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Our notions of what is possible is being transformed

A greenhorn statistics student will tell you that estimating the
coefficients in the regression model

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε,

is impossible if the number of observations m is less than p, and not
likely to be accurate until m� p.

This a common problem in many data mining analyses, e.g. my
grocery store has 1000s of potential variables that could explain what
coupons I’d be likely to respond to.

Nuclear engineering also has similar problems: the x ’s in the above
equation could be multigroup cross-sections for each nuclide in a
reactor. In this case, p could easily be very large.

Also in this case the β ’s are the sensitivities of y to the cross-sections.

Therefore, unless we want to run a very large number of simulations,
the m above, we cannot estimate all the β ’s.
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Our notions of what is possible is being transformed

There are approaches that help this issue, but don’t exactly fix the
problem.

Variable selection based on judgment is a key example,
Adjoint-based approaches can also help, but are tricky in non-linear,
time-dependent, or multi-physics situations. These also are best for
single quantity of interest (QoI) situations.

It turns out we can get robust estimates of sensitivities when the
number of simulations is smaller than the number of parameters we
want to estimate.

The reason that this could work is that in most problems many of the
sensitivities are effectively zero, i.e. βi ≈ 0.

What we need is a technique that determines which of these is zero,
based on the data and not based on an assumption.

The issue is that this is clearly an ill-posed problem and we need to
constrain the space in which we look for a solution. This is done
through regularization of the problem.
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A neat example: Single Pixel Camera

One can think of an image as a vector of real-numbers representing
the value of each of m pixels: y. We can express this vector as the
linear combination of a series of basis vectors, typically wavelets

y = β0 + β1x1 + · · ·+ βpxp +e.

It is possible to make the expansion in terms of bases have an
arbitrarily small error, e.g., if x1 = y.

The idea behind recent image compression schemes is to find a basis
set that minimizes the error e in some norm while also constraining
the number of basis vectors p.

This is the idea behind the single-pixel camera: sample the image
projected onto random linear combinations of the basis functions.
Each linear combination only requires the measurement of a single
scalar value, i.e., a single CCD. This type of application is an example
of compressed sensing.
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A neat example: Single Pixel Camera

from http://dsp.rice.edu/cscamera
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A neat example: Single Pixel Camera 4

(a) (b) (c)

Fig. 2. Single-pixel photo album. (a) 256 × 256 conventional image of a black-and-white R. (b) Single-
pixel camera reconstructed image fromM = 1300 random measurements (50× sub-Nyquist). (c) 256 × 256
pixel color reconstruction of a printout of the Mandrill test image imaged in a low-light setting using a single
photomultiplier tube sensor, RGB color filters, andM = 6500 random measurements.

that the design inherits from the CS theory include its universality, robustness, and progressivity.

The single-pixel design falls into the class of multiplex cameras [8]. The baseline standard

for multiplexing is classical raster scanning, where the test functions {φm} are a sequence of delta

functions δ[n − m] that turn on each mirror in turn. As we will see below, there are substantial

advantages to operating in a CS rather than raster scan mode, including fewer total measurements

(M for CS rather than N for raster scan) and significantly reduced dark noise.

Image acquisition examples

Figure 2 (a) and (b) illustrates a target object (a black-and-white printout of an “R”) x and

reconstructed image x̂ taken by the single-pixel camera prototype in Fig. 1 using N = 256×256

and M = N/50 [5]. Fig. 2(c) illustrates an N = 256 × 256 color single-pixel photograph of

a printout of the Mandrill test image taken under low-light conditions using RGB color filters

and a photomultiplier tube with M = N/10. In both cases, the images were reconstructed using

Total Variation minimization, which is closely related to wavelet coefficient ℓ1 minimization [2].

Structured illumination configuration

In a reciprocal configuration to that in Fig. 1, we can illuminate the scene using a projector

displaying a sequence of random patterns {φm} and collect the reflected light using a single

lens and photodetector. Such a “structured illumination” setup has advantages in applications

where we can control the light source. In particular, there are intriguing possible combinations

of single-pixel imaging with techniques such as 3D imaging and dual photography [9].
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Fig. 2. Single-pixel photo album. (a) 256 × 256 conventional image of a black-and-white R. (b) Single-
pixel camera reconstructed image fromM = 1300 random measurements (50× sub-Nyquist). (c) 256 × 256
pixel color reconstruction of a printout of the Mandrill test image imaged in a low-light setting using a single
photomultiplier tube sensor, RGB color filters, andM = 6500 random measurements.

that the design inherits from the CS theory include its universality, robustness, and progressivity.

The single-pixel design falls into the class of multiplex cameras [8]. The baseline standard

for multiplexing is classical raster scanning, where the test functions {φm} are a sequence of delta

functions δ[n − m] that turn on each mirror in turn. As we will see below, there are substantial

advantages to operating in a CS rather than raster scan mode, including fewer total measurements

(M for CS rather than N for raster scan) and significantly reduced dark noise.

Image acquisition examples

Figure 2 (a) and (b) illustrates a target object (a black-and-white printout of an “R”) x and

reconstructed image x̂ taken by the single-pixel camera prototype in Fig. 1 using N = 256×256

and M = N/50 [5]. Fig. 2(c) illustrates an N = 256 × 256 color single-pixel photograph of

a printout of the Mandrill test image taken under low-light conditions using RGB color filters

and a photomultiplier tube with M = N/10. In both cases, the images were reconstructed using

Total Variation minimization, which is closely related to wavelet coefficient ℓ1 minimization [2].

Structured illumination configuration

In a reciprocal configuration to that in Fig. 1, we can illuminate the scene using a projector

displaying a sequence of random patterns {φm} and collect the reflected light using a single

lens and photodetector. Such a “structured illumination” setup has advantages in applications

where we can control the light source. In particular, there are intriguing possible combinations

of single-pixel imaging with techniques such as 3D imaging and dual photography [9].

Left: Original 256 x 256 image, Right: Reconstruction from 1500
single-pixel samples (1/50)

RG McClarren (TAMU) INL Seminar July 2015 2015-07-21 7 / 42



The magic of the L1 norm

What both the sensitivity estimation and the single pixel camera have
in common is that they cast the problem in terms of an optimization
problem. For the regression formulation one possibility is the problem

Find the βββ that minimizes ‖e‖2 +∑
i

|βi |.

This approach is a regularized regression problem called lasso
regression because in practice it sets some βi ’s to zero and “lassos”
the important variables.

Like ordinary least squares regression it attempts to minimize the sum
of the squares of the error, but it also tries to minimize the magnitude
of the coefficients (the L1 norm of the vector βββ ).

The L1 norm is the reason that certain βi ’s are set to zero.

RG McClarren (TAMU) INL Seminar July 2015 2015-07-21 8 / 42



The magic of the L1 norm

While there is rich literature on why these regularized optimization
problems work well in the L1 norm (see for instance the work of
Candes and Tao), here is a yeoman’s justification of why this might
be so.

Consider the problem of estimating the coefficients in the problem

y = a+bx + ε,

by minimizing

∑
i

ε
2
i + (|a|p + |b|p)1/p .

The curve of equal value of (|a|p + |b|p)1/p is a circle for p = 2 and a
diamond for p = 1.

The curves of equal value for |ε| are ellipses.

One can show that where the diamond intersects the ellipse of
minimum size will be closer to one of the axes.
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The magic of the L1 norm

from https://tianyizhou.wordpress.com/2010/08/23/compressed-sensing-review-1-reconstruction-algorithms/
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The magic of the L1 norm

The L1 norm is not magic, but to those of us have grown up on L2
assumptions (Nyquist sampling theorem, most variational analyses,
etc.), it has all of the hallmarks of an Etruscan haruspex.

Much of the theory of compressed sensing relies on two properties
that are only useful with powerful computation: solving nonlinear
problems and random sampling.
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Previous UQ Work

In the nuclear field, Watanabe et al. used L1 minimization to
estimate first-order sensitivity coefficients for a pincell burnup
problem with 5000 parameters. They needed 500 simulations to
estimate the parameters efficiently. These results did not leverage a
regression framework, which could lead to improvement.

For climate uncertainty analysis, LLNL researchers have used
lasso-type approaches to estimate polynomial chaos expansion
coefficients.

In this presentation I’ll present the results of a bake-off to compare
different approaches to estimate second-order sensitivity coefficients,
i.e., the quadratic and interaction terms neglected in a first-order
sensitivity analysis.
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Background for variable selection and sensitivity estimation

For parametric uncertainties the curse of dimensionality is still a
problem

This is especially true for pairwise interactions and second-order
sensitivity coefficients

In some problems in engineered systems, high order sensitivity
coefficients and variable significance are important

Two potential ways: perturbation theory and random sampling based
estimation

High order perturbation theory could be hard to implement in
multiphysics codes
Random sampling based estimation equipped with regression is simple
to implement, but for second-order and interaction coefficients,
multi-collinearity leads to ill-conditioned problems.

Our focus: regularized regressions
Add small constraints to the regression could bring in numerical
stability and well-posedness
Different constraints result in different estimation process and results
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Regression problems

The general regression problem is written as

Y = Xβ + ε (1)

Y: data (outcomes), X: input matrix, β : regression coefficients,
ε: errors

Y =




Y1

Y2
...
Yn


 , X=




1 X11 X12 · · · X1p

1 X21 X22 · · · X2p
...

...
...

. . .
...

1 Xn1 Xn2 · · · Xnp


 , β =




β0

β1
...

βp


 and ε =




ε1

ε2
...

εn




(2)

n is number of samples and p is the number of independent variables

Regression aim: estimate the coefficients, β , in Eq. (1).
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Conditioning Issues and Ordinary Least Squares

The direct “solve” by ordinary least squares (OLS)

β ≈ (XTX)−1XTY.

Several common situations can make OLS ill-conditioned or ill-posed:

n < p: Number of samples is smaller than number of parameters
X contains interdependencies, i.e., multi-collinearity, if high order terms
are included
In either case, XTX is rank deficient and not invertible
Alternative approaches like the pseudo-inverse can give unreasonable
results as has been demonstrated in previous work.

A possible cure is regularization: change the regression problem to
make the system well-posed and give it better properties.
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Basic ideas

Another way to think of OLS regression is as the minimizer of the `2
norm of the error between the fit and the original data:

β = argmin
β

‖Y−Xβ‖22 (3)

Equivalent to a direct solve of the regression problem:
βOLS = (XTX )−1XTY
Ineffective and inaccurate for ill-conditioned problems

Regularization: add additional information

Add a constraint term to the Lagrangian or cost function of the
minimization problem
Different types of constraints have different effects
Certain regularizations can guarantee well-posedness.
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Non-Bayesian Regularization Regression Approaches

In these methods we explicitly change the minimization problem.

Lasso regression (OLS plus an `1 penalty based on size of β ’s):

β = argmin
β

{‖Y−Xβ‖22 + λ1‖β‖1} (4)

Ridge regression (OLS plus an `2 penalty based on size of β ’s):

β = argmin
β

{‖Y−Xβ‖22 + λ2‖β‖22} (5)

Elastic net regression (Combination of Lasso and Ridge):

β = argmin
β

{
‖Y−Xβ‖22 + αλ1‖β‖1 + (1−α)λ2‖β‖22

}
(6)

Dantzig selector (Minimize `∞ error in fit with `1 penalty on β ’s):

β = argmin
β

{‖βT (Y−Xβ )‖∞ + λ1‖β‖1} (7)
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Non-Bayesian Regularization Regression Approaches
(cont’d)

Non-Bayesian L-2 norm constraint put too much strength on limiting
parameters with higher magnitudes: over-penalization
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Bayesian Regularization Regression Approaches

The Bayesian version of regularized-regressions differs from
non-Bayesian in the sense that hyperparameters, i.e. λ , are sampled
in the Bayesian inference process.

In other words, the Bayesian methods take similar forms to the
non-Bayesian problems, but estimate the parameters through a
Bayesian framework.

Bayesian theory:

p(β |D) =
p(D|β )p(β )∫
dβ p(D|β )p(β )

(8)

Bayesian inference short introduction:
Sample realizations of parameters from priors
Calculate posteriors
Modify the priors for the next iteration and repeat until reaching the
maximum iteration
Do statistics with the results from the iterations
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Bayesian Regularization Regression Approaches

Bayesian lasso prior and posterior:

p(β |σ2,λ1) =
p

∏
j=1

λ1

2
√

σ2
exp

{
−λ1|βj |√

σ2

}
(9a)

p(β |σ2,λ1,Y,X) ∝ exp

{
− 1

2σ2
‖Y−Xβ‖22−

λ1‖β‖1√
σ2

}
(9b)

Bayesian ridge prior and posterior:

p(β |σ2,λ2) =

(
λ2

2πσ2

)(n+1)/2

exp

{
− λ2

2σ2
‖β‖22

}
(10a)

p(β |σ2,λ2,Y,X) ∝ exp

{
− 1

2σ2
‖Y−Xβ‖22−

λ2‖β‖22
σ2

}
(10b)
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Bayesian Regularization Regression Approaches

Automatic relevance determination (ARD) prior and posterior

p(β |σ2,λ2) ∝ exp

{
−

p

∑
j=1

λ2

2σ2
j

|βj |2
}
, (11a)

p(β |σ2,λ2,Y,X) ∝ exp

{
− 1

2σ2
‖Y−Xβ‖22−

p

∑
j=1

λ2

2σ2
j

|βj |2
}

(11b)

ARD is very similar to Ridge regression except that it has a different
σj , controlling the variance, for each variable.
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Problem settings

Lattice of TRIGA fuels pin modeled with MCNP

QoI: keff
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Problem descriptions

There are 299 sensitivity coefficients taken into account in this problem:

23 input parameters:

6 geometric parameters: e.g. r-fuel (fuel radius)
17 material parameters: e.g. ρ−Zr (Zr rod mass density)

253 pairwise interactions (23 choose 2)

23 quadratic terms

The aim is to investigate the sensitivity of the criticality to the parameters,
especially the second order terms. The model is:

δk

k
≈

23

∑
i=1

ci

(
δxi
xi

)
+

22

∑
i=1

23

∑
j=i+1

cij

(
δxi
xi

)(
δxj
xj

)
+

23

∑
i=1

cii

(
δxi
xi

)2

(12)

where ci , cij and cii , i = 1, · · · ,23, j 6= i , are the first order, interactive and
quadratic sensitivity coefficients, respectively.
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Reference data

We are going to compare reference sensitivity coefficients to the
coefficients computed by various regularized regression techniques
using many few code runs (cases).

The reference coefficients are computed using 1058 cases.

We need 46 total simulations for the linear and quadratic parameters
1012 simulations are needed for the 253 interactions (4 simulations for
each)

The goal of this research is to see if regularized regression techniques
can give coefficient estimates close to the references using many
fewer simulation runs than the 1058 cases.
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Quasi-uniform multi-D sampling

For the regression results we sample from the 23 parameters using by
Latin Hypercube sampling.
For any number of samples we fit the entire 299-sample sensitivity
model for keff.
A 12-sample example is shown below. 2D projections are uniform.
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Variable Selection

One use of sensitivity analysis is to down-select from the large
parametric uncertainty space to a smaller set of important parameters.

After this variable selection process, a more detailed study can be
performed on the important variables.

In our case we would like to use a small number of samples
(code-runs) to select the important variables.

Below we’ll discuss the selection of significant pairwise interaction and
quadratic terms.
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Variable Selection: Interaction Terms

Coefficients with a magnitude above 10% of the highest magnitude
(from corresponding method) will be selected as significant.

Reference result has 15 significant pairwise interactions
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Variable Selection: Interactions (cont’d)

True Positive False Positive

Sample size OLS Lasso Ridge DS EN OLS Lasso Ridge DS EN

50 0 1 0 0 3 22 17 0 0 22
100 5 3 0 3 3 98 12 0 12 15
150 5 3 0 3 3 120 5 0 6 7
200 7 3 2 5 4 119 1 2 9 3
250 7 3 2 6 3 91 0 0 2 3
299 6 5 3 8 5 161 0 2 3 0

Least square regression (OLS): gives hundreds of false positives

Regularization helps remove false positives, though no method gets all
15 true parameters using the small number of samples considered.

Lasso: 5 right with 0 wrong

Dantzig selector (DS): more true positives with 3 wrong picks
(borderline picks)

Ridge: only 3 true positives but 2 false negatives: over-penalization
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Variable Selection: Interactions (cont’d)

True Positives False Positives

Sample size OLS Lasso BRidge BLasso ARD OLS Lasso BRidge BLasso ARD

50 0 1 5 5 1 22 17 71 58 29
100 5 3 3 4 1 98 12 2 0 16
150 5 3 7 6 3 120 5 3 4 5
200 7 3 8 8 3 119 1 3 3 0
250 7 3 8 8 1 91 0 2 2 0
299 6 5 8 8 2 161 0 4 2 0

Bayesian ridge and Bayesian lasso are comparable as both get 8
correct parameters at 200 samples.

ARD seems makes most conservative picks: small false positives and
small true positives.
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Variable Selection: Quadratic

Same 10% threshold from interaction case.
Reference result has 3 significant variables

True Positive False Positive

Sample size OLS Lasso Ridge DS EN OLS Lasso Ridge DS EN

50 2 1 2 0 0 15 17 16 0 1
100 3 2 3 2 2 17 12 18 2 2
150 3 2 3 2 2 18 5 14 1 1
200 3 2 3 3 2 15 1 20 0 0
250 3 2 3 3 2 12 0 19 1 0
299 2 3 3 3 3 15 0 16 4 0

OLS and Ridge not useful in this case.
Lasso and elastic net converge to the correct answer.
Dantzig selector does have a high number of false positives with 299
samples, but these could be borderline cases (near 10%)
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Variable Selection: Quadratic (cont’d)

True Positives False Positives

Sample size OLS Lasso BRidge BLasso ARD OLS Lasso BRidge BLasso ARD

50 2 1 1 2 0 15 17 5 11 3
100 3 2 3 3 0 17 12 1 2 2
150 3 2 3 3 1 18 5 2 2 0
200 3 2 3 3 2 15 1 2 2 0
250 3 2 3 3 1 12 0 3 3 0
299 2 3 3 3 1 15 0 2 3 0

BLasso, BRidge: similar with DS, borderline picks
ARD: conservative
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Coefficient estimation

Now we ask a more difficult question of the methods: estimate the
numeric value of the coefficients and compare with the reference result.

Each parameter is assigned an ID

IDs from 24 to 276: interactive coefficients

IDs from 277 to 299: quadratic coefficients

The results that follow all use 299 samples, about 28% of those used in
the reference calculation.
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Coefficient Estimation: Interactions

Blue dots are regression estimations, red lines are reference
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Coefficient Estimation: Interactions (cont’d)
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Coefficient Estimation: Quadratic
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Coefficient estimation: quadratic (cont’d)
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Summaries

Investigated seven types of regularization methods on second order
variable selection and sensitivity coefficient estimations.

On variable selection, we found Bayesian lasso, Bayesian ridge,
Dantzig selector and elastic net are promising and comparable to
lasso, a commonly used method in the statistics community.

On coefficient estimation:
L-2 norm regularized methods: ARD and ridge are too conservative

Ridge has over-penalization

Lasso and EN present similar estimations that selects significant
variables out but not with correct magnitudes
Dantzig selector, Bayesian lasso and Bayesian ridge present similar high
accuracy on second order coefficient estimations

BRidge fixes the over-penalization
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Future work

Other regularizations are worth investigation: e.g. `0.5 “norm”

Apply the methods with nuclear data sensitivity research

Include impact of covariances
Even higher dimensional problems common.
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Thank you!

Efficient Estimation of Second-Order Sensitivity
Coefficients

Idaho National Lab Seminar

Ryan G. McClarren
based on work by Weixiong Zheng

Texas A&M University
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