

Open Problems in the Preconditioning of Moment-based Transport Equations

Ryan G. McClarren

Presented at University of West Bohemia – 17 June 2013

Texas A&M Nuclear Engineering

- We are interested in solving the transport equation for the angular flux, Ψ of particles (e.g. neutrons, gammas, etc.)
- The equation we need to solve is of the form

$$\Omega \cdot \nabla_x \psi(x, \Omega) + \sigma_t \psi = \int_{4\pi} d\Omega' \, \sigma_s(\Omega \cdot \Omega') \psi(x, \Omega') + Q.$$

- We have left out the time or energy dependence, because their presence doesn't affect the system solution (too much).
- This is an integro-differential equation. The spatial variables can be handled using typical methods
 - \Rightarrow Finite element
 - *⇒ Finite difference*
 - \Rightarrow *Etc.*

Approaches to solving the transport equation

- Methods for solving the transport equation are generally classified according to how they treat the angular variable (Ω).
- Discrete ordinates methods (S_n) solve the transport equation along particular directions and then use a quadrature rule to compute the radiation energy density.
 - \Rightarrow There has been a lot of work on efficient solution techniques for this method.
 - \Rightarrow Ray effects can be a problem
- Monte Carlo methods sample the phase space and track particles along trajectories and stochastically model collisions and emission
 - ⇒ Implicit Monte Carlo (IMC) is the most famous and widely used of these methods.
 - \Rightarrow Can give excellent answers to the patient, though noise and overheating are issues
 - ⇒ Unlike Monte Carlo for linear problems, the limit of an infinite number of particles is not the exact solution (linearization, temporal, and spatial errors in IMC).
- Spherical harmonics methods (Pn) represent the angular variable using a truncated spherical harmonics expansion.
 - \Rightarrow Can give exponential convergence for smooth solutions
 - ⇒ The truncated expansion leads to oscillations known as wave effects
 - ⇒ Little work has been done on efficient solution techniques
- Flux-limited diffusion represents the transport operator with a diffusion process
 - \Rightarrow Particles move from high concentrations to low concentrations
 - \Rightarrow As a result particles flow like smoke

There has been recent interest in momentbased methods

- Recent developments have tried to address the shortcomings of the Pn approach.
- The Pn method is a spectral method in angle. (McClarren & Hauck 2010)
 - ⇒ As with other spectral methods, discontinuities in angle lead to Gibbs' phenomenon.
 - \Rightarrow Applying a filter to the expansion has proven effective in removing oscillations
- High-order/Low-order methods, that use a transport method (e.g. Monte Carlo) to compute a closure that is updated using a low-order method (e.g. diffusion)
- The positive Pn method seeks to create reconstructions of the angular flux based on strictly positive reconstructions by solving an optimization problem (Hauck & McClarren 2009).

Why (or why not) the spherical harmonics method?

- Using a orthogonal basis should be accurate in describing the radiation intensity in many cases
 - \Rightarrow More accurate than pointwise estimates
- When the solution is discontinuous, however, this representation can be misleading
 - ⇒ Gibbs phenomenon (oscillations)
- The intensity and radiation energy density should always be positive for physical reasons.
 - ⇒ The oscillations in the spherical harmonics representation can make these negative!
 - \Rightarrow Worse these can drive the material temperature negative.
- Except for low order approaches there has been no successful method to eliminate these problems (until recently):
 - \Rightarrow The M_n methods expand in an exponential basis rather than a polynomial basis.
 - Above n=1 an optimization problem must be solved to find the moments.
 - \Rightarrow Closures for the P₁ equations have been proposed
 - Minerbo, Kershaw, Levermore-Pomraning, etc.
- There are two techniques that can eliminate these negative solutions and oscillations.

Negative Energy Densities in the P_n solutions

- One might be tempted to say, "I'll just make my n high enough so that I avoid these negative solutions."
- It turns out that is not possible to have a finite expansion that is bulletproof to negative solutions.
- Theorem (McClarren, et al): For any finite value of *n* there exists a transport problem where the P_n solution will have a negative energy density.
- Therefore, if we want to guarantee that our solution will never go negative we have to change the expansion or the resulting equations.
- The proof of the theorem gives us a choice of what we must change.
 - ⇒ The proof also relies on the plane to point transform by which we write the solution from a point source to the solution from a planar source.

McClarren et al. On solutions to the P-n equations for thermal radiative transfer. Journal of Computational Physics (2008) vol. 227 (5) pp. 2864-2885

Plane to Point Transform

• Consider the solution due to an infinite, pulsed, planar source at x=0.

• Now we can consider the plane as being comprised of many point sources

$$E_{\rm r,plane}(x,t) = \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} dz \, E_{\rm r,point} \left(\sqrt{x^2 + y^2 + z^2} \right)$$

$$x$$
Where $E_{\rm r,point}$ is obtained as a distance r from a point source

R. G. McClarren

• We can invert this formula to get the solution from a point source in terms of the planar solution:

$$E_{\mathrm{r,point}} = -\frac{1}{2r}\partial_x E_{\mathrm{r,plane}}(x)|_{x=r}$$

- This transform is only valid if the underlying equations are
 - \Rightarrow Linear
 - ⇒ Rotationally invariant
- In vacuum the solution to the P_n equations from a pulsed, planar source is a series of delta functions traveling out from the origin

$$E_{\rm r, plane} = \sum_{k=0}^{n} a_k \delta(x - v_k t)$$

- The derivative of this solution is both positive and negative
 - ⇒ Therefore, the radiation energy density due to a point source will be negative somewhere.
 - \Rightarrow This will be the case for any finite n

- To use the plane to point transform we needed rotational invariance and linearity.
- The delta functions in the P_n solution were a result of the P_n equations being hyperbolic (information only travels at a finite speed).
- Therefore, we need to break one of these properties to ensure positivity.
- Losing linearity seems to be the best way to go
 - ⇒ X-rays do travel with finite speed
 - \Rightarrow Loss of rotational invariance can cause artifacts in the solution.
- Discrete ordinates methods are not rotationally invariant
 - \Rightarrow If I rotate the coordinate system, the location of the ordinates changes
 - ⇒ This results in ray effects
- Diffusion methods are not hyperbolic
- R. G. McClarren Texas A&M Nu

More on negative solutions

- "But my problems don't have any vacuum regions."
- Even if the problems you want to solve don't have any evacuated regions, negativity can still result
 - \Rightarrow On short enough time scales any material behaves like a vacuum.
 - If I look at time scales much shorter than the time for absorption and re-emission.
 - ⇒ In multigroup problems, the some materials might look like a vacuum to the high energy photons.
- "My problems don't have point sources"
- Shadows in the solution can also lead to negative energy densities
 - ⇒ A shadow looks like a step function in angular space, fitting this with spherical harmonics will lead to negative values.
- In spherical geometry in the absence of point sources, negatives should not be a major problem

 \Rightarrow Can't have a shadow in this geometry

 Moreover, if I have very coarse spatial grids and time steps the negative parts of the solution might be smeared out.

R. G. McClarren

P₇ Negative Solution Examples

P₇ Negative Solution Examples

Chebyshev and Fourier Spectral Methods Second Edition (Revised) John P. Boyd

"Truncating a [spherical harmonics] series is a rather stupid idea."

John P. Boyd, Chebyshev and Fourier Spectral Methods

- As alluded to earlier, the Gibbs errors near sharp features are the reasons truncating is *unwise*.
- In Boyd's book he uses this figure (from geophysics) to illustrate his point

- As alluded to earlier, the Gibbs errors near sharp features are the reasons truncating is *unwise*.
- In Boyd's book he uses this figure (from geophysics) to illustrate his point

- As alluded to earlier, the Gibbs errors near sharp features are the reasons truncating is *unwise*.
- In Boyd's book he uses this figure (from geophysics) to illustrate his point

• A standard spherical harmonics expansion can't capture the flat ocean next to the mountain

 \Rightarrow Making the fish rather unhappy

R. G. McClarren sport these errors give us the negative solutions. Nuclear Engineering

Pulsed Line Source Results

- The first problem we solve is a 2-D Cartesian problem
 - $\Rightarrow \textit{initial condition} \\ I(\vec{r}, \Omega, 0) = \delta(x)\delta(y)$
 - \Rightarrow Pure scattering medium.
- There is an analytic transport solution to this problem (Ganapol).
- This is a hard problem
 - ⇒ Delta function of uncollided particles
 - \Rightarrow Smooth region of collided particles
- Both P_n and S_n methods have a hard time with this problem.
 - \Rightarrow Gibbs errors and ray effect respectively

Analytic Radiation Energy Density at t = 1/c

Pulsed Line Source Results at t=1/

С

R. G. McClarren

Texas A&M Nuclear Engineering

R. G. McClarren

Texas A&M Nuclear Engineering

Lineout at t=1/c

- The P_n results are not converging very well
 - ⇒ The location of the oscillations is changing
- The FP_n solutions are converging
 ⇒ Location of hump moving to 1
- S_n hard to tell

R. G. McClarren

Texas A&M Nuclear Engineering

- P₃

Transport

Implicit methods are still a research topic

Almost all of the work done on these methods has used explicit time integration

 \Rightarrow Therefore, did not require the solution of an any large, linear systems

- In my PhD thesis I solved implicit Pn equations using GMRES with basic incomplete LU preconditioners.
- Brown, Chang, and Hanebutte derived an Sn-like form of the Pn equations that can be solved via sweeping

 \Rightarrow Has issues in convergence though.

• In this talk I will try to show you the properties of the implicit Pn equations and hope to generate a discuss of how to precondition them.

• The Pn form of the transport equation is

$$\begin{split} \mathbf{A}_{x}\partial_{x}\vec{\psi} + \mathbf{A}_{y}\partial_{y}\vec{\psi} + \mathbf{A}_{z}\partial_{z}\vec{\psi} + \mathbf{C}\vec{\psi} &= \mathbf{S}\vec{\psi} + \delta_{l0}\delta m 0Q\\ \text{Where } \vec{\psi} &= (\psi_{0}^{0}, \psi_{1}^{-1}, \psi_{1}^{0}, \psi_{1}^{1}, \dots, \psi_{N}^{N})^{\text{t}} \quad \text{are the spherical}\\ \text{harmonic moments of the angular flux.} \\ \mathbf{S} &= \begin{pmatrix} \sigma_{s0}^{0} & & \\ & \sigma_{s1}^{-1} & & \\ & & \sigma_{s1}^{0} & & \\ & & \ddots & \\ & & & \sigma_{sN}^{N} \end{pmatrix} \quad \mathbf{C} &= \text{diag}(\sigma_{t}) \end{split}$$

- The streaming matrices have several important properties
 - \Rightarrow Each row has 2 4 entries
 - \Rightarrow The diagonals are always 0
 - \Rightarrow The eigenvalues are all real.

- It is useful to compare the Pn equations to the discrete ordinates (Sn) equations.
- These equations have a similar form to the Pn equations but the operators are different:

 $\mathbf{A}_{x}\partial_{x}\vec{\psi} + \mathbf{A}_{y}\partial_{y}\vec{\psi} + \mathbf{A}_{z}\partial_{z}\vec{\psi} + \mathbf{C}\vec{\psi} = \mathbf{S}\vec{\psi} + \delta_{l0}\delta m 0Q$

- Here the unknowns are the angular fluxes in a particular direction, and C is identical.
- In the Sn equations, however, the A_d matrices are diagonal and the S matrix is full (it has a nonzero entry for every element).
- Therefore the Sn equations are typically solved by inverting the streaming operator for all of space, called a transport sweep → And then iterating on the scattering operator

- In the Pn equations we have the opposite
 - \Rightarrow The streaming operator is complicated
 - \Rightarrow The scattering operator is simple.
- Writing the equations in operator form yields

 $\left(\mathbf{L}+\mathbf{C}-\mathbf{S}\right)\vec{\psi}=\vec{Q}$

- Which we can rewrite using ${f T}={f C}-{f S}$ $({f T}^{-1}{f L}+{f I})~ec\psi={f T}^{-1}ec Q$
- The operator T will be invertible as long as there is some absorption.
- The streaming operator L is rotationally invariant

 \Rightarrow It moves particles in a series of waves that have a finite speed

• After spatial discretization on a regular grid the matrix will have a block 7-point stencil.

 \Rightarrow The diagonal will be the identity

- \Rightarrow The off-diagonal terms will be T⁻¹L for each adjacent spatial grid cell
- A Jacobi iteration on this matrix will move information just one grid cell.
- L is not the reason we need a preconditioner
 - \Rightarrow Yes, it is not easily invertible, but it wants to move particles isotropically.
 - \Rightarrow Simple multigrid would work if it weren't for...
- Spatial variation in the cross-sections (σ_t and σ_s) causes anisotropy in the solution.
- Diffusion preconditioners may work, but this is the easy case as simple iterative schemes should converge quickly (particles don't move very far).

Example problem

- The below problem (similar to the iron-water problem) will have anisotropic flow
 - ⇒ The gray areas have a very small interaction between the particles and the material
 - ⇒ The white areas have a lot of collisions

• The application of a filter will look like anisotropic scattering

$$\sigma_{sl}^m \to \sigma_{sl}^m + f_l^m$$

- I don't think this will have a negative impact on the properties of the solution.
 - \Rightarrow The filter is trying to relax the angular flux to a smoother distribution.

- The spherical harmonics equations seem to have a future.
- Implicit/steady state solutions are still not practical
- Further research is needed on how best solve the equations.
- I hope that your expertise can help!