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Motivation

Background

Discretization techniques for linear particle transport problems
often require several spatial degrees-of-freedom per spatial cell.

To make the solutions robust in the diffusion limit

Discontinuous Galerkin (e.g. LD)
Corner balance schemes

To make solutions more accurate

p-adaptive mesh refinement methods.

These extra unknowns are an inconvenience

Especially, in multi-physics problems where the transport degrees
of freedom is much greater than that from other physics.

Not always a bad thing

In regions with constant cross-sections, the transport solution is
often smooth.
In such regions high-order reconstructions using large cells can be
more efficient.

Extra-unknowns, if they don’t increase the communication
burden, might only marginally increase the computational cost.
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Spectral Volume Method

The spectral volume method was introduced for advection and
CFD problems by Wang in a series of papers from 2002-2004.

The method divides the solution domain into cells in standard
fashion

These cells are then divided into sub-cells.

On each of these sub-cells a local balance equation is solved.
The number of sub-cells does not effect the amount of
communication between cells

Only the exiting flux from the sub-cell on the upwind edges of the
main cell needs to be communicated.

This can be thought of as a generalization of the simple corner
balance and other sub-cell balance method previously presented.
The term spectral is used here to note that the solution in each
cell is reconstructed via polynomials in a similar way to a
spectral method on a finite domain.
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SVM as a sub-grid model for boundary layers

One motivation is to use the spectral volume method to resolve
boundary layers.

Because this method solves a balance equation on each sub-cell.
We can logarithmically space the sub-cells so that a mean-free
path is resolved.

In the hope of resolving a boundary layer between a diffusive and
non-diffusive region.

This is the topic of ongoing work.
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Choice of Sub-Cell Partioning
Properties Of The Spectral Volume Method

Derivation of the method

We begin with the steady-state transport equation in
slab-geometry, using discrete ordinates:

µl∂xψl + σtψl =
σs

2
〈ψl〉+

Q

2
, l ∈ [1, L].

We denote the quadrature sums as 〈ψl〉 =
∑L

l=1 wl ψl ≡ φ.
Now we divide the domain into N non-overlapping cells.

Cell i has a width ∆xi

We then further partition each cell i into K sub-cells with width
∆xi,k.
Averaging over a generic sub-cell k of cell i yields

µl

∆xi,k

(
ψ̂

i,k+1/2
l − ψ̂i,k−1/2

l

)
+ σtψ

i,k
l =

σs

2
〈ψi,k

l 〉+
Qi,k

2
,
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Interfacial values

The values on the edge of a sub-cell are denoted by ψ̂i,k±1/2
l .

To determine these values we treat sub-cell averages, ψi,k
l , as the

value at the middle of a sub-cell and fit a Lagrange polynomial
through these points.
This polynomial is given by

pl(x) =
K∑

k=1

ϕk(x)ψi,k
l ,

where

ϕk(x) =
K∏

q=1,q 6=k

x− xiq

xi,k − xiq
.
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Interfacial values

We then use this polynomial to give the value of the ψl inside of
cell i. Specifically, this polynomial gives the interfacial values
between the sub-cells:

ψ̂
i,k+1/2
l = pl(xi,k+1/2) for k ∈ [2,K − 1].

At the interface between cells we use the principle of upwinding
to choose the value. Specifically,

ψ̂
i,k−1/2
l =

{
pl(xi−1/2) µl < 0
pi−1

l (xi−1/2) µl > 0
for k = 1,
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Choice of Sub-Cell Partioning

How should one divide the cell into sub-cells?

The most straightforward way makes each subcell the same size

∆xi,k = ∆xi/K
Unfortunately, this approach leads to non-convergent methods for
higher order elements.
The polynomials are highly oscillatory near cell edges.
This is an example of the Runge phenomenon.

Using Gauss-Lobatto quadrature points to define the sub-cell
edges has been shown to maintain convergence.
For a generic cell this approach leads to

xi,k+1/2 =
∆xi

2

(
1− cos

(
kπ

K

))
, k = 0, . . . ,K.
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Sub-cell Edges

The edges when define with the GL quadrature points are

K Points
2 0, 0.5, 1
3 0, .25, .75, 1
4 0, 0.146447, 0.5, 0.853553, 1
5 0, 0.0954915, 0.345492, 0.654508, 0.904508, 1
6 0, 0.0669873, 0.25, 0.5, 0.75, 0.933013, 1
7 0, 0.0495156, 0.188255, 0.38874, 0.61126, 0.811745, 0.950484, 1

Notice how these points are clustered near the edges of the main
cell.
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Logarithmically-Spaced Sub-cells

Another possible way to define the sub-cells is to use logarithmic
spacing in order to resolve a boundary layer.

This is, perhaps, an attractive approach to resolving diffusive
boundary layers as one can make the sub-cell widths resolve a
mean-free path near a change in cross-section.
Such sub-cell partitioning makes sense when different cells have
different partitions.
This will be the subject of future work.
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Conservation

The spectral volume method can easily be shown to be
conservative because we have defined the interfacial values to be
continuous between sub-cells.

If we multiply the balance equation for a sub-cell by ∆xi,k/∆xi

and sum over k = 1 . . .K, we get

µl

∆xi

(
ψ̂

i,K+1/2
l − ψ̂i,1/2

l

)
+σt

K∑
k=1

∆xi,k

∆xi
ψi,k

l ,=
σs

2
〈

K∑
k=1

∆xi,k

∆xi
ψi,k

l 〉+
Q̄i

2
,

To show conservation over the entire domain, we multiply this
equation by ∆xi and sum over all cells to get

−µl

(
ψ̂

I,K+1/2
l − fl

)
+
∑

i

∆xi

(
σs

2
〈ψ̄i

l〉 − σtψ̄
i
l +

Q̄i

2

)
= 0, µ > 0,

and

−µl

(
gl − ψ1,1/2

l

)
+
∑

i

∆xi

(
σs

2
〈ψ̄i

l〉 − σtψ̄
i
l +

Q̄i

2

)
= 0, µ < 0.
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Accuracy

When every cell in the domain is divided into K sub-cells, the
method is accurate to O(∆xK

i )

This can be easily seen for the case of K = 1 because then the
method is equivalent to the step scheme.
Also, the case of K = 2 is equivalent to a corner balance method,
which are known to be second-order accurate.
We can see this by writing out the equations for µ > 0 for a
generic cell with K = 2 and ∆xi = 2∆xi,k:

µl

∆xi

(
(ψi,2

l + ψi,1
l )− (3ψi−1,2

l − ψi−1,1
l )

)
+σtψ

i,1
l =

σs

2
〈ψi,1

l 〉+
Qi,k

2
,

µl

∆xi

(
(3ψi,2

l − ψ
i,1
l )− (ψi,2

l + ψi,1
l )
)

+ σtψ
i,2
l =

σs

2
〈ψi,2

l 〉+
Qi,k

2
.

This gives a corner balance scheme where the value at the
cell-center and at the cell edges are linear interpolations from the
sub-cell values.
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Adaptivity

The spectral volume method is well-suited to local p-adaptivity
where the number of sub-cells varies throughout the problem to
resolve features of the solution.

This is so because cells only communicate through outflow
conditions on the main cells and the number of sub-cells only
indirectly affects the outflow.
Also, the sub-cell partitioning can be adaptively selected to
resolve mean-free paths where desired, as a form of h-adaptivity.
Static adaptivity using the spectral volume method has been
shown to be successful in results from multidimensional
computational fluid dynamics simulations (Wang, 2004).
Furthermore, the interpolation inside each cell can be used to
deal with dendritic meshes that arise in adaptive mesh refinement
calculations.
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High-performance computing

The communication pattern between cells in the spectral volume
method is the same for any number of sub-cells.

Each cell requires the incoming flux at each incoming face and
communicates its outgoing flux at the appropriate faces.
One can amortize the communication overhead over a larger
number of sub-cells.

An oft-repeated maxim regarding leading-edge high perfomance
computing hardware is “Flops are (nearly) free,”

The spectral volume method is able to increase the number of
Flops per communication by increasing K.
Of course, in discrete ordinates codes, increasing K means
increasing the number of points where the scattering source must
be stored (one for each sub-cell).

Other transport schemes, such as spherical harmonics, could
eliminate some of these sub-cell unknowns using Schur
complements.

This has been demonstrated in recent magnetohydrodynamics
methods, possibly making the larger values of K “free”.
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Diffusion Limit

The spectral volume method is robust in the diffusion limit

In the limit of optically thick, scattering dominated cells, the
discretization limits to a discretization of the diffusion equation.

If we scale the original, discrete transport equation by a small,
positive parameter ε as

εµl

∆xi,k

(
ψ̂

i,k+1/2
l − ψ̂i,k−1/2

l

)
+σtψ

i,k
l =

1
2
(
σt − ε2σa

)
〈ψi,k

l 〉+
ε2Qi,k

2
.

and expand ψ in a power series in ε

ψi,k
l =

∞∑
j=0

εjψ
(j),i,k
l ,
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Diffusion Limit

We get an angular flux that is isotropic to leading order

ψ
(0),i,k
l =

1
2
〈ψ(0),i,k

l 〉 ≡ φ(0),i,k

2
.

And a version of Fick’s law

J (1),i,k = − 1
6σt∆xi,k

(
φ̂(0),i,k+1/2 − φ̂(0),i,k−1/2

)
,

For the case of K = 2, if we turn the crank to get the diffusion
equation, we get the consistent, diffusion discretization:

−2
3∆xi

[
1

σt,i∆xi

(
φ(0),i,2 − φ(0),i,1

)
− 1
σt,i−1∆xi−1

(
φ(0),i−1,2 − φ(0),i−1,1

)]
+ σa,iφ

(0),i,1 + σa,iφ
(0),i−1,2 = Qi,1 +Qi−1,2.
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Diffusion Limit

I haven’t written out what the higher values of K diffusion
discretization’s look like.

We know they have a correct Fick’s law and continuity of φ at
interfaces.
Numerical results demonstrate the robustness of these methods.
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Reed’s Problem

Reed’s problem has several different material regions
Vacuum Bound. Scattering Region Vacuum Absorber Strong Source Reflect. Bound

Σa = 0.1 Σa = 5 Σa = 50
Σs = 0.9 Σs = 0 Σs = 0

Q = 0 Q = 50
Q = 0 Q = 1
x < 1 1 < x < 3 3 < x < 5 5 < x < 6 6 < x < 8

The minimum ∆x that can resolve this material layout is ∆x = 1.
We’ll solve this problem with ∆x = 2−l with l = 0, 2, 4, 6 or on
our problem Nx = 16, 64, 256, 4096

K = 2, 3, 4, 5, 6 as well.

We’ll use S8 and a sweep-based GMRES scheme to solve the SV
equations.
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Reed’s Problem Results

For Nx = 64 and above, all methods are converged in the view
graph norm.

At Nx = 16, the minimum resolution for this problem:

The K = 2 solution is inaccurate in the scattering region and the
absorber.
K = 3, 4 are inaccurate in the absorber.
The K = 6 solution matches the fine solution.

This problem is almost ideal for this method as the scalar flux is
only non-smooth at the material interfaces.
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Diffusive Problem (with boundary layer)

This problem has a strong absorber next to a diffusive region

Particles enter the domain isotropically, travel two mean free
paths through an absorber then enter a 1000 mean-free path
thick slab.
We use S8 and the same sweeping method as before.

Isotropic Boundary Absorbing Region Strong Scattering Region Vacuum Boundary
Σa = 2 Σa = 0
Σs = 0 Σs = 1000

0 < x < 1 1 < x < 2

This problem can be described using two cells.
For comparison we use a K = 6 and Nx = 512 solution as a
reference (max ∆xi,k = .00097656).
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Diffusive Problem Results

For K = 2 the transition from the absorber to the scattering
region is smoothed out.

The Nx = 32 solutions under-predicts the maximum value of the
scalar flux.
Away from the boundary layer the solution has the correct slope
for Nx = 8 and 32.
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Diffusive Problem Results

For K = 4 does a much better job resolving the solution near the
interface, including the maximum scalar flux for Nx ≥ 32.

There are small oscillations near the boundary layer

These are due to interpolating across this sharp change.
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Diffusive Problem Results

For K = 6 the solutions are improved over K = 4

The Nx = 32 solution is beginning to resolve the boundary layer

Small oscillations remain
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What we’ve seen so far

The spectral volume method seems to be a way to get high order
solutions by dividing the problem into sub-cells.

The method is accurate and robust in the diffusion limit.
One possible benefit of the method is the ability to have a
sub-grid means to resolve boundary layers.

We saw some evidence of this in a test problem.
Still work to be done.

Might be a good candidate for local parallelism.
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Well we already know how to solve 1-D problems

Good point!

In CFD the method has been extended to 2-D using triangles as
the main cells and quads as the sub-cells.
One wrinkle in 2-D is the fact that solutions in a constant
material region are not necessarily smooth.

Think ray effects, shadows, etc.

This might necessitate fancier reconstruction schemes.
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2-D Spectral Volume on Triangles

Here’s how Wang (2004) divided a triangle into subcells.

4. Numerical tests

In this section, SV schemes of various orders of accuracy are evaluated for the 2D Euler equations.
Based on the study performed for 2D scalar conservation laws [22], one particular partition for a given
order of accuracy is selected. The partitions for the second–fourth-order SV schemes are shown in Fig. 2.
The reconstruction coefficients for these partitions are presented in Appendix A. Note that these parti-
tions are by no means optimal. Numerical tests have shown that these partitions yield accurate and
convergent SV schemes for the 2D scalar conservation laws. They are tested for 2D Euler equations in
this paper. The optimization of partitions for various orders of interpolations in a triangle will be studied
in a future publication by following ideas presented by Chen and Babuska [4] and by Hesthaven and
Teng [11].

4.1. Accuracy study with vortex evolution problem

This is an idealized problem for the Euler equations in 2D used by Shu [18]. The mean flow is
fq; u; v; pg ¼f 1; 1; 1; 1g. An isotropic vortex is then added to the mean flow, i.e., with perturbations in u, v,
and temperature T ¼ p=q, and no perturbation in entropy S ¼ p=qc:

ðdu; dvÞ ¼ e
2p

e0:5ð1$r2Þð$!y;!xÞ;

dT ¼ $ðc$ 1Þe2

8cp2
e1$r2 ;

dS ¼ 0;

where r2 ¼ !x2 þ !y2, !x ¼ x$ 5, !y ¼ y $ 5, and the vortex strength e ¼ 5. If the computational domain is
infinitely big, the exact solution of the Euler equations with the above initial conditions is just the passive
convection of the isotropic vortex with the mean velocity (1, 1). In the following accuracy study, the
computational domain is taken to be [0, 10]& [0, 10], with characteristic inflow and outflow boundary
conditions imposed on the boundaries.

The numerical simulations were carried out until t ¼ 2 on two different grids, one regular and one ir-
regular as shown in Fig. 3. The finer grids are generated recursively by cutting each coarser grid cell into
four finer grid cells. No limiters were employed in this study since the problem is smooth, and the Rusanov

1/4 1/15 

Fig. 2. Partitions of various orders in a triangular SV: (a) linear; (b) quadratic; (c) cubic.

Z.J. Wang et al. / Journal of Computational Physics 194 (2004) 716–741 723
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Marshak Wave

This method also works for time-dependent thermal radiative
transfer problems.

This figure shows the K = 6 solution with 5 cells and the
analytic diffusion solution at t = 10, 50, and 100 ns for a problem
with a 1 keV incident source and σ = 300/T 3.
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