The Spectral Volume Method as Applied to Transport Problems

Ryan G. McClarren

Department of Nuclear Engineering
Texas A&M University

International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011)
Outline

1. Summary and Motivation

2. Derivation
 - Choice of Sub-Cell Partitioning
 - Properties Of The Spectral Volume Method

3. Numerical Results
 - Reed’s Problem
 - Diffusive Problem

4. Conclusions and Future Work
Discretization techniques for linear particle transport problems often require several spatial degrees-of-freedom per spatial cell.
Background

- Discretization techniques for linear particle transport problems often require several spatial degrees-of-freedom per spatial cell.
 - To make the solutions robust in the diffusion limit

- Extra-unknowns, if they don’t increase the communication burden, might only marginally increase the computational cost.
Background

- Discretization techniques for linear particle transport problems often require several spatial degrees-of-freedom per spatial cell.
 - To make the solutions robust in the diffusion limit
 - Discontinuous Galerkin (e.g. LD)
Background

- Discretization techniques for linear particle transport problems often require several spatial degrees-of-freedom per spatial cell.
 - To make the solutions robust in the diffusion limit
 - Discontinuous Galerkin (e.g. LD)
 - Corner balance schemes
Discretization techniques for linear particle transport problems often require several spatial degrees-of-freedom per spatial cell. To make the solutions robust in the diffusion limit:
- Discontinuous Galerkin (e.g. LD)
- Corner balance schemes
To make solutions more accurate:
- p-adaptive mesh refinement methods.
Especially, in multi-physics problems where the transport degrees of freedom is much greater than that from other physics.
Not always a bad thing:
In regions with constant cross-sections, the transport solution is often smooth. In such regions high-order reconstructions using large cells can be more efficient. Extra unknowns, if they don't increase the communication burden, might only marginally increase the computational cost.
Discretization techniques for linear particle transport problems often require several spatial degrees-of-freedom per spatial cell.

- To make the solutions robust in the diffusion limit
 - Discontinuous Galerkin (e.g. LD)
 - Corner balance schemes
- To make solutions more accurate
 - p-adaptive mesh refinement methods.
Background

- Discretization techniques for linear particle transport problems often require several spatial degrees-of-freedom per spatial cell.
 - To make the solutions robust in the diffusion limit
 - Discontinuous Galerkin (e.g. LD)
 - Corner balance schemes
 - To make solutions more accurate
 - p-adaptive mesh refinement methods.
- These extra unknowns are an inconvenience
Background

- Discretization techniques for linear particle transport problems often require several spatial degrees-of-freedom per spatial cell.
 - To make the solutions robust in the diffusion limit
 - Discontinuous Galerkin (e.g. LD)
 - Corner balance schemes
 - To make solutions more accurate
 - p-adaptive mesh refinement methods.
- These extra unknowns are an inconvenience
 - Especially, in multi-physics problems where the transport degrees of freedom is much greater than that from other physics.
Background

- Discretization techniques for linear particle transport problems often require several spatial degrees-of-freedom per spatial cell.
 - To make the solutions robust in the diffusion limit
 - Discontinuous Galerkin (e.g. LD)
 - Corner balance schemes
 - To make solutions more accurate
 - p-adaptive mesh refinement methods.
- These extra unknowns are an inconvenience
 - Especially, in multi-physics problems where the transport degrees of freedom is much greater than that from other physics.
- Not always a bad thing
Discretization techniques for linear particle transport problems often require several spatial degrees-of-freedom per spatial cell.

- To make the solutions robust in the diffusion limit
 - Discontinuous Galerkin (e.g. LD)
 - Corner balance schemes
- To make solutions more accurate
 - p-adaptive mesh refinement methods.

These extra unknowns are an inconvenience

- Especially, in multi-physics problems where the transport degrees of freedom is much greater than that from other physics.

Not always a bad thing

- In regions with constant cross-sections, the transport solution is often smooth.
Background

- Discretization techniques for linear particle transport problems often require several spatial degrees-of-freedom per spatial cell.
 - To make the solutions robust in the diffusion limit
 - Discontinuous Galerkin (e.g. LD)
 - Corner balance schemes
 - To make solutions more accurate
 - p-adaptive mesh refinement methods.
- These extra unknowns are an inconvenience
 - Especially, in multi-physics problems where the transport degrees of freedom is much greater than that from other physics.
- Not always a bad thing
 - In regions with constant cross-sections, the transport solution is often smooth.
 - In such regions high-order reconstructions using large cells can be more efficient.
Discretization techniques for linear particle transport problems often require several spatial degrees-of-freedom per spatial cell. To make the solutions robust in the diffusion limit, Discontinuous Galerkin (e.g. LD) and Corner balance schemes are used. To make solutions more accurate, p-adaptive mesh refinement methods are employed.

These extra unknowns are an inconvenience. Especially, in multi-physics problems where the transport degrees of freedom is much greater than that from other physics.

Not always a bad thing. In regions with constant cross-sections, the transport solution is often smooth. In such regions high-order reconstructions using large cells can be more efficient.

Extra-unknowns, if they don’t increase the communication burden, might only marginally increase the computational cost.
The spectral volume method was introduced for advection and CFD problems by Wang in a series of papers from 2002-2004.
The spectral volume method was introduced for advection and CFD problems by Wang in a series of papers from 2002-2004.

The method divides the solution domain into cells in standard fashion.
The spectral volume method was introduced for advection and CFD problems by Wang in a series of papers from 2002-2004.

The method divides the solution domain into cells in standard fashion

- These cells are then divided into sub-cells.
The spectral volume method was introduced for advection and CFD problems by Wang in a series of papers from 2002-2004.

The method divides the solution domain into cells in standard fashion

- These cells are then divided into sub-cells.

On each of these sub-cells a local balance equation is solved.
Spectral Volume Method

- The spectral volume method was introduced for advection and CFD problems by Wang in a series of papers from 2002-2004.
- The method divides the solution domain into cells in standard fashion
 - These cells are then divided into sub-cells.
- On each of these sub-cells a local balance equation is solved.
- The number of sub-cells does not effect the amount of communication between cells.
The spectral volume method was introduced for advection and CFD problems by Wang in a series of papers from 2002-2004.

The method divides the solution domain into cells in standard fashion
- These cells are then divided into sub-cells.

On each of these sub-cells a local balance equation is solved.

The number of sub-cells does not effect the amount of communication between cells
- Only the exiting flux from the sub-cell on the upwind edges of the main cell needs to be communicated.
Spectral Volume Method

- The spectral volume method was introduced for advection and CFD problems by Wang in a series of papers from 2002-2004.
- The method divides the solution domain into cells in standard fashion
 - These cells are then divided into sub-cells.
- On each of these sub-cells a local balance equation is solved.
- The number of sub-cells does not effect the amount of communication between cells
 - Only the exiting flux from the sub-cell on the upwind edges of the main cell needs to be communicated.
- This can be thought of as a generalization of the simple corner balance and other sub-cell balance method previously presented.
Spectral Volume Method

- The spectral volume method was introduced for advection and CFD problems by Wang in a series of papers from 2002-2004.
- The method divides the solution domain into cells in standard fashion
 - These cells are then divided into sub-cells.
- On each of these sub-cells a local balance equation is solved.
- The number of sub-cells does not effect the amount of communication between cells
 - Only the exiting flux from the sub-cell on the upwind edges of the main cell needs to be communicated.
- This can be thought of as a generalization of the simple corner balance and other sub-cell balance method previously presented.
- The term spectral is used here to note that the solution in each cell is reconstructed via polynomials in a similar way to a spectral method on a finite domain.
SVM as a sub-grid model for boundary layers

- One motivation is to use the spectral volume method to resolve boundary layers.
SVM as a sub-grid model for boundary layers

- One motivation is to use the spectral volume method to resolve boundary layers.
 - Because this method solves a balance equation on each sub-cell.
SVM as a sub-grid model for boundary layers

- One motivation is to use the spectral volume method to resolve boundary layers.
 - Because this method solves a balance equation on each sub-cell.
- We can logarithmically space the sub-cells so that a mean-free path is resolved.
One motivation is to use the spectral volume method to resolve boundary layers.
 - Because this method solves a balance equation on each sub-cell.
 - We can logarithmically space the sub-cells so that a mean-free path is resolved.
 - In the hope of resolving a boundary layer between a diffusive and non-diffusive region.
SVM as a sub-grid model for boundary layers

- One motivation is to use the spectral volume method to resolve boundary layers.
 - Because this method solves a balance equation on each sub-cell.
- We can logarithmically space the sub-cells so that a mean-free path is resolved.
 - In the hope of resolving a boundary layer between a diffusive and non-diffusive region.
- This is the topic of ongoing work.
We begin with the steady-state transport equation in slab-geometry, using discrete ordinates:

\[\mu_l \partial_x \psi_l + \sigma_t \psi_l = \frac{\sigma_s}{2} \langle \psi_l \rangle + \frac{Q}{2}, \quad l \in [1, L]. \]
Derivation of the method

- We begin with the steady-state transport equation in slab-geometry, using discrete ordinates:
 \[\mu_l \partial_x \psi_l + \sigma_t \psi_l = \frac{\sigma_s}{2} \langle \psi_l \rangle + \frac{Q}{2}, \quad l \in [1, L]. \]

- We denote the quadrature sums as \(\langle \psi_l \rangle = \sum_{l=1}^{L} w_l \psi_l \equiv \phi. \)
Derivation of the method

- We begin with the steady-state transport equation in slab-geometry, using discrete ordinates:

$$\mu_l \partial_x \psi_l + \sigma_t \psi_l = \frac{\sigma_s}{2} \langle \psi_l \rangle + \frac{Q}{2}, \quad l \in [1, L].$$

- We denote the quadrature sums as $\langle \psi_l \rangle = \sum_{l=1}^{L} w_l \psi_l \equiv \phi$.
- Now we divide the domain into N non-overlapping cells.
Derivation of the method

- We begin with the steady-state transport equation in slab-geometry, using discrete ordinates:

\[\mu_l \partial_x \psi_l + \sigma_t \psi_l = \frac{\sigma_s}{2} \langle \psi_l \rangle + \frac{Q}{2}, \quad l \in [1, L]. \]

- We denote the quadrature sums as \(\langle \psi_l \rangle = \sum_{l=1}^{L} w_l \psi_l \equiv \phi. \)
- Now we divide the domain into \(N \) non-overlapping cells.
 - Cell \(i \) has a width \(\Delta x_i \)
Derivation of the method

- We begin with the steady-state transport equation in slab-geometry, using discrete ordinates:

\[\mu_l \partial_x \psi_l + \sigma_t \psi_l = \frac{\sigma_s}{2} \langle \psi_l \rangle + \frac{Q}{2}, \quad l \in [1, L]. \]

- We denote the quadrature sums as \(\langle \psi_l \rangle = \sum_{l=1}^{L} w_l \psi_l \equiv \phi \).

- Now we divide the domain into \(N \) non-overlapping cells.
 - Cell \(i \) has a width \(\Delta x_i \)

- We then further partition each cell \(i \) into \(K \) sub-cells with width \(\Delta x_{i,k} \).
Summary and Motivation
Derivation
Numerical Results
Conclusions and Future Work

Choice of Sub-Cell Partitioning
Properties Of The Spectral Volume Method

Derivation of the method

- We begin with the steady-state transport equation in slab-geometry, using discrete ordinates:

\[\mu_l \partial_x \psi_l + \sigma_t \psi_l = \frac{\sigma_s}{2} \langle \psi_l \rangle + \frac{Q}{2}, \quad l \in [1, L]. \]

- We denote the quadrature sums as \(\langle \psi_l \rangle = \sum_{l=1}^{L} w_l \psi_l \equiv \phi \).
- We begin with the steady-state transport equation in slab-geometry, using discrete ordinates:

\[\mu_l \partial_x \psi_l + \sigma_t \psi_l = \frac{\sigma_s}{2} \langle \psi_l \rangle + \frac{Q}{2}, \quad l \in [1, L]. \]

- We denote the quadrature sums as \(\langle \psi_l \rangle = \sum_{l=1}^{L} w_l \psi_l \equiv \phi \).
- Now we divide the domain into \(N \) non-overlapping cells.
 - Cell \(i \) has a width \(\Delta x_i \)
- We then further partition each cell \(i \) into \(K \) sub-cells with width \(\Delta x_{i,k} \).
- Averaging over a generic sub-cell \(k \) of cell \(i \) yields

\[\frac{\mu_l}{\Delta x_{i,k}} \left(\hat{\psi}_{l,k}^{i,k+1/2} - \hat{\psi}_{l,k}^{i,k-1/2} \right) + \sigma_t \psi_{l,k}^i = \frac{\sigma_s}{2} \langle \psi_{l,k}^i \rangle + \frac{Q_{i,k}}{2}, \]
Interfacial values

- The values on the edge of a sub-cell are denoted by $\hat{\psi}_{i,k}^{l+1/2}$.
Interfacial values

- The values on the edge of a sub-cell are denoted by $\hat{\psi}^{i,k}_{l,\pm 1/2}$.
- To determine these values we treat sub-cell averages, $\psi^{i,k}_l$, as the value at the middle of a sub-cell and fit a Lagrange polynomial through these points.
Interfacial values

- The values on the edge of a sub-cell are denoted by $\hat{\psi}_{l}^{i,k\pm1/2}$.
- To determine these values we treat sub-cell averages, $\psi_{l}^{i,k}$, as the value at the middle of a sub-cell and fit a Lagrange polynomial through these points.
- This polynomial is given by

$$p_l(x) = \sum_{k=1}^{K} \varphi_k(x) \psi_{l}^{i,k},$$

where

$$\varphi_k(x) = \prod_{q=1, q\neq k}^{K} \frac{x - x_{iq}}{x_{i,k} - x_{iq}}.$$
We then use this polynomial to give the value of the ψ_l inside of cell i. Specifically, this polynomial gives the interfacial values between the sub-cells:

$$\hat{\psi}^{i,k+1/2} = p_l(x_{i,k+1/2}) \quad \text{for } k \in [2, K - 1].$$
Interfacial values

- We then use this polynomial to give the value of the ψ_l inside of cell i. Specifically, this polynomial gives the interfacial values between the sub-cells:

$$\hat{\psi}^i_{l,k+1/2} = p_l(x_{i,k+1/2}) \quad \text{for } k \in [2, K - 1].$$

- At the interface between cells we use the principle of upwinding to choose the value. Specifically,

$$\hat{\psi}^i_{l,k-1/2} = \begin{cases} p_l(x_{i-1/2}) & \mu_l < 0 \\ p_{l-1}(x_{i-1/2}) & \mu_l > 0 \end{cases} \quad \text{for } k = 1,$$
1. Summary and Motivation

2. Derivation
 - Choice of Sub-Cell Partitioning
 - Properties Of The Spectral Volume Method

3. Numerical Results
 - Reed’s Problem
 - Diffusive Problem

4. Conclusions and Future Work
Choice of Sub-Cell Partitioning

- How should one divide the cell into sub-cells?

\[\Delta x_{i,k} = \frac{\Delta x_i}{K} \]

Unfortunately, this approach leads to non-convergent methods for higher order elements. The polynomials are highly oscillatory near cell edges. This is an example of the Runge phenomenon. Using Gauss-Lobatto quadrature points to define the sub-cell edges has been shown to maintain convergence. For a generic cell this approach leads to:

\[x_{i,k+\frac{1}{2}} = \frac{\Delta x_i}{2} \left(1 - \cos \left(\frac{k\pi}{K} \right) \right), \quad k = 0, \ldots, K. \]
Choice of Sub-Cell Partitioning

- How should one divide the cell into sub-cells?
- The most straightforward way makes each subcell the same size

\[\Delta x_{i,k} = \frac{\Delta x_i}{K} \]

Unfortunately, this approach leads to non-convergent methods for higher order elements. The polynomials are highly oscillatory near cell edges. This is an example of the Runge phenomenon. Using Gauss-Lobatto quadrature points to define the sub-cell edges has been shown to maintain convergence. For a generic cell this approach leads to:

\[x_{i,k+1/2} = \Delta x_i \left(\frac{1}{2} - \cos\left(\frac{k\pi}{K}\right)\right), \quad k = 0, \ldots, K. \]
How should one divide the cell into sub-cells?
The most straightforward way makes each sub-cell the same size

\[\Delta x_{i,k} = \Delta x_i / K \]
How should one divide the cell into sub-cells?

The most straightforward way makes each subcell the same size

\[\Delta x_{i,k} = \Delta x_i / K \]

Unfortunately, this approach leads to non-convergent methods for higher order elements.
Choice of Sub-Cell Partitioning

- How should one divide the cell into sub-cells?
- The most straightforward way makes each subcell the same size
 - $\Delta x_{i,k} = \Delta x_i / K$
 - Unfortunately, this approach leads to non-convergent methods for higher order elements.
 - The polynomials are highly oscillatory near cell edges.
Choice of Sub-Cell Partitioning

How should one divide the cell into sub-cells?

The most straightforward way makes each subcell the same size

\[\Delta x_{i,k} = \Delta x_i / K \]

Unfortunately, this approach leads to non-convergent methods for higher order elements.

The polynomials are highly oscillatory near cell edges.

This is an example of the Runge phenomenon.
Choice of Sub-Cell Partitioning

- How should one divide the cell into sub-cells?
- The most straightforward way makes each subcell the same size
 - $\Delta x_{i,k} = \Delta x_i / K$
 - Unfortunately, this approach leads to non-convergent methods for higher order elements.
 - The polynomials are highly oscillatory near cell edges.
 - This is an example of the Runge phenomenon.
- Using Gauss-Lobatto quadrature points to define the sub-cell edges has been shown to maintain convergence.
How should one divide the cell into sub-cells?
The most straightforward way makes each sub-cell the same size

\[\Delta x_{i,k} = \Delta x_i / K \]

Unfortunately, this approach leads to non-convergent methods for higher order elements.
The polynomials are highly oscillatory near cell edges.
This is an example of the Runge phenomenon.

Using Gauss-Lobatto quadrature points to define the sub-cell edges has been shown to maintain convergence.

For a generic cell this approach leads to

\[x_{i,k+1/2} = \frac{\Delta x_i}{2} \left(1 - \cos \left(\frac{k\pi}{K} \right) \right), \quad k = 0, \ldots, K. \]
Sub-cell Edges

- The edges when defined with the GL quadrature points are

<table>
<thead>
<tr>
<th>K</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0, 0.5, 1</td>
</tr>
<tr>
<td>3</td>
<td>0, .25, .75, 1</td>
</tr>
<tr>
<td>4</td>
<td>0, 0.146447, 0.5, 0.853553, 1</td>
</tr>
<tr>
<td>5</td>
<td>0, 0.0954915, 0.345492, 0.654508, 0.904508, 1</td>
</tr>
<tr>
<td>6</td>
<td>0, 0.0669873, 0.25, 0.5, 0.75, 0.933013, 1</td>
</tr>
<tr>
<td>7</td>
<td>0, 0.0495156, 0.188255, 0.38874, 0.61126, 0.811745, 0.950484, 1</td>
</tr>
</tbody>
</table>
Sub-cell Edges

- The edges when define with the GL quadrature points are

<table>
<thead>
<tr>
<th>K</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0, 0.5, 1</td>
</tr>
<tr>
<td>3</td>
<td>0, .25, .75, 1</td>
</tr>
<tr>
<td>4</td>
<td>0, 0.146447, 0.5, 0.853553, 1</td>
</tr>
<tr>
<td>5</td>
<td>0, 0.0954915, 0.345492, 0.654508, 0.904508, 1</td>
</tr>
<tr>
<td>6</td>
<td>0, 0.0669873, 0.25, 0.5, 0.75, 0.933013, 1</td>
</tr>
<tr>
<td>7</td>
<td>0, 0.0495156, 0.188255, 0.38874, 0.61126, 0.811745, 0.950484, 1</td>
</tr>
</tbody>
</table>

- Notice how these points are clustered near the edges of the main cell.
Another possible way to define the sub-cells is to use logarithmic spacing in order to resolve a boundary layer.
Another possible way to define the sub-cells is to use logarithmic spacing in order to resolve a boundary layer.

This is, perhaps, an attractive approach to resolving diffusive boundary layers as one can make the sub-cell widths resolve a mean-free path near a change in cross-section.
Another possible way to define the sub-cells is to use logarithmic spacing in order to resolve a boundary layer.

This is, perhaps, an attractive approach to resolving diffusive boundary layers as one can make the sub-cell widths resolve a mean-free path near a change in cross-section.

Such sub-cell partitioning makes sense when different cells have different partitions.
Logarithmically-Spaced Sub-cells

- Another possible way to define the sub-cells is to use logarithmic spacing in order to resolve a boundary layer.
- This is, perhaps, an attractive approach to resolving diffusive boundary layers as one can make the sub-cell widths resolve a mean-free path near a change in cross-section.
- Such sub-cell partitioning makes sense when different cells have different partitions.
- This will be the subject of future work.
Outline

1. Summary and Motivation

2. Derivation
 - Choice of Sub-Cell Partitioning
 - Properties Of The Spectral Volume Method

3. Numerical Results
 - Reed’s Problem
 - Diffusive Problem

4. Conclusions and Future Work
Conservation

- The spectral volume method can easily be shown to be conservative because we have defined the interfacial values to be continuous between sub-cells.
Conservation

- The spectral volume method can easily be shown to be conservative because we have defined the interfacial values to be continuous between sub-cells.
- If we multiply the balance equation for a sub-cell by $\Delta x_{i,k}/\Delta x_i$ and sum over $k = 1 \ldots K$, we get

$$
\frac{\mu_l}{\Delta x_i} \left(\hat{\psi}_{l,K+1/2} - \hat{\psi}_{l,1/2} \right) + \sigma_t \sum_{k=1}^{K} \frac{\Delta x_{i,k}}{\Delta x_i} \psi_{l,k}^i, = \frac{\sigma_s}{2} \left\langle \sum_{k=1}^{K} \frac{\Delta x_{i,k}}{\Delta x_i} \psi_{l,k}^i \right\rangle + \frac{\bar{Q}_i}{2},
$$
Conservation

- The spectral volume method can easily be shown to be conservative because we have defined the interfacial values to be continuous between sub-cells.
- If we multiply the balance equation for a sub-cell by $\Delta x_{i,k}/\Delta x_i$ and sum over $k = 1 \ldots K$, we get

$$\frac{\mu_l}{\Delta x_i} \left(\hat{\psi}_l^{i,K+1/2} - \hat{\psi}_l^{i,1/2} \right) + \sigma_t \sum_{k=1}^{K} \frac{\Delta x_{i,k}}{\Delta x_i} \psi_{i,k}^{i}, = \frac{\sigma_s}{2} \left(\sum_{k=1}^{K} \frac{\Delta x_{i,k}}{\Delta x_i} \psi_{i,k}^{i} \right) + \frac{\bar{Q}_i^i}{2},$$

- To show conservation over the entire domain, we multiply this equation by Δx_i and sum over all cells to get

$$-\mu_l \left(\hat{\psi}_l^{I,K+1/2} - f_l \right) + \sum_i \Delta x_i \left(\frac{\sigma_s}{2} \langle \bar{\psi}_l^i \rangle - \sigma_t \bar{\psi}_l^i + \frac{\bar{Q}_i^i}{2} \right) = 0, \quad \mu > 0,$$

and

$$-\mu_l \left(g_l - \psi_l^{1,1/2} \right) + \sum_i \Delta x_i \left(\frac{\sigma_s}{2} \langle \bar{\psi}_l^i \rangle - \sigma_t \bar{\psi}_l^i + \frac{\bar{Q}_i^i}{2} \right) = 0, \quad \mu < 0.$$
Accuracy

- When every cell in the domain is divided into K sub-cells, the method is accurate to $O(\Delta x_i^K)$.
Accuracy

- When every cell in the domain is divided into K sub-cells, the method is accurate to $O(\Delta x_i^K)$.
- This can be easily seen for the case of $K = 1$ because then the method is equivalent to the step scheme.
Accuracy

- When every cell in the domain is divided into K sub-cells, the method is accurate to $O(\Delta x_i^K)$
- This can be easily seen for the case of $K = 1$ because then the method is equivalent to the step scheme.
- Also, the case of $K = 2$ is equivalent to a corner balance method, which are known to be second-order accurate.
Accuracy

- When every cell in the domain is divided into K sub-cells, the method is accurate to $O(\Delta x_i^K)$
- This can be easily seen for the case of $K = 1$ because then the method is equivalent to the step scheme.
- Also, the case of $K = 2$ is equivalent to a corner balance method, which are known to be second-order accurate.
- We can see this by writing out the equations for $\mu > 0$ for a generic cell with $K = 2$ and $\Delta x_i = 2\Delta x_{i,k}$:

$$
\frac{\mu_l}{\Delta x_i} \left((\psi_l^{i,2} + \psi_l^{i,1}) - (3\psi_l^{i-1,2} - \psi_l^{i-1,1}) \right) + \sigma_t \psi_l^{i,1} = \frac{\sigma_s}{2} \langle \psi_l^{i,1} \rangle + \frac{Q_{i,k}^{i}}{2},
$$

$$
\frac{\mu_l}{\Delta x_i} \left((3\psi_l^{i,2} - \psi_l^{i,1}) - (\psi_l^{i,2} + \psi_l^{i,1}) \right) + \sigma_t \psi_l^{i,2} = \frac{\sigma_s}{2} \langle \psi_l^{i,2} \rangle + \frac{Q_{i,k}^{i}}{2}.
$$
Accuracy

- When every cell in the domain is divided into K sub-cells, the method is accurate to $O(\Delta x_i^K)$.
- This can be easily seen for the case of $K = 1$ because then the method is equivalent to the step scheme.
- Also, the case of $K = 2$ is equivalent to a corner balance method, which are known to be second-order accurate.
- We can see this by writing out the equations for $\mu > 0$ for a generic cell with $K = 2$ and $\Delta x_i = 2\Delta x_{i,k}$:

$$\frac{\mu_l}{\Delta x_i} \left((\psi_l^{i,2} + \psi_l^{i,1}) - (3\psi_l^{i-1,2} - \psi_l^{i-1,1}) \right) + \sigma_t \psi_l^{i,1} = \frac{\sigma_s}{2} \langle \psi_l^{i,1} \rangle + \frac{Q_{i,k}}{2},$$

$$\frac{\mu_l}{\Delta x_i} \left((3\psi_l^{i,2} - \psi_l^{i,1}) - (\psi_l^{i,2} + \psi_l^{i,1}) \right) + \sigma_t \psi_l^{i,2} = \frac{\sigma_s}{2} \langle \psi_l^{i,2} \rangle + \frac{Q_{i,k}}{2}.$$

- This gives a corner balance scheme where the value at the cell-center and at the cell edges are linear interpolations from the sub-cell values.
Adaptivity

- The spectral volume method is well-suited to local p-adaptivity where the number of sub-cells varies throughout the problem to resolve features of the solution.
Adaptivity

- The spectral volume method is well-suited to local p-adaptivity where the number of sub-cells varies throughout the problem to resolve features of the solution.
- This is so because cells only communicate through outflow conditions on the main cells and the number of sub-cells only indirectly affects the outflow.
Adaptivity

- The spectral volume method is well-suited to local p-adaptivity where the number of sub-cells varies throughout the problem to resolve features of the solution.
- This is so because cells only communicate through outflow conditions on the main cells and the number of sub-cells only indirectly affects the outflow.
- Also, the sub-cell partitioning can be adaptively selected to resolve mean-free paths where desired, as a form of h-adaptivity.
Adaptivity

- The spectral volume method is well-suited to local p-adaptivity where the number of sub-cells varies throughout the problem to resolve features of the solution.
- This is so because cells only communicate through outflow conditions on the main cells and the number of sub-cells only indirectly affects the outflow.
- Also, the sub-cell partitioning can be adaptively selected to resolve mean-free paths where desired, as a form of h-adaptivity.
- Static adaptivity using the spectral volume method has been shown to be successful in results from multidimensional computational fluid dynamics simulations (Wang, 2004).
Adaptivity

- The spectral volume method is well-suited to local p-adaptivity where the number of sub-cells varies throughout the problem to resolve features of the solution.
- This is so because cells only communicate through outflow conditions on the main cells and the number of sub-cells only indirectly affects the outflow.
- Also, the sub-cell partitioning can be adaptively selected to resolve mean-free paths where desired, as a form of h-adaptivity.
- Static adaptivity using the spectral volume method has been shown to be successful in results from multidimensional computational fluid dynamics simulations (Wang, 2004).
- Furthermore, the interpolation inside each cell can be used to deal with dendritic meshes that arise in adaptive mesh refinement calculations.
The communication pattern between cells in the spectral volume method is the same for any number of sub-cells.
High-performance computing

- The communication pattern between cells in the spectral volume method is the same for any number of sub-cells.
 - Each cell requires the incoming flux at each incoming face and communicates its outgoing flux at the appropriate faces.
High-performance computing

- The communication pattern between cells in the spectral volume method is the same for any number of sub-cells.
 - Each cell requires the incoming flux at each incoming face and communicates its outgoing flux at the appropriate faces.
 - One can amortize the communication overhead over a larger number of sub-cells.
High-performance computing

- The communication pattern between cells in the spectral volume method is the same for any number of sub-cells.
 - Each cell requires the incoming flux at each incoming face and communicates its outgoing flux at the appropriate faces.
 - One can amortize the communication overhead over a larger number of sub-cells.
- An oft-repeated maxim regarding leading-edge high performance computing hardware is “Flops are (nearly) free,”
High-performance computing

- The communication pattern between cells in the spectral volume method is the same for any number of sub-cells.
 - Each cell requires the incoming flux at each incoming face and communicates its outgoing flux at the appropriate faces.
 - One can amortize the communication overhead over a larger number of sub-cells.
- An oft-repeated maxim regarding leading-edge high performance computing hardware is “Flops are (nearly) free,”
 - The spectral volume method is able to increase the number of Flops per communication by increasing K.
The communication pattern between cells in the spectral volume method is the same for any number of sub-cells.

- Each cell requires the incoming flux at each incoming face and communicates its outgoing flux at the appropriate faces.
- One can amortize the communication overhead over a larger number of sub-cells.

An oft-repeated maxim regarding leading-edge high performance computing hardware is “Flops are (nearly) free,”

- The spectral volume method is able to increase the number of Flops per communication by increasing K.
- Of course, in discrete ordinates codes, increasing K means increasing the number of points where the scattering source must be stored (one for each sub-cell).
The communication pattern between cells in the spectral volume method is the same for any number of sub-cells.

- Each cell requires the incoming flux at each incoming face and communicates its outgoing flux at the appropriate faces.
- One can amortize the communication overhead over a larger number of sub-cells.

An oft-repeated maxim regarding leading-edge high performance computing hardware is “Flops are (nearly) free,”

- The spectral volume method is able to increase the number of Flops per communication by increasing K.
- Of course, in discrete ordinates codes, increasing K means increasing the number of points where the scattering source must be stored (one for each sub-cell).

Other transport schemes, such as spherical harmonics, could eliminate some of these sub-cell unknowns using Schur complements.
High-performance computing

- The communication pattern between cells in the spectral volume method is the same for any number of sub-cells.
 - Each cell requires the incoming flux at each incoming face and communicates its outgoing flux at the appropriate faces.
 - One can amortize the communication overhead over a larger number of sub-cells.
- An oft-repeated maxim regarding leading-edge high performance computing hardware is “Flops are (nearly) free,“
 - The spectral volume method is able to increase the number of Flops per communication by increasing K.
 - Of course, in discrete ordinates codes, increasing K means increasing the number of points where the scattering source must be stored (one for each sub-cell).
- Other transport schemes, such as spherical harmonics, could eliminate some of these sub-cell unknowns using Schur complements.
 - This has been demonstrated in recent magnetohydrodynamics methods, possibly making the larger values of K “free”.

McClaren Spectral Volume Method
The spectral volume method is robust in the diffusion limit.
Diffusion Limit

- The spectral volume method is robust in the diffusion limit
 - In the limit of optically thick, scattering dominated cells, the discretization limits to a discretization of the diffusion equation.
The spectral volume method is robust in the diffusion limit.

In the limit of optically thick, scattering dominated cells, the discretization limits to a discretization of the diffusion equation.

If we scale the original, discrete transport equation by a small, positive parameter ϵ as

$$\frac{\epsilon \mu_l}{\Delta x_{i,k}} \left(\hat{\psi}^{i,k+1/2}_l - \hat{\psi}^{i,k-1/2}_l \right) + \sigma_t \psi^{i,k}_l = \frac{1}{2} \left(\sigma_t - \epsilon^2 \sigma_a \right) \langle \psi^{i,k}_l \rangle + \frac{\epsilon^2 Q^{i,k}}{2}.$$

and expand ψ in a power series in ϵ

$$\psi^{i,k}_l = \sum_{j=0}^{\infty} \epsilon^j \psi^{(j),i,k}_l,$$
Diffusion Limit

- We get an angular flux that is isotropic to leading order

\[\psi_{l}^{(0),i,k} = \frac{1}{2} \langle \psi_{l}^{(0),i,k} \rangle \equiv \frac{\phi^{(0),i,k}}{2}. \]

\[
- \frac{2}{3 \Delta x_i} \left[\frac{1}{\sigma_{t,i} \Delta x_i} \left(\phi^{(0),i,2} - \phi^{(0),i,1} \right) - \frac{1}{\sigma_{t,i-1} \Delta x_{i-1}} \left(\phi^{(0),i-1,2} - \phi^{(0),i-1,1} \right) \right] \\
+ \sigma_{a,i} \phi^{(0),i,1} + \sigma_{a,i} \phi^{(0),i-1,2} = Q^{i,1} + Q^{i-1,2}.
\]
We get an angular flux that is isotropic to leading order

\[
\psi^{(0)}_{l,i,k} = \frac{1}{2} \langle \psi^{(0)}_{l,i,k} \rangle \equiv \phi^{(0)}_{l,i,k}.
\]

And a version of Fick’s law

\[
J^{(1),i,k} = - \frac{1}{6 \sigma_t \Delta x_i, k} \left(\hat{\phi}^{(0),i,k+1/2} - \hat{\phi}^{(0),i,k-1/2} \right),
\]

\[
\frac{-2}{3 \Delta x_i} \left[\frac{1}{\sigma_{t,i} \Delta x_i} \left(\phi^{(0),i,2} - \phi^{(0),i,1} \right) - \frac{1}{\sigma_{t,i-1} \Delta x_{i-1}} \left(\phi^{(0),i-1,2} - \phi^{(0),i-1,1} \right) \right]
+ \sigma_{a,i} \phi^{(0),i,1} + \sigma_{a,i} \phi^{(0),i-1,2} = Q^{i,1} + Q^{i-1,2}.
\]
Diffusion Limit

- We get an angular flux that is isotropic to leading order

\[\psi_l^{(0),i,k} = \frac{1}{2} \langle \psi_l^{(0),i,k} \rangle \equiv \frac{\phi^{(0),i,k}}{2}. \]

- And a version of Fick’s law

\[J^{(1),i,k} = -\frac{1}{6\sigma_t \Delta x_{i,k}} \left(\hat{\phi}^{(0),i,k+1/2} - \hat{\phi}^{(0),i,k-1/2} \right), \]

- For the case of \(K = 2 \), if we turn the crank to get the diffusion equation, we get the consistent, diffusion discretization:

\[
\frac{-2}{3\Delta x_i} \left[\frac{1}{\sigma_{t,i} \Delta x_i} \left(\phi^{(0),i,2} - \phi^{(0),i,1} \right) - \frac{1}{\sigma_{t,i-1} \Delta x_{i-1}} \left(\phi^{(0),i-1,2} - \phi^{(0),i-1,1} \right) \right] \\
+ \sigma_{a,i} \phi^{(0),i,1} + \sigma_{a,i} \phi^{(0),i-1,2} = Q^{i,1} + Q^{i-1,2}.
\]
Diffusion Limit

• I haven’t written out what the higher values of K diffusion discretization’s look like.
I haven’t written out what the higher values of K diffusion discretization’s look like.

- We know they have a correct Fick’s law and continuity of ϕ at interfaces.
I haven’t written out what the higher values of K diffusion discretization’s look like.

- We know they have a correct Fick’s law and continuity of ϕ at interfaces.
- Numerical results demonstrate the robustness of these methods.
Outline

1. Summary and Motivation

2. Derivation
 - Choice of Sub-Cell Partitioning
 - Properties Of The Spectral Volume Method

3. Numerical Results
 - Reed’s Problem
 - Diffusive Problem

4. Conclusions and Future Work
Reed’s Problem

Reed’s problem has several different material regions

<table>
<thead>
<tr>
<th>Vacuum Bound.</th>
<th>Scattering Region</th>
<th>Vacuum</th>
<th>Absorber</th>
<th>Strong Source</th>
<th>Reflect. Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Sigma_a = 0.1$</td>
<td>$\Sigma_a = 5$</td>
<td>$\Sigma_a = 50$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Sigma_s = 0.9$</td>
<td>$\Sigma_s = 0$</td>
<td>$\Sigma_s = 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q = 0$</td>
<td>$Q = 1$</td>
<td>$Q = 0$</td>
<td>$Q = 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x < 1$</td>
<td>$1 < x < 3$</td>
<td>$5 < x < 6$</td>
<td>$6 < x < 8$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reed’s Problem

Reed’s problem has several different material regions

<table>
<thead>
<tr>
<th>Vacuum Bound.</th>
<th>Scattering Region</th>
<th>Vacuum</th>
<th>Absorber</th>
<th>Strong Source</th>
<th>Reflect. Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Sigma_a = 0.1$</td>
<td>$\Sigma_s = 0.9$</td>
<td>$Q = 0$</td>
<td>$\Sigma_a = 5$</td>
<td>$\Sigma_a = 50$</td>
<td>$\Sigma_a = 50$</td>
</tr>
<tr>
<td>$Q = 1$</td>
<td></td>
<td>$x < 1$</td>
<td>$\Sigma_s = 0$</td>
<td>$\Sigma_s = 0$</td>
<td>$\Sigma_s = 0$</td>
</tr>
<tr>
<td>$1 < x < 3$</td>
<td></td>
<td>$3 < x < 5$</td>
<td>$Q = 0$</td>
<td>$Q = 50$</td>
<td>$Q = 50$</td>
</tr>
<tr>
<td>$5 < x < 6$</td>
<td></td>
<td>$6 < x < 8$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The minimum Δx that can resolve this material layout is $\Delta x = 1$.
Reed’s Problem

- Reed’s problem has several different material regions

<table>
<thead>
<tr>
<th>Vacuum Bound.</th>
<th>Scattering Region</th>
<th>Vacuum</th>
<th>Absorber</th>
<th>Strong Source</th>
<th>Reflect. Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Sigma_a = 0.1$</td>
<td>$\Sigma_s = 0.9$</td>
<td>$Q = 0$</td>
<td>$\Sigma_a = 5$</td>
<td>$\Sigma_s = 0$</td>
</tr>
<tr>
<td></td>
<td>$x < 1$</td>
<td>$1 < x < 3$</td>
<td>$3 < x < 5$</td>
<td>$\Sigma_a = 50$</td>
<td>$\Sigma_s = 0$</td>
</tr>
<tr>
<td></td>
<td>$Q = 1$</td>
<td></td>
<td>$5 < x < 6$</td>
<td>$Q = 0$</td>
<td>$Q = 50$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$6 < x < 8$</td>
</tr>
</tbody>
</table>

- The minimum Δx that can resolve this material layout is $\Delta x = 1$.
- We’ll solve this problem with $\Delta x = 2^{-l}$ with $l = 0, 2, 4, 6$ or on our problem $N_x = 16, 64, 256, 4096$
Reed’s problem has several different material regions

<table>
<thead>
<tr>
<th>Vacuum Bound.</th>
<th>Scattering Region</th>
<th>Vacuum</th>
<th>Absorber</th>
<th>Strong Source</th>
<th>Reflect. Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma_a = 0.1)</td>
<td>(\Sigma_s = 0.9)</td>
<td>3 < (x < 5)</td>
<td>(\Sigma_a = 5)</td>
<td>(\Sigma_s = 0)</td>
<td>(\Sigma_a = 50)</td>
</tr>
<tr>
<td>(Q = 0)</td>
<td>(Q = 1)</td>
<td>5 < (x < 6)</td>
<td>(Q = 0)</td>
<td>(Q = 50)</td>
<td>6 < (x < 8)</td>
</tr>
</tbody>
</table>

- The minimum \(\Delta x \) that can resolve this material layout is \(\Delta x = 1 \).
- We’ll solve this problem with \(\Delta x = 2^{-l} \) with \(l = 0, 2, 4, 6 \) or on our problem \(N_x = 16, 64, 256, 4096 \)
 - \(K = 2, 3, 4, 5, 6 \) as well.
Reed’s Problem

- Reed’s problem has several different material regions

<table>
<thead>
<tr>
<th>Vacuum Bound.</th>
<th>Scattering Region</th>
<th>Vacuum</th>
<th>Absorber</th>
<th>Strong Source</th>
<th>Reflect. Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Sigma_a = 0.1$</td>
<td>$Q = 0$</td>
<td>$\Sigma_a = 5$</td>
<td>$\Sigma_a = 50$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Sigma_b = 0.9$</td>
<td>$x < 1$</td>
<td>$\Sigma_b = 0$</td>
<td>$\Sigma_b = 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$Q = 1$</td>
<td>$Q = 0$</td>
<td>$Q = 50$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1 < x < 3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$3 < x < 5$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5 < x < 6$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$6 < x < 8$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The minimum Δx that can resolve this material layout is $\Delta x = 1$.
- We’ll solve this problem with $\Delta x = 2^{-l}$ with $l = 0, 2, 4, 6$ or on our problem $N_x = 16, 64, 256, 4096$
 - $K = 2, 3, 4, 5, 6$ as well.
- We’ll use S_8 and a sweep-based GMRES scheme to solve the SV equations.
Results with $K = 2, 3$
Results with $K = 2, 3$

$K = 2$

![Graph showing results with $K = 2$ and different N_x values](image-url)
Results with $K = 2, 3$

$K = 2$

$K = 3$

McClarren
Spectral Volume Method
Results with $K = 4, 6$
Results with $K = 4, 6$

$K = 4$

![Graph showing results with $K = 4$]
Results with $K = 4, 6$
Reed’s Problem Results

- For $N_x = 64$ and above, all methods are converged in the view graph norm.
Reed’s Problem Results

- For $N_x = 64$ and above, all methods are converged in the view graph norm.
- At $N_x = 16$, the minimum resolution for this problem:
Reed’s Problem Results

- For $N_x = 64$ and above, all methods are converged in the view graph norm.
- At $N_x = 16$, the minimum resolution for this problem:
 - The $K = 2$ solution is inaccurate in the scattering region and the absorber.
Reed’s Problem Results

- For $N_x = 64$ and above, all methods are converged in the view graph norm.
- At $N_x = 16$, the minimum resolution for this problem:
 - The $K = 2$ solution is inaccurate in the scattering region and the absorber.
 - $K = 3, 4$ are inaccurate in the absorber.
Reed’s Problem Results

- For $N_x = 64$ and above, all methods are converged in the view graph norm.
- At $N_x = 16$, the minimum resolution for this problem:
 - The $K = 2$ solution is inaccurate in the scattering region and the absorber.
 - $K = 3, 4$ are inaccurate in the absorber.
 - The $K = 6$ solution matches the fine solution.
Reed’s Problem Results

- For $N_x = 64$ and above, all methods are converged in the view graph norm.
- At $N_x = 16$, the minimum resolution for this problem:
 - The $K = 2$ solution is inaccurate in the scattering region and the absorber.
 - $K = 3, 4$ are inaccurate in the absorber.
 - The $K = 6$ solution matches the fine solution.
- This problem is almost ideal for this method as the scalar flux is only non-smooth at the material interfaces.
Outline

1. Summary and Motivation

2. Derivation
 - Choice of Sub-Cell Partitioning
 - Properties Of The Spectral Volume Method

3. Numerical Results
 - Reed’s Problem
 - Diffusive Problem

4. Conclusions and Future Work
Diffusive Problem (with boundary layer)

- This problem has a strong absorber next to a diffusive region

<table>
<thead>
<tr>
<th>Isotropic Boundary</th>
<th>Absorbing Region</th>
<th>Strong Scattering Region</th>
<th>Vacuum Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Sigma_a = 2$</td>
<td>$\Sigma_s = 0$</td>
<td>$\Sigma_a = 0$</td>
<td>$\Sigma_s = 1000$</td>
</tr>
<tr>
<td>$0 < x < 1$</td>
<td>$1 < x < 2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diffusive Problem (with boundary layer)

- This problem has a strong absorber next to a diffusive region
- Particles enter the domain isotropically, travel two mean free paths through an absorber then enter a 1000 mean-free path thick slab.

<table>
<thead>
<tr>
<th>Isotropic Boundary</th>
<th>Absorbing Region</th>
<th>Strong Scattering Region</th>
<th>Vacuum Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Sigma_a = 2$</td>
<td>$\Sigma_a = 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Sigma_s = 0$</td>
<td>$\Sigma_s = 1000$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$0 < x < 1$</td>
<td>$1 < x < 2$</td>
<td></td>
</tr>
</tbody>
</table>
Diffusive Problem (with boundary layer)

- This problem has a strong absorber next to a diffusive region.
- Particles enter the domain isotropically, travel two mean free paths through an absorber then enter a 1000 mean-free path thick slab.
- We use S_8 and the same sweeping method as before.

<table>
<thead>
<tr>
<th>Isotropic Boundary</th>
<th>Absorbing Region</th>
<th>Strong Scattering Region</th>
<th>Vacuum Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Sigma_a = 2$</td>
<td>$\Sigma_s = 0$</td>
<td>$\Sigma_a = 0$</td>
<td>$\Sigma_s = 1000$</td>
</tr>
<tr>
<td>$0 < x < 1$</td>
<td>$1 < x < 2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This problem can be described using two cells. For comparison we use a $K = 6$ and $N_x = 512$ solution as a reference ($\max \Delta x_{i,k} = 0.00097656$).
Diffusive Problem (with boundary layer)

- This problem has a strong absorber next to a diffusive region.
- Particles enter the domain isotropically, travel two mean free paths through an absorber then enter a 1000 mean-free path thick slab.
- We use S_8 and the same sweeping method as before.

<table>
<thead>
<tr>
<th>Isotropic Boundary</th>
<th>Absorbing Region</th>
<th>Strong Scattering Region</th>
<th>Vacuum Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Sigma_a = 2$</td>
<td>$\Sigma_a = 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Sigma_s = 0$</td>
<td>$\Sigma_s = 1000$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$0 < x < 1$</td>
<td>$1 < x < 2$</td>
<td></td>
</tr>
</tbody>
</table>

- This problem can be described using two cells.
Diffusive Problem (with boundary layer)

- This problem has a strong absorber next to a diffusive region.
- Particles enter the domain isotropically, travel two mean free paths through an absorber then enter a 1000 mean-free path thick slab.
- We use S_8 and the same sweeping method as before.

<table>
<thead>
<tr>
<th>Isotropic Boundary</th>
<th>Absorbing Region</th>
<th>Strong Scattering Region</th>
<th>Vacuum Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Sigma_a = 2$</td>
<td>$\Sigma_a = 0$</td>
<td>$\Sigma_a = 0$</td>
<td></td>
</tr>
<tr>
<td>$\Sigma_s = 0$</td>
<td>$\Sigma_s = 1000$</td>
<td>$\Sigma_s = 1000$</td>
<td></td>
</tr>
<tr>
<td>$0 < x < 1$</td>
<td>$1 < x < 2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- This problem can be described using two cells.
- For comparison we use a $K = 6$ and $N_x = 512$ solution as a reference ($\max \Delta x_{i,k} = .00097656$).
Results for $K = 2$
Results for $K = 2$
Results for $K = 2$

[Graph showing results for $K = 2$, with different markers for $N_x = 512, 32, 8, 2$.]

McClarren
Spectral Volume Method
For $K = 2$ the transition from the absorber to the scattering region is smoothed out.
For $K = 2$ the transition from the absorber to the scattering region is smoothed out.

- The $N_x = 32$ solutions under-predicts the maximum value of the scalar flux.
Diffusive Problem Results

- For $K = 2$ the transition from the absorber to the scattering region is smoothed out.
- The $N_x = 32$ solutions under-predicts the maximum value of the scalar flux.
- Away from the boundary layer the solution has the correct slope for $N_x = 8$ and 32.
Results for $K = 4$
Results for $K = 4$

Results

\[\phi(x) \]

- $N_x = 512$ (K=6)
- $N_x = 32$
- $N_x = 8$
- $N_x = 2$
Results for $K = 4$

Results

Detail

Reed's Problem

Diffusive Problem

McClaren

Spectral Volume Method

Summary and Motivation

Derivation

Numerical Results

Conclusions and Future Work
For $K = 4$ does a much better job resolving the solution near the interface, including the maximum scalar flux for $N_x \geq 32$.
Diffusive Problem Results

- For $K = 4$ does a much better job resolving the solution near the interface, including the maximum scalar flux for $N_x \geq 32$.
- There are small oscillations near the boundary layer.
Diffusive Problem Results

- For $K = 4$ does a much better job resolving the solution near the interface, including the maximum scalar flux for $N_x \geq 32$.
- There are small oscillations near the boundary layer
 - These are due to interpolating across this sharp change.
Results for $K = 6$
Results for $K = 6$
Results for $K = 6$
For $K = 6$ the solutions are improved over $K = 4$
Diffusive Problem Results

- For $K = 6$ the solutions are improved over $K = 4$
- The $N_x = 32$ solution is beginning to resolve the boundary layer
Diffusive Problem Results

- For $K = 6$ the solutions are improved over $K = 4$
- The $N_x = 32$ solution is beginning to resolve the boundary layer
 - Small oscillations remain
What we’ve seen so far

- The spectral volume method seems to be a way to get high order solutions by dividing the problem into sub-cells.
What we’ve seen so far

- The spectral volume method seems to be a way to get high order solutions by dividing the problem into sub-cells.
 - The method is accurate and robust in the diffusion limit.

- One possible benefit of the method is the ability to have a sub-grid means to resolve boundary layers.
 - We saw some evidence of this in a test problem.
 - Still work to be done.

- Might be a good candidate for local parallelism.
What we’ve seen so far

- The spectral volume method seems to be a way to get high order solutions by dividing the problem into sub-cells.
 - The method is accurate and robust in the diffusion limit.
- One possible benefit of the method is the ability to have a sub-grid means to resolve boundary layers.
What we’ve seen so far

- The spectral volume method seems to be a way to get high order solutions by dividing the problem into sub-cells.
 - The method is accurate and robust in the diffusion limit.
- One possible benefit of the method is the ability to have a sub-grid means to resolve boundary layers.
 - We saw some evidence of this in a test problem.
What we’ve seen so far

- The spectral volume method seems to be a way to get high order solutions by dividing the problem into sub-cells.
 - The method is accurate and robust in the diffusion limit.
- One possible benefit of the method is the ability to have a sub-grid means to resolve boundary layers.
 - We saw some evidence of this in a test problem.
 - Still work to be done.
What we’ve seen so far

- The spectral volume method seems to be a way to get high order solutions by dividing the problem into sub-cells.
 - The method is accurate and robust in the diffusion limit.
- One possible benefit of the method is the ability to have a sub-grid means to resolve boundary layers.
 - We saw some evidence of this in a test problem.
 - Still work to be done.
- Might be a good candidate for local parallelism.
Well we already know how to solve 1-D problems

- Good point!
Well we already know how to solve 1-D problems

- Good point!
- In CFD the method has been extended to 2-D using triangles as the main cells and quads as the sub-cells.
Well we already know how to solve 1-D problems

- Good point!
- In CFD the method has been extended to 2-D using triangles as the main cells and quads as the sub-cells.
- One wrinkle in 2-D is the fact that solutions in a constant material region are not necessarily smooth.
Well we already know how to solve 1-D problems

- Good point!
- In CFD the method has been extended to 2-D using triangles as the main cells and quads as the sub-cells.
- One wrinkle in 2-D is the fact that solutions in a constant material region are not necessarily smooth.
 - Think ray effects, shadows, etc.
Well we already know how to solve 1-D problems

- Good point!
- In CFD the method has been extended to 2-D using triangles as the main cells and quads as the sub-cells.
- One wrinkle in 2-D is the fact that solutions in a constant material region are not necessarily smooth.
 - Think ray effects, shadows, etc.
- This might necessitate fancier reconstruction schemes.

![Diagram of subcell divisions](image)
Acknowledgments

- Thanks to Cory Hauck at Oak Ridge National Lab for showing me this method and getting me interested in it.

References:
Acknowledgments

- Thanks to Cory Hauck at Oak Ridge National Lab for showing me this method and getting me interested in it.

References:

Acknowledgments

- Thanks to Cory Hauck at Oak Ridge National Lab for showing me this method and getting me interested in it.

References:

Acknowledgments

- Thanks to Cory Hauck at Oak Ridge National Lab for showing me this method and getting me interested in it.

References:

Acknowledgments

- Thanks to Cory Hauck at Oak Ridge National Lab for showing me this method and getting me interested in it.

References:

Marshak Wave

- This method also works for time-dependent thermal radiative transfer problems.
This method also works for time-dependent thermal radiative transfer problems.

This figure shows the $K = 6$ solution with 5 cells and the analytic diffusion solution at $t = 10, 50, \text{ and } 100$ ns for a problem with a 1 keV incident source and $\sigma = 300/T^3$.