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Comparison of the Model

@ It's important to note that these quantities will also be functions of
temperature.
e It will be a slog to generate D(x, T) and b(x, T) but it is doable.

e For the drift-speed, b(x, T), the temperature derivative can be
separated out and the rest could be tabulated.

@ We haven't done it yet, but it is a work in progress.
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Summary and Future Work

@ Under conditions similar to the standard mono-energetic diffusion
limit, we derived a drift-diffusion limit for the total scalar-flux.

@ The energy dependent scalar flux is a Maxwellian through first-order
in €.

e We did not perform a boundary layer analysis, and this should be part
of future work.

@ | really want to compare the model to full-blown multi-group or
continuous energy calculations.
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