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sition (DMD)

Consider an evolution equation over time that can we written in the generic
form

U = Ay, ). (1)

where y(r,t) is a function of a set of variables denoted by r, which could be
space, angle, energy, etc., and time t. Consider the solution to the equation
at a sequence of equally spaced times, y(r,tg),y(r,t1), ..., y(r,tn_1),y(r, tn),
separated by a time At. These solutions are formally determined by the rela-
tionship:
e y(r tn—1),y(r,tn—2), ..., y(r to)].
(2)
If we constrain ourselves to finite dimensional problems, the solution is now
a vector and the operator is a matrix. In this case the original equation has the
form
dy

5 Ay(t). (3)

We will say that y,, is of length M > N and A is an M x M matrix. In this
case, the solutions are related through the matrix exponential:

[y(T, tN)a y(T, tN—l)v e ,y(T, tl)] —

eAAt[

[YN;YN—la---a}’I] = YN—17YJ—27---7YO]- (4)

In shorthand we can define the N x M matrix

Yi=[ynmyv-1,--,y1l, Yo =[yn-1,¥N-2,---,¥0];

as the matrices formed by appending the column vectors y,, and to get

Y, =22ty

()

Equation (5) is exact; however the matrix A may be too large to compute
the exponential, e*~t. Therefore, we desire to use just the solution to estimate
the eigenvalues of eA4?.

To this end we will use the solution vectors collected in Y and Y_ to pro-

duce an approximation to A. We compute the thin singular-value decomposition
(SVD) of the matrix Y _:
(6)

where U is an M X N unitary matrix, V is a N X N unitary matrix, and X
is an NV X N diagonal matrix with non-negative elements. The asterisk denotes
the conjugate-transpose of a matrix. Typically, some of the diagonal elements
of X are effectively zero. Therefore, we make X the r» X r matrix that contains
all r values greater than some small, positive e.

Substituting Eq. (6) into Eq. (5) we get

Y_ =UZV*,

Y, = ARUZVE
Rearranging this equation gives

VY, VE~! = U*eA?U =S8. (7)

An eigenvalue of S is also an eigenvalue of e™=". To see this, we consider an
eigenvalue A and eigenvector v of S. By definition we have Sv = Av, which is
equivalent to U*eA2tUv = \v. Left multiplying this equation by U we get

AAt

eAM Uy = AUv,

AAt  Additionally, v = Uv is the

which shows that A is an eigenvalue of e
associated eigenvector of eA2! to eigenvalue .

The matrix S is much smaller than that for eA2t and we can form S without
knowing A. To create S we need to know the result of eA2t applied to an initial
condition several times. Then we need to compute the SVD of the data matrix
U;_;. A direct computation requires O(M?N) operations, though iterative
methods for computing the SVD exist. As a comparison, the QR factorization

of eA2t requires O(M?) operations.
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of Aer

The discussion above suggests the following algorithm for estimating
alpha eigenvalues of the discrete transport equation:

1. Compute N time dependent steps starting from )y using a numerical
method of choice and fixed At.

2. Compute the SVD of the resulting data matrix Y_, and form S.

3. Compute the eigenvalues/eigenvectors A\ of S, and calculate the a eigen-
values from \ = e~

This is an approximate method because the time steps typically will not be
computed using the matrix exponential, rather a time integration technique
such as the backward Euler method will be used. The backward Euler algorithm
estimates the matrix exponential as

eAAt ~ (I — AtA) L

When we use the DMD method on a data matrix generated by the backward
Euler method, we are computing eigenvalues of (I — AtA)~!. To relate these
eigenvalues to the a eigenvalues we use the relation

(-3

This approximation will improve at first order as At — 0.
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Hetergeneous, 1-Speed Benchmark

Table 1: Alpha eigenvalues (us™!) for subcritical sphere computed using DMD Table 2: Alpha eigenvalues (us~!) for supercritical sphere computed using DMD
using the solution obtained using different values of At and final times.

1.0 1.0 1

—— o =-1957.424 —— a =-1872.9879
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Here we present results for a sphere of 99 atom-% 2°Pu and 1 atom-%
natural carbon using 12 group cross-sections and a simple buckling model for
leakage so that we can solve an infinite medium problem. We will consider sub-
and super-critical systems by adjusting the radius of the sphere.

Subcritical Case

We consider a sphere of radius 4.77178 cm with an associated k.g in our model
of 0.95000. The fundamental mode for this reactor is shown in above along with
several o eigenmodes. The «a eigenvalues for this system have a fast decaying
mode with a large number of neutrons in the fastest energy group, and the
slowest decaying mode closely follows the fundamental mode.

To test the DMD estimation of o eigenvalues we run a time dependent
problem where at time zero the system has 1000 neutrons in the energy group
corresponding to 14.1 MeV. This is a crude approximation to an experiment
where a pulse of DT fusion neutrons irradiates the sphere. The problem is run
in time dependent mode out to various final times with uniform time steps,
and the time steps are used in the DMD procedure to estimate « eigenvalues. The
number of neutrons in the system as a function of time demonstrates that
subcritical multiplication is happening in the first 0.002 us of the problem. As we
argue next, DMD finds the eigenvalues that are important in the time dependent
solution over the time scales considered and that are resolved by the time step
size.

From the table we can see that during the phase where subcritical multi-
plication is occurring (before ¢ = 0.002 ps) DMD accurately computes to six
digits the a eigenmode that corresponds to a large population of 14.1 MeV
neutrons. This is the mode most excited by the initial condition. It also ac-
curately computes the eigenvalues with magnitudes larger than 200 to several
digits. However, we note that the “dominant” or slowest decaying eigenmode
is not detected by the DMD algorithm, indicating that its contribution at this
early time is insignificant or cannot be distinguished from other slowly decaying
modes. This indicates an important phenomenon in time dependent transport:
the slowest decaying eigenvalue may not be important in a given problem.

As we look at simulations run to later time, more eigenvalues are identified
using DMD. Running the simulation to intermediate times, 0.02 and 0.2 us, we
see that DMD finds all of the eigenvalues in the problem to several digits of
accuracy. In both of these solutions DMD does not find the eigenvalue near
—28.85 us~!'. This eigenmode has more neutrons in the slowest group, group
12, relative to the next slowest group, group 11. Given that this problem has
very little thermalization due to the small amount of carbon, this mode is not
important at these intermediate times relative to other modes.

At a much later time, 2 us, DMD identifies all of the slowly decaying modes
but cannot find the rapidly decaying modes. This is due to the fact that the
larger time steps used make it so that the solution steps over the time scale
where these modes are important. As a result DMD estimates a pair of complex
eigenvalues with a real part that does not correspond to an actual eigenvalue.

using the solution obtained using different values of At and final times.

0.02

-17.5504

-24.5669
-35.7281
-46.6817
-75.7798
-132.183
-261.974
-547.719
-893.399
-1368.90
-1733.01
-1957.41
0.0002

0.2 2

-17.7588 -17.7437
-28.8628
-34.3999
-48.4613
-74.9998
-132.587
-260.218
-585.536
-763.974

Exact

-17.7439
-28.8533
-34.4201
-48.4269
-75.0701
-132.352
-261.942
-047.732
-893.385
-1368.92
-1732.99
-1957.42

tenal (ps) = 0.002 Exact

0.354439
-28.2933
-33.1095
-46.0832
-70.7945
-124.497

-247.14
-521.689

-853.58

-1309.4
-1659.02
-1872.99

thnal (1s) = 0.002 0.02
-4.02079 0.332366

0.2 2

0.354291 0.354439
-28.2932

-34.1948
-48.0231
-75.2787
-132.197
-262.127
-547.11
-895.262
-1362.45
-1725.84
-1957.42
0.001

-32.8048
-45.3512
-70.4805
-124.568
-247.127
-521.693
-853.577
-1309.4
-1659.02
-1872.99
0.0002

-33.1151
-45.817
-70.9448
-124.38
-247.281
-521.216
-855.008
-1305.12
-1655.16
-1872.98
0.001

-46.0703
-70.8261
-124.381
-248.057
-507.684

-262.78

-531.575
-893.314
-1335.16
-1721.75
-1957.42

At (us) = 0.0002

-247.914
-506.467
-853.733
-1279.91
-1649.68
-1872.99

At (us) = 0.0002

-1050 +231
-1708 £381:
-2059.43

0.01

0.01

Supercritical Case

We consider a sphere of radius 5.029636 cm with an associated k.g in our model
of 1.000998. We perform the same calculations as performed before on the sub-
critical sphere. Table 2 compares the eigenvalues computed with DMD with the
eigenvalues computed by solving the equivalent infinite medium problem. At
an early time (0.002 us), the DMD computation does not identify the exponen-
tially increasing mode. We see that at this time the supercritical and subcritical
systems have neutron populations that are very similar. The subcritical multi-
plication observed in the smaller sphere where modes associated with the fusion
neutrons contributed to the growth of the neutron population, is also present in
this supercritical system. However, there are very few neutrons emitted in the
fusion energy range from fission (1 ~ 1.37 x 10™%), so these modes decay away.
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We solve the benchmark problems published by Kornreich and Parsons as solved
by the Green’s function method (GFM). Their work defines a slab problem for
single-speed neutrons (i.e., one group) consisting of an absorber surrounded
by a moderator and fuel. They define configurations of this problem that are
symmetric and asymmetric, as well as subcritical and supercritical versions.

Table 3: Alpha eigenvalues for the one-group slab problem in different configu-
rations as computed via the Green’s function method (GFM) and the difference
between the GFM eigenvalues and the DMD estimates in units of pcm (107?°).

Geometry Vafuel Fundamental « (GFM) agrm — apmp (pem)  Second a (GFM)  agrm — apMp (pem)
. 0.3 -0.3196537 0.639 -0.3229855 0.694
Symmetric
0.7 -0.006156369 0.7711 -0.006440766 0.7724
. 0.3 -0.2932468 0.535 -0.3213939 0.666
Asymmetric
0.7 0.03759991 0.64 -0.006298843 0.7717
1.00 - 1.00 -
0.75 1 0.75 1
0.50 1 0.50 1
0.25 1 0.25 1
oo0qy T 0004 ==
~0.25 - \\ ~0.25 - "~
\ N
~0.50 - N ~0.50 1 N ,
AN / Y /
—0.75 1 — Rightmost DMD \\\ /) —0.75 1 —— Fundamental DMD Vo
_1004 ~—- Second DMD W/ _1004 ~—- Second DMD ./
0 2 4 6 8 0 2 4 6 8

(a) Symmetric slab with voy = 0.3 (b) Symmetric slab with voy = 0.7

Fundamental and second eigenmodes for the one group slab problem in the symmetric configurations.
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(a) Asymmetric slab with vor = 0.3 (b) Asymmetric slab with voy = 0.7

Fundamental and second eigenmodes for the one group slab problem in the asymmetric configurations. There is a
third, real eigenvalue in the vo;= 0.3 case with o = —1.02158875.
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We solve a problem consisting of two slabs of 23?Pu with high-density polyethy-
lene (HDPE) between them and a reflector of HDPE on the outside. The initial
condition has a pulse of DT fusion neutrons striking the outer surface of the
reflector. The system is subcritical when the fuel regions are each 1.125 cm
thick with a resulting keg ~ 0.97 and isotropic scattering is assumed.

The behavior of the neutron population in time, as well as the three time
intervals over which the eigenvalues were estimated is shown above. The time
interval from 0.002 to 0.004 us is during the subcritical multiplication phase of
the simulation. It makes sense that during this phase the slowly decaying modes
are not important in the solution.

Early in the time the solution is dominated by the presence of 14.1 MeV
neutrons, though fission neutrons are present in the fuel and outer reflector. At
late times, near 1us, the spectrum in the fuel and the reflector is close to the
fundamental eigenmode of the k-eigenvalue problem. Nevertheless, the central
moderator in the problem has not reached the fundamental k& eigenmode, as
there has not been enough time to fully thermalize the neutrons. Moreover,
these results indicate that if this system were involved in an experiment, the
neutrons produced in the first microsecond would give little information about
the spectrum of the k£ eigenvalue problem.
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