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Figure 1: The nominal hohlraum design used in this study [1]. In the terminology of
this report this hohlraum has scale = sc length = Rapt = 1. The (r, z) values of the 4
indicated points are used as inputs to the machine learning model.

This work considers the design of hohlraums to obtain a desired temperature
profiles. Our objective is to train machine learning models using simulations to
predict the simulated Dante response. The machine learning method will then
be used to optimize the design.

The hohlraum design and parameter variation simulations were undertaken
by I.L. Tregillis as described in LA-UR 17-22657. For completeness, we repeat
some of the discussion in that report.

We consider a nominal hohlraum design as shown in Figure 1. In the parlance
of opacity experiments, the region in the center of the hohlraum is called the
sample chamber and it is bounded by two radial baflles a distance of Zy,,¢ from
the center of hohlraum. The radial distance from the edge of a baffle to the
centerline of the hohlraum is the radius of the aperture.

In our study we considered variations to this nominal hohlraum defined by
four different parameters:

e A scale parameter where every dimension (Rpon, Rapt, RLEH, Zhoh, and
Zvat) 18 scaled by a factor. When scaling the hohlraum in this way, the
wall thickness is not changed. As an example, if scale = 0.5, then every
dimension would be halved.

e The sc_length perturbation scales Zy,¢ by a factor while keeping the ratio
Rapt/Zpar & constant.

e An R, perturbation where the dimension of the aperture to the sample
chamber is scaled independently of Zy.s.

e pulse_length is the length of the laser pulse drive, scaled to deliver the
same amount of energy, 250 kJ.

The parameter variations can be mapped to eight input variables: the (r,2)
values of four points that determine the hohlraum shape as shown in Fig. 1.

Simulated DANTE Response
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Figure 2: Mean Dante response as a function
of time for the 61 simulations

Figure 3: Four most important basis
vectors in the stmulation data

From the completed simulations, we extracted the response for the Dante-
1 temperature estimate at 30 times equally spaced between the minimum and
maximum times reported in the set of simulations, and 30 points was determined
to be enough time points to reconstruct the Dante-1 results using cubic splines.
When the reported data does not correspond to one of time points of interest,
we use a cubic spline to interpolate the data to that time. We use the same
splines in our plots of Dante output.

As a result of the time sample, for each simulation we have a list of 30
temperatures, corresponding to the 30 time points. We assemble the vectors
from the 15 simulations into a rectangular matrix A, where each row of this
matrix is a Dante-1 temperature profile at the 30 time points.

This matrix is called the data matrix. From the data matrix we can compute
the mean of each column (i.e., the mean temperature at each time point). This
mean temperature profile is shown in Figure 2. We then subtract this mean
vector from each row of A to get a mean zero data matrix A.

The singular value decomposition is then taken of the matrix A. This pro-
cedure takes the 30 correlated values of the temperature as a function of time
as a projection onto a set of 30 uncorrelated basis vectors. In particular, the
SVD of A is A = USVT The matrix V has orthonormal columns that are the
coefficients of the linear combinations of the original temperatures to create the
uncorrelated variables. U contains orthonormal columns that are the projection
of the data onto the uncorrelated values. The matrix S = diag(oy,...015) is
ordered so that o1 > 09 > .... The o, are known as singular values. From the
partial sums, the first four singular values explain about 92% of the variance in
the data.
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Data-Driven Modeling

We will use the 61 simulations that ran to completion to build machine
learning models to predict the four coeflicients for the bases found from the
SVD. That is, for a given set of points defining the hohlraum, plus the laser
pulse length, we seek to find a model of the form

(w1, u2,us,us] = f(scale,sc_length, Ry, pulse).

From these u; we can reconstruct the Dante response as a function of time. We
used several different techniques for modeling the relationship between inputs
and outputs, and results from a Gaussian process model are shown here.

The figure below shows the behavior of the output as the laser pulse length
is changed. In this figure the legend denotes the values for
[scale,sc_length, Ry, pulse]. These results are a leave-one-out cross valida-
tion where all of the simulations except the one being predicted is used to build
the model to predict the Dante response.

Actual and Gausian Process Model
Dante Temperatures varying Pulse Length
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Figure 4: Changing the duration of the laser pulse adjusts both the height and
duration of the temperature plateau. The solid lines are the GP model results and the
dashed lines are the simulation results.

It is possible to use the GP model to predict the response of simulations
that crashed before running to completion. We did not use these to train the

model, however, in Figure 5 we can see that the GP follows the simulations for
the data that we do have.

Actual and Model Dante Temperatures for runs that crashed
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Figure 5: These are predictions from the GP model for HEDP simulations that
crashed during the simulation. Those simulations where not used to train the model.

Point 4

Point 1

Figure 6: Illustration of how the baffle angle may change and affect point 2 in the
hohlraum description.

We are interested in how changing the geometry of the sample chamber /aperture
affects the evolution of the radiation temperature. To this end we have used the
GP model to predict the behavior when point 2 moves to cause the inner baffle
of the hohlraum to open up. These are blind predictions because we only have
simulation data for perpendicular baffles. We cannot trust the GP model or its
confidence intervals in such an extrapolation.
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Figure 7: Predictions and confidence intervals for the GP model with varying angle
of the baffle.
. Lawrence Sandia
Livermore .
National National
Laboratory Laboratories

UNCLASSIFIED

hD Grace Cummlngs2 &I L: Tregllll‘s3 PhD
1CCS-2 2Univer5|ty of Notre Dame, XCP-6

Hohlraum Simulation Model

R L]
1] % N tg ¥ . " .
L »

(\,
<\.
0%

‘\’Q
<O
K

TO TG

(T T

]

. . . ]

T

o)
% '[g

0
O
0

Z

Q&
A XS

7
& -02;[70.@»,[

27
zog
200
00?"2

Wmm . 000‘)000
100 100\ Qm\ 200 o
AR v‘o 57
010 %\')Q %
\ -2
i oo
a0 1100 |:|D
U ‘M o
(01 iy
1/
N
ot

W)
)

o

Phoeo by G. Wurdems LANL atiifid NeButa (MZO) a'Hd the Lagoen Nebula (M8). in Sag

Given the cost of acquiring more simulation data for the full experiment, we
have developed a radiation-only model of the hohlraum that uses gray, flux-
limited diffusion to model the propagation of energy in the hohlraum. A simple,
inverse bremsstrahlung model is used for the opacity in the metal of 2073
cm~! for T in keV. The interior has the same opacity but multiplied by 1073.
The heat capacity is constant at 0.25 GJ/keV/cm® in the metal and 0.001
times that in the interior. In the simulation the laser is on for 2.5 nanoseconds
and deposits 250 KJ at a constant rate into a volume of 0.002 cm? inside the
hohlraum wall.

We can generate data from this model much more rapidly and will be using
this data to develop models for a variety of hohlraum shapes. To date we have
data for the “lampshade” hohlraum that is shown below. We will be generating
data on this and other holhraum shapes and applying our modeling techniques
to them.

In these simulations we can see that the late time behavior of the radiation
temperature is not affected much by the angle of the baffle, but the early and
intermediate times have a strong effect. Though we should not read too much
into the idiosyncrasies of a flux-limited diffusion calculation, we can see that
the larger angle of the baffle exposes it to more radiation from the laser spot.
Furthermore, the temperature of the baflle is much hotter when 6 > 0.
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Figure 8: Time evolution of the radiation temperature (keV) for the radiation-only,
gray, flux-limited diffusion model of a hohlraum with two different baffle angles.
Only the left half of the hohlraum is shown. Notice that the baffle angle is the
opposite of that in Figure 6 (the baffle bends toward the hohlraum opening).

If we average the radiation temperature in the middle of the sample chamber
near the axis, we can obtain temperature profiles for the experiment. These
profiles indicate that the angle of the baflle will affect both the peak temperature
and the shape of the profile as a function of time.
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Figure 9: Time profiles of the temperature in the middle of the sample chamber
near the axis (r=0).

[1]I. L. Tregillis. Synthetic Dante-1 temperatures from parameter variations of NIF
hohlraums (phase 01). Technical Report LA-UR-17-22657, Los Alamos National
Laboratory, March 2017.

[2] Dodd, E. S., DeVolder, B. G., Martin, M. E., Krasheninnikova, N. S., Tregillis,
I.L., Perry, T. S., et al. (2018). Hohlraum modeling for opacity experiments on the
National Ignition Facility. Physics of Plasmas, 25(6),063301—11. http://doi.org/

10.1063/1.5026285
VS

National Nuclear SecurltyAdmmlstratlon

Radiation Transport Simulations



