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The spherical harmonics (PN ) equations are a moment-based method to solve the Boltzmann transport
equation by expanding the angular variable Ω̂ in terms of spherical harmonics functions and then truncating
the expansion at some order with a closure. These methods have been shown to work well in problems
with moderate amounts of scattering or with appropriate closures [1–4]. The SPN equations, or simplified
PN equations, were originally derived by Gelbard through taking a spherical harmonics expansion to the
1-D slab geometry transport equation and making some ad hoc substitutions to make the equations “look”
3-D. Gelbard was able to show that under many situations, the most general being an infinite medium with
a constant cross-section, the SPN solution for the scalar flux would be the same as the scalar flux solution
from the full, and much more complicated, PN equations. Later variational and asymptotic derivations of
the SPN equations were presented [5–9]. These derivations made it clear that the SPN equations, in the form
they are most commonly solved, do not give the same solution as the PN equations. Also, there has never
been an interpretation of the SPN unknowns in terms of spherical harmonics moments, except for the scalar
flux and current where the intrepretation is trivial. Much of the current knowledge of can be found by the
interested reader in a recent special issue of TTSP commenorating the 50th anniversary of the SPN equations
[10].

In the 1970’s Selengut presented in an inscrutably terse ANS transactions paper a derivation of a P3-
equivalent form of the SP3 equations with appropriate interface conditions. The trail of this work apparently
went cold thereafter, and no numerical solutions or in depth derivations of these equations have surfaced in
the literature. The lack of derivation details has made it difficult to extend Selengut’s work and verify its
correctness, in a similar vein to Fermat’s last theorem in that we have the result, but not how it was arrived
at∗. Of course there would be a large impact of a P3 -equivalent SP3 method in computational transport in
that SP3 is a workhorse method for reactor calculations and it has only 3 angular unknowns compared to
the 16 unknowns of the P3 equations in first-order form.

In an ongoing research program we are endeavoring to find PN -equivalent SPN methods, and this abstract
presents some initial, though theoretically important, results to that end. Specifically, we present a P2-
equivalent form of the SP2 equations in 2-D Cartesian geometry. We were able to find an interpretation of

∗It might be beyond the pale to call this Selengut’s last theorem as I believe he did much work after this.
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all the SP2 unknowns and show how it goes to the standard equation for the scalar flux in the case of an
infinite medium with constant cross-section.

We will be considering the linear, steady, and one-speed transport equation with isotropic scattering:

(Ω ·∇+ σt)ψ =
1
4π

(σsφ + Q) , (1)

where ψ(%x,Ω, t) is the angular flux with scalar flux given by

φ(%x) =
∫

4π

ψ(%x,Ω) dΩ. (2)

Also, in Eq. (1) σt is the macroscropic total cross-section, σs is the macroscopic scattering cross-section,
and Q is the isotropic, prescribed source.

The P2 equations as an approximation to Eq. (1) in 2-D x− z geometry, as derived previously [11, 12], are
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where

ψm
l (%x) =

∫
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Ȳ m
l (Ω̂)ψ(%x, Ω̂) dΩ̂,

with

Y m
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Now we will define a re-normalized moment by undoing the normalization constant used in the above
definition of the moments and removing the Condon-Shortley phase term:
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making
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Under this normalization ψ00 = φ and %J = (ψ11, 0, ψ10)t. These definitions make the P2 equations
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These equations are starting to look like the SP2 equations, but there are still some algebraic hoops to jump
through.

The next step is to define a linear combination of ψ20 and ψ22 as a new unknown. If we take Eq. (6d) and
add it with one-half times Eq. (6f) we get that
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From Eqs. (6d) and (6f) we also get that
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Next, we will eliminate ψ20 and ψ22 in favor of φ2 in Eqs. (6b) and (6c). We note that
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which is exactly what we need to write the x-derivative term in Eq. (6c) in terms of φ2. Using this result and
solving Eq. (6e) for ψ21 makes Eq. (6c):
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To we will deal with Eq. (6b) we need to write ψ20 in terms of φ2 and ψ11. We do this by writing
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where we have used Eq. (6f) to write ψ22 in terms of ψ11. This makes Eq. (6b)
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The P2 equations can now be written in terms of 4 variables that can be interpreted as the SP2 unknowns:
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where φ0 = ψ00 and %φ1 = (ψ11, 0, ψ10)t, and ∂
∂yψlm = 0. These equations are the SP2 equations for x− z

geometry with extra terms on the right-hand side of the φ1 equations. We can simplify these terms using
vector calculus operators. Here we will see the curl operator, an operator not commonly seen in transport
theory. Parsing the righthand side of Eq. (12b) yields
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Using the definition of the curl operator we get
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We can also make the simplification:
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Putting this all together gives the P2 equivalent SP2 equations:
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It is entirely possible that the last term in Eq. (16b) can be simplified using some other operators, but this
simplification has to date escaped this author.
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Properties of the P2 Equivalent SP2 equations

When σt is constant the %φ1 equation becomes
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which when we apply the divergence operator (∇·) becomes
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because∇ · (∇× %F ) = 0 for any vector field %F . Substituting Eq. (18) into the equations for φ0 and φ2 gives
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− 1
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2
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These are precisely the SP2 equations when σt is uniform.

The procedure to derive boundary and interface conditions that we are currently pursuing will take standard
P2 conditions and repeat the derivation above to get the proper conditions in terms of φ, %φ1, and φ2.
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