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The transport equation 

•  We are interested in solving the transport equation for the angular 
!ux, Ψ of particles (e.g. neutrons, gammas, etc.) 

•  The equation we need to solve is of the form 

•  We have left out the time or energy dependence, because their 
presence doesn’t affect the system solution (too much). 

•  This is an integro-differential equation.  The spatial variables can be 
handled using typical methods  
⇒ Finite element 
⇒ Finite difference 
⇒ Etc. 
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Approaches to solving the transport equation 

•  Methods for solving the transport equation are generally classi"ed according to how they treat the 
angular variable (Ω). 

•  Discrete ordinates methods (Sn) solve the transport equation along particular directions and then use a 
quadrature rule to compute the radiation energy density. 
⇒  There has been a lot of work on ef!cient solution techniques for this method. 
⇒   Ray effects can be a problem 

•  Monte Carlo methods sample the phase space and track particles along trajectories and stochastically 
model collisions and emission 
⇒  Implicit Monte Carlo (IMC) is the most famous and widely used of these methods. 
⇒  Can give excellent answers to the patient, though noise and overheating are issues 
⇒  Unlike Monte Carlo for linear problems, the limit of an in!nite number of particles is not the exact solution (linearization, temporal, 

and spatial errors in IMC). 

•  Spherical harmonics methods (Pn) represent the angular variable using a truncated spherical 
harmonics expansion. 
⇒  Can give exponential convergence for smooth solutions 
⇒  The truncated expansion leads to oscillations known as wave effects 
⇒  Little work has been done on ef!cient solution techniques 

•  Flux-limited diffusion represents the transport operator with a diffusion process 
⇒  Particles move from high concentrations to low concentrations 
⇒  As a result particles "ow like smoke 
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There has been recent interest in moment-
based methods 

•  Recent developments have tried to address the shortcomings of the 
Pn approach. 

•  The Pn method is a spectral method in angle.  (McClarren & Hauck 2010) 
⇒ As with other spectral methods, discontinuities in angle lead to Gibbs’ 

phenomenon. 
⇒ Applying a !lter to the expansion has proven effective in removing oscillations 

•  High-order/Low-order methods, that use a transport method (e.g. 
Monte Carlo) to compute a closure that is updated using a low-order 
method (e.g. diffusion) 

•  The positive Pn method seeks to create reconstructions of the 
angular !ux based on strictly positive reconstructions by solving an 
optimization problem (Hauck & McClarren 2009). 
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Why (or why not) the spherical harmonics 
method? 

•  Using a orthogonal basis should be accurate in describing the radiation intensity in many 
cases 
⇒  More accurate than pointwise estimates 

•  When the solution is discontinuous, however, this representation can be misleading 
⇒  Gibbs phenomenon (oscillations) 

•  The intensity and radiation energy density should always be positive for physical reasons.  
⇒  The oscillations in the spherical harmonics representation can make these negative! 
⇒  Worse these can drive the material temperature negative. 

•  Except for low order approaches there has been no successful method to eliminate these 
problems (until recently): 
⇒  The Mn methods expand in an exponential basis rather than a polynomial basis. 

•  Above n=1 an optimization problem must be solved to "nd the moments. 
⇒  Closures for the P1 equations have been proposed 

•  Minerbo, Kershaw, Levermore-Pomraning, etc. 

•  There are two techniques that can eliminate these negative solutions and oscillations. 
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Negative Energy Densities in the Pn solutions 

•  One might be tempted to say, “I’ll just make my n high enough so that I avoid 
these negative solutions.” 

•  It turns out that is not possible to have a "nite expansion that is bulletproof to 
negative solutions. 

•  Theorem (McClarren, et al): For any "nite value of n there exists a transport 
problem where the Pn solution will have a negative energy density. 

•  Therefore, if we want to guarantee that our solution will never go negative we 
have to change the expansion or the resulting equations. 

•  The proof of the theorem gives us a choice of what we must change. 
⇒  The proof also relies on the plane to point transform by which we write the solution from a point 

source to the solution from a planar source. 

McClarren et al. On solutions to the P-n equations for thermal radiative transfer.  
Journal of Computational Physics (2008) vol. 227 (5) pp. 2864-2885 
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Plane to Point Transform 

•  Consider the solution due to an in"nite, pulsed, planar source at x=0. 

 

•  Now we can consider the plane as being comprised of many point sources 

                     Where                        is the solution at a distance r from a point source 
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Plane to Point Transform 

•  We can invert this formula to get the solution from a point source in terms of the planar 
solution:  

 

•  This transform is only valid if the underlying equations are 
⇒  Linear 
⇒  Rotationally invariant 

•  In vacuum the solution to the Pn equations from a pulsed, planar source is a series of delta 
functions traveling out from the origin 

•  The derivative of this solution is both positive and negative 
⇒  Therefore, the radiation energy density due to a point source will be negative somewhere. 
⇒  This will be the case for any !nite n 
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To fix the equations we have a choice 

•  To use the plane to point transform we needed rotational invariance 
and linearity. 

•  The delta functions in the Pn solution were a result of the Pn 
equations being hyperbolic (information only travels at a "nite 
speed). 

•  Therefore, we need to break one of these properties to ensure 
positivity. 

•  Losing linearity seems to be the best way to go 
⇒ X-rays do travel with !nite speed 
⇒ Loss of rotational invariance can cause artifacts in the solution. 

•  Discrete ordinates methods are not rotationally invariant 
⇒ If I rotate the coordinate system, the location of the ordinates changes 
⇒ This results in ray effects 

•  Diffusion methods are not hyperbolic 

•  Of course this is just to guarantee positive solutions 
⇒ We might be able to do some other tricks that make negative solutions go 

away when they appear. 
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More on negative solutions 

•  “But my problems don’t have any vacuum regions.” 

•  Even if the problems you want to solve don’t have any evacuated regions, 
negativity can still result 
⇒ On short enough time scales any material behaves like a vacuum. 

•  If I look at time scales much shorter than the time for absorption and re-emission. 
⇒  In multigroup problems, the some materials might look like a vacuum to the high 

energy photons. 
•  “My problems don’t have point sources” 

•  Shadows in the solution can also lead to negative energy densities 
⇒ A shadow looks like a step function in angular space, !tting this with spherical 

harmonics will lead to negative values. 

•  In spherical geometry in the absence of point sources, negatives 
should not be a major problem 
⇒ Can’t have a shadow in this geometry 

•  Moreover, if I have  very coarse spatial grids and time steps the 
negative parts of the solution might be smeared out. 
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P7 Negative Solution Examples 

Infinite, pulsed line source 
Transport down a duct 

solution with Nx ¼ Nz ¼ 60. These figures show the lineout along the diagonal from the center of the heated
block through the cold block and into the shadow region. In this problem the time scale of the material tem-
perature was as short as about 0.1 ns. These figures show that there is significant time-integration error in both
the radiation and material temperature fields when time steps are larger than this material temperature time
scale. This is the case for the radiation field even when the time scale of radiation propagation is greater than
100 times shorter than the time step.

Another problem we solved was a modification of the ‘‘M” problem [6]. A schematic of this problem is
shown in Fig. 10. We modified the original linear problem to give it temperature feedback: the walls of the
duct have Cv ¼ 5" 1010 J=m3=keV and r ¼ 5000 m#1. There is a 300 eV isotropic radiation source entering
the middle leg of the duct, and we use the real value of the speed of light. This nonlinear version of the problem
produces negative energy densities whereas the purely scattering problem in Ref. [6] did not. Fig. 11 shows the
effect of different Pn approximations on the solution at an early time. The P 3 solution has too much energy
turning the corner of the duct; the P 7 solution shows less of this effect and displays a cone of radiation near
the top of the duct. In the P 3 solution there is a local maximum at the top of the middle leg of the duct. The P 7

solution has ‘‘waves” of energy in the outer legs of the duct. At this time, the magnitude of the negatives in the
P 3 solution was larger than that in the P 7 solution. However, a greater area of the solution was negative (for
both the energy density and material temperature) in the P 7 case.

The solution at a later time, 6 ns, is shown in Fig. 12. Here, we notice that the P 3 creates a ‘‘mushroom” of
photons near the top of the duct while the P 7 solution maintains a less rounded shape. In terms of material
heating, the P 3 solution has significant artificial heating of the outer legs of the duct. The P 7 solution shows
much less of this effect. This difference could be important in a problem where the heating of the wall affected
some other physical process (e.g. in a radiation-hydrodynamics simulation). Despite having less artificial heat-
ing in the outer legs of the duct, the P 7 solution has a larger region of artificial cooling.

Using this problem we can estimate the performance of our implicit method compared with an explicit
method. For the P 7 results of this problem, the CFL number is 150. The average number of GMRES iterations
in completing a time step is 1000 (approximately 600 in the first linear solve and 400 in the second). If we
assume an explicit method runs at a CFL number of 0.9 (just below the CFL limit), then it would take 167
explicit time steps to equal one implicit time step. To make the implicit method more efficient than the explicit
method would require an explicit time step to take the same amount of time as six GMRES iterations. We
would expect an explicit time step to take as long as several GMRES iterations. This expectation is based

Fig. 10. The ‘‘M” problem schematic: the maize colored regions are vacuum and the blue regions are dense material. (For interpretation of
the reference in colour in this figure legend, the reader is referred to see the web version of this article.)

R.G. McClarren et al. / Journal of Computational Physics 227 (2008) 2864–2885 2881
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P7 Negative Solution Examples 

R.G. McClarren, C.D. Hauck, and R.B. Lowrie
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(c) P7 Slope Limited Filter
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Figure 2. Solutions to the pulsed line source problem at t = 1 using several methods.

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009
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Infinite, pulsed line source 
Transport down a duct 

on the fact that one GMRES iteration requires approximately O(M) operations where M is the number of
unknowns in a linear system. An explicit time step would require several iterations on the temperature feed-
back terms, each roughly equivalent to a GMRES iteration. Also, the process of slope limiting would be about
equivalent to a GMRES iteration. Given this back-of-the-envelope calculation the performance of the implicit
method is approximately equivalent to the performance of an explicit method. Numerical experiments show
that, for CFL numbers in the hundreds, the number of GMRES iterations required by the implicit method is
nearly constant as the CFL number changes. This result means that as the spatial grid is refined, the implicit
method will perform better than an explicit method.

To date we have not spent a great deal of effort on accelerating the implicit method. The topic of precon-
ditioning the linear systems in the two steps of the quasi-linear method is largely unexplored. If better precon-

Fig. 11. Radiation and material temperature (eV) at 0.9 ns for the thermal duct problem using different Pn orders. All problems were run
on a Cartesian mesh with a time step of Dt ¼ 0:05 ns.

2882 R.G. McClarren et al. / Journal of Computational Physics 227 (2008) 2864–2885



Texas A&M Nuclear Engineering!

1876 

R. G. McClarren!

Truncating a spherical harmonic series: is it wise? 
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Truncating a spherical harmonic series: is it wise? 

 

 

 

 

“Truncating a [spherical harmonics] series is a rather stupid idea.”  

John P. Boyd, Chebyshev and Fourier Spectral Methods  
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Gibbs Errors are the reason 

•  As alluded to earlier, the Gibbs errors near sharp features are the 
reasons truncating is unwise. 

•  In Boyd’s book he uses this "gure (from geophysics) to illustrate his 
point 
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Gibbs errors are the reason 

•  As alluded to earlier, the Gibbs errors near sharp features are the 
reasons truncating is unwise. 

•  In Boyd’s book he uses this "gure (from geophysics) to illustrate his 
point 

•  A standard spherical harmonics expansion can’t capture the !at 
ocean next to the mountain 
⇒ Making the !sh rather unhappy 

•  In transport these errors give us the negative solutions. 

•  The answer is to change the expansion so that these errors are 
eliminated (or at least reduced). 
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Pulsed Line Source Results 

•  The "rst problem we solve is a 2-D 
Cartesian problem 
⇒  initial condition  

⇒ Pure scattering medium. 

•  There is an analytic transport 
solution to this problem (Ganapol). 

•  This is a hard problem 
⇒  Delta function of uncollided particles 
⇒  Smooth region of collided particles 

•  Both Pn and Sn methods have a hard 
time with this problem. 
⇒  Gibbs errors and ray effect respectively 

20 CORY HAUCK AND RYAN MCCLARREN
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Fig. 12. Comparison of P3 and PP3–S8 for the linesource problem.

While we believe that the PPN method shows potential for solving large-scale
transport problems, there is still a need for future work. Chiefly, the fact that our
implementation is not asymptotic preserving needs to be addressed. Indeed, kinetic
discretizations like (31) and (37) were long ago abandoned by the transport community
for their lack of accuracy, especially in the diffusion limit. Implicit implementations
are also needed for steady-state and stiff multiphysics problems. Finally, paralleliza-
tion is required in order to make any implementation of the PPN system practical
and computationally competitive.
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vided by the Institute for Pure and Applied Mathematics at the University of Cali-
fornia at Los Angeles, where some of this work was performed.

Analytic Radiation Energy Density at t = 1/c 
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Pulsed Line Source Results at t=1/
c 
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Lineout at t=1/c 
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Lineout at t=1/c 

•  The Pn results are not converging very 
well 
⇒  The location of the oscillations is 

changing 
•  The FPn solutions are converging 

⇒  Location of hump moving to 1 

•  Sn hard to tell 
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Implicit methods are still a research topic 

•  Almost all of the work done on these methods has used explicit time 
integration 
⇒ Therefore, did not require the solution of an any large, linear systems 

•  In my PhD thesis I solved implicit Pn equations using GMRES with 
basic incomplete LU preconditioners. 

•  Brown, Chang, and Hanebutte derived an Sn-like form of the Pn 
equations that can be solved via sweeping 
⇒ Has issues in convergence though. 

•  In this talk I will try to show you the properties of the implicit Pn 
equations and hope to generate a discuss of how to precondition 
them. 
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The Pn equations 

•  The Pn form of the transport equation is 

•  Where                                                                 are the spherical 
harmonic moments of the angular !ux. 

•  The streaming matrices have several important properties 
⇒ Each row has 2 – 4 entries 
⇒ The diagonals are always 0 
⇒ The eigenvalues are all real.  
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Comparison to Sn 

•  It is useful to compare the Pn equations to the discrete ordinates 
(Sn) equations.  

•  These equations have a similar form to the Pn equations but the 
operators are different: 

•  Here the unknowns are the angular !uxes in a particular direction, 
and C is identical.  

•  In the Sn equations, however, the Ad matrices are diagonal and the 
S matrix is full (it has a nonzero entry for every element). 

•  Therefore the Sn equations are typically solved by inverting the 
streaming operator for all of space, called a transport sweep 
⇒ And then iterating on the scattering operator 
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Operator Form of the Equations 

•  In the Pn equations we have the opposite 
⇒ The streaming operator is complicated 
⇒ The scattering operator is simple. 

•  Writing the equations in operator form yields 

•  Which we can rewrite using 

•  The operator T will be invertible as long as there is some 
absorption. 

•  The streaming operator L is rotationally invariant 
⇒ It moves particles in a series of waves that have a !nite speed 

(L+C� S) ~ = ~Q

�
T�1L+ I

�
~ = T�1 ~Q

T = C� S
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The need for preconditioners 

•  After spatial discretization on a regular grid the matrix will have a 
block 7-point stencil.   
⇒ The diagonal will be the identity  
⇒ The off-diagonal terms will be T-1L for each adjacent spatial grid cell 

•  A Jacobi iteration on this matrix will move information just one grid 
cell. 

•  L is not the reason we need a preconditioner 
⇒ Yes, it is not easily invertible, but it wants to move particles isotropically. 
⇒ Simple multigrid would work if it weren’t for… 

•  Spatial variation in the cross-sections (σt and σs ) causes 
anisotropy in the solution. 

•  Diffusion preconditioners may work, but this is the easy case as 
simple iterative schemes should converge quickly (particles don’t 
move very far). 
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Example problem 

•  The below problem (similar to the iron-water problem) will have 
anisotropic !ow 
⇒ The gray areas have a very small interaction between the particles and the 

material 
⇒ The white areas have a lot of collisions 

σt ~ 0 
 

σt >> 0 
 

σt >> 0 Q > 0 
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How things change with Filters 

•  The application of a "lter will look like anisotropic scattering 

•  I don’t think this will have a negative impact on the properties of the 
solution. 
⇒ The !lter is trying to relax the angular "ux to a smoother distribution. 

�m
sl ! �m

sl + fm
l
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Conclusions 

•  The spherical harmonics equations seem to have a future. 

•  Implicit/steady state solutions are still not practical 

•  Further research is needed on how best solve the equations. 

•  I hope that your expertise can help! 


