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Asymptotic Limits of the Transport Equation

There are several well known asymptotic limits of the transport
equation.

In the limit of limit of large scattering cross-sections and small
absorption cross-sections,
The linear transport equation becomes a diffusion equation.

In this work we look at, what we feel, is a new limit for the transport
equation for thermal neutrons.

Particularly, we will look at situations of low absorption, small sources
and include full energy dependence.

The material will have a temperature dependence that will help drive
the neutron distribution away from a Maxwellian in a particular way.
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Possible application: Heavy Water Column

McClarren, Adams & Strack (Texas A&M) Thermal Drift-Diffusion ICTT2013 3 / 24



Equilibrium Diffusion Limit for Radiative Transfer

It is useful to connect this work to previous results for the equilibrium
diffusion limit for radiative transfer.

For a gray transport equation coupled to a material energy equation

ε

c

∂ψ

∂t
+ µ

∂ψ

∂x
+
σ

ε
ψ =

σac

2ε
T 4

ε
∂em
∂t

=
σ

ε

(∫ 1

−1
dµψ − acT 4

)
The asymptotic limit gives a non-linear transport equation in the
material temperature/energy:
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Neutron Thermalization

The radiative transfer problem shares some characteristics with the
thermal neutron problem:

There is a local temperature equation (in the neutron case it is a
specified temperature)
The neutron’s behavior is influenced by the local temperature

In the neutronics case the scattering is affected by the temperature.
The source is affected in the radiative transfer case.

Before proceeding it will be useful to remind the audience that in a
source-free, absorption-free, infinite medium, the angular flux becomes

ψ(x , µ,E ) =
Φ0

2
M(E ,T )

where

M(E ,T ) =
E

(kT )2
e−

E
kT .

and T is the material’s temperature.
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Problem Set Up

We begin with the slab geometry transport equation,

µ
∂ψ

∂x
+ (σs(E ) + σa(E ))ψ(x , µ,E )

=

∫
dE ′

∫
dµ′

∞∑
`=0

P`(µ0)
2`+ 1

2
ψ(µ′,E ′)f`(E

′ → E )σs(E
′) +

Q

2

We are going to seek to solve this equation by making the following
changes:

The scattering cross-section is large: σs(E )→ σs(E )/ε.
The absorption cross-section is small: σa(E )→ εσa(E ).
The source is small: Q → εQ.
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Problem Set Up

After making these substitutions, we get

εµ
∂ψ

∂x
+
(
σs(E ) + ε2σa(E )

)
ψ(x , µ,E )

=

∫
dE ′

∫
dµ′

∞∑
`=0

P`(µ0)
2`+ 1

2
ψ(µ′,E ′)f`(E

′ → E )σs(E
′) + ε2Q

2

We then look for solutions in the form of a power series in ε:

ψ(x , µ,E ) =
∞∑
j=0

εjψ(j),

where the ψ(j)(x , µ,E ) are as yet undetermined functions.
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The leading-order equations

The leading-order equation is an infinite medium equation without
source or scattering:

σs(E )ψ(0) =

∫
dE ′

∫
dµ′

∞∑
`=0

P`(µ0)
2`+ 1

2
ψ(0)(µ′,E ′)f`(E

′ → E )σs(E
′),

The solution to this equation is a Maxwellian at the local temperature
with a local normalization:

ψ(0)(x , µ,E ) =
Φ(x)

2
M(E ,T (x)).

Φ(x) is still undetermined.
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The first-order equations

Moving on to the next order in ε we get

µ
∂ψ(0)

∂x
+ σ(E )ψ(1)

=

∫
dE ′

∫
dµ′

∞∑
`=0

P`(µ0)
2`+ 1

2
ψ(1)(µ′,E ′)f`(E

′ → E )σs(E
′) (1)

Operating on this equation by
∫ 1
−1dµ (·) we get

[1− S1]J(1) = −1

3

∂φ0

∂x

where the operator Sl is defined as

[Sl ]g(E ) ≡ 1

σs(E )

∫
dE ′ σsl(E

′ → E )g(E ′).
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The first-order equations

We’d like to invert the [1− S1] operator and get a version of Fick’s
law, but we first need to show that this operator is invertible.

It’s not obvious that it would be, for instance we know that [1− S0]
is singular.

The solution to
[1− S0]g(E ) = 0,

is the Maxwellian.

It can be shown that this operator is invertible.
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The operator [1− S1] is invertible

To show this we first need to establish the following 4 items:
1 The operator [1− S0] is singular �
2

3

4
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The operator [1− S1] is invertible

To show this we first need to establish the following 4 items:
1 The operator [1− S0] is singular �
2 The spectral radius of S0 is 1
3

4
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The spectral radius of S0 is 1

From remark 1, we can directly infer that 1 is an eigenvalue of the
operator.

The eigenvalues of the operator are found by seeking non-trivial
solutions ϕ(E ) and λ’s that satisfy S0ϕ(E ) = λϕ(E ), which can be
rewritten as

dE

∫
dE ′ σs0(E ′ → E )ϕ(E ′) = λσs(E )ϕ(E )dE . (2)

In physical terms, this equation says

(The scattering rate density into dE about E from all energies) =

λ× (The scattering rate density from dE about E )

Physically, for a solution to exist it must be the case that λ ≤ 1.
Otherwise, we could not have a steady solution and ϕ would have to
be time dependent.
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The operator [1− S1] is invertible

To show this we first need to establish the following 4 items:
1 The operator [1− S0] is singular �
2 The spectral radius of S0 is 1 �
3 If the spectral radius of Sl is less than 1, then the series

(1− Sl)−1 = 1 + Sl + S2
l + . . .

converges and the operator (1− Sl) is invertible �
4

McClarren, Adams & Strack (Texas A&M) Thermal Drift-Diffusion ICTT2013 14 / 24



The operator [1− S1] is invertible

To show this we first need to establish the following 4 items:
1 The operator [1− S0] is singular �
2 The spectral radius of S0 is 1 �
3 If the spectral radius of Sl is less than 1, then the series

(1− Sl)−1 = 1 + Sl + S2
l + . . .

converges and the operator (1− Sl) is invertible �
4 The spectral radius of Sl is less than 1 for l > 0.
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The spectral radius of Sl is less than 1 for l > 0.

The magnitude of an eigenvalue of the operator can be written as

|λ| =

∣∣∣∣∫ dE ′ σsl(E
′ → E )ϕ(E ′)

σs(E )ϕ(E )

∣∣∣∣ . (3)

We also know that for physically realizable cross-sections
σsl(E ) < σs0 for l > 0.

This leads to

|λ| <
∣∣∣∣∫ dE ′ σs0(E ′ → E )ϕ(E ′)

σs(E )ϕ(E )

∣∣∣∣ = 1, (4)

Therefore, all of the eigenvalues of Sl are less than 1.
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The operator [1− S1] is invertible

To show this we first need to establish the following 4 items:
1 The operator [1− S0] is singular �
2 The spectral radius of S0 is 1 �
3 If the spectral radius of Sl is less than 1, then the series

(1− Sl)−1 = 1 + Sl + S2
l + . . .

converges and the operator (1− Sl) is invertible �
4 The spectral radius of Sl is less than 1 for l > 0 �

These combine to say that [1− S1] is invertible.
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Fick’s Law

Now we can rearrange our first-order equations to get a version of
Fick’s Law:

J(1)(x ,E ) = −1

3
[1− S1]−1 ∂φ

(0)

∂x
.

Integrating this over all energy we get

J̄(1)(x) = −1

3

∫ ∞
0

dE [1− S1]−1 ∂φ
(0)

∂x

= −1

3

∫ ∞
0

dE [1− S1]−1 ∂

∂x
Φ(x)M(E ,T (x)).
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Fick’s Law

Using the product rule we can re-write J̄ as

J̄(1)(x) = −D(x)

[
d

dx
Φ(x)

]
+ b(x)Φ(x)

where

D(x) = −1

3

[∫ ∞
0

dE [1− S1]−1M(E ,T )

]
(5)

and

b(x) = −1

3

dT

dx

[∫ ∞
0

dE [1− S1]−1∂M

∂T

]
(6)
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The Drift-Diffusion Equation

Using our equation for J̄(1) we then can get a drift-diffusion equation
given by:

− d

dx
D(x)

[
d

dx
Φ(x)

]
+

d

dx
b(x)Φ(x) + σ̄aΦ(x) = Q.

This equation tells us how the magnitude of the scalar flux changes as
a function of the variation in the material temperature.

We can also show that the energy-dependent scalar flux is a
Maxwellian through first order in ε.
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Comparison of the Model

We would like to compare the drift-diffusion model derived above to
energy-dependent transport results in a material with a temperature
gradient.

We have not done these yet, but have derived how to represent the
quantities D(x) and b(x) based on multi-group data.

First we will need.

[I−Ŝ1] =


1− 1

σ1
s
σ1→1
s1 − 1

σ1
s
σ2→1
s1 · · · − 1

σ1
s
σG→1
s1

− 1
σ2
s
σ1→2
s1

. . . · · · − 1
σ2
s
σG→2
s1

... · · · . . .
...

− 1
σG
s
σ1→G
sG · · · − 1

σG
s
σG−1→G
sG 1− 1

σG
s
σG→G
s1
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Multi-group Form

Using this we can define

D(x) = −1

3

[∫ ∞
0

dE [1− S1]−1M(E ,T )

]
≡ −1

3

G∑
g=1

[I − Ŝl ]−1 ~M

b(x) = −1

3

[∫ ∞
0

dE [1− S1]−1∂M

∂T

]
dT

dx
≡ −1

3

dT

dx

G∑
g=1

[I − Ŝl ]−1∂
~M

∂T

where

Mg =

∫ Eg−1

Eg

dE M(E ,T )
∂Mg

∂T
=

∫ Eg−1

Eg

dE
∂M

∂T
(E ,T )
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Comparison of the Model

It’s important to note that these quantities will also be functions of
temperature.

It will be a slog to generate D(x ,T ) and b(x ,T ) but it is doable.

For the drift-speed, b(x ,T ), the temperature derivative can be
separated out and the rest could be tabulated.

We haven’t done it yet, but it is a work in progress.
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Summary and Future Work

Under conditions similar to the standard mono-energetic diffusion
limit, we derived a drift-diffusion limit for the total scalar-flux.

The energy dependent scalar flux is a Maxwellian through first-order
in ε.

We did not perform a boundary layer analysis, and this should be part
of future work.

I really want to compare the model to full-blown multi-group or
continuous energy calculations.
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