
Compressed Sensing for Nuclear Engineering
NC State Nuclear Engineering Seminar

Ryan G. McClarren

Texas A&M University

RG McClarren (TAMU) NC State Seminar Dec 2016 2016-12-01 1 / 59



Acknowledgements

Collaborators:

Vincent Laboure , Weixiong Zheng Pablo Vaquer ,

Yuriy Ayzman , and Jonathan Madsen . (TAMU
PhD. Students)
Cory Hauck (Oak Ridge National Lab)
Martin Frank (RWTH Aachen)

Sponsors:

US National Science Foundation, Division of Mathematical Sciences
US DOE NEUP
US DOE NNSA
Los Alamos National Laboratory
Lawrence Livermore National Laboratory

RG McClarren (TAMU) NC State Seminar Dec 2016 2016-12-01 2 / 59



First, a plug

+

-

americium

postive electrode

alpha particles

negative electrode

current
detector

battery

alarm

negative ion

positive ion

RG McClarren (TAMU) NC State Seminar Dec 2016 2016-12-01 3 / 59



Section 1

1 Introduction
Background

2 The Single Detector Neutron Camera

3 Disjoint Monte Carlo Tallies

4 Sparse Estimation of Sensitivities
Problem settings
Coefficient Estimation

5 Improving Numerical Methods Using Optimization

6 Summary

RG McClarren (TAMU) NC State Seminar Dec 2016 2016-12-01 4 / 59



What is this talk about?

In engineering and science we often use approximations,
reconstructions, and representations that have nice properties such as

Linearity
Minimizing the error in the L2 norm

This talk covers the benefits of relaxing these nice properties, to
enable new technologies and improve simulations.

Much of the technology we need to get these improvements can be
explained in terms of compressed sensing.
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What is compressed sensing?

Compressed sensing is an approach to obtaining, reconstructing, and
reducing signals.

Usually requires solving an underdetermined linear system augmented
with a cost function to be optimized.

To understand how compressed sensing works we will need to
understand the following concepts:

Representation: How do we express a signal in terms of a discrete set
of functions?
Measurement: How do we acquire the signal?

We will use the example of a grayscale image to demonstrate these
concepts.
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Signal Representation

The image at right can be
stored as 1600×1200≈ 2×106

numbers between 0 and 1.

We could think of this as a long
vector of 2 million numbers.

Other representations are
possible, and some of them
could exactly match the image
data using fewer numbers.

This is possible because images
have structure in them: they are
not random noise.

For instance, if one pixel is dark,
the pixels near it are likely to be
dark as well.
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Signal Representation

This image of a checkerboard has
millions of pixels, but we can
represent it using only 13 numbers.

We say that we can represent this
image in a basis set where the basis
is the 25 different functions that
are 1 in a single square and 0
everywhere else:

z =
25

∑
i=1

wib(x ,y).

Because only 13 of these functions

will have nonzero weights, wi , we

say that the image is sparse in this

basis.
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Measuring a Signal

In general we can an image x to the measurement b via the linear
system

Ax = b.

The measurement matrix A represents how the image maps onto the
measurement.

In your phone there is a CCD element for every pixel in the image. In
such an instance x = b, and A is the identity matrix.

There are other possible measurement matrices: consider a single,
large CCD where we block all but a single pixel, and record the value
from the single CCD, and then repeatedly move the unblocked pixel
N times.

This measurement matrix A is also an identity matrix.
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Measuring a Signal

What we would like to do is take M measurements of an image of N
pixels with M � N.

This will make the number of entries in b equal to M, and make A
rectangular with size M×N.

The system Ax = b no longer has a unique solution.

To come up with a unique solution we have to constrain the problem
somehow.

Before we talk about constraining the problem, we will show how this
has been done in practice.
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Single Pixel Camera

This is the idea behind the single-pixel camera: sample the image
projected onto random linear combinations of the pixels in the image.
Each linear combination only requires the measurement of a single
scalar value, i.e., a single CCD.
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Single Pixel Camera

from http://dsp.rice.edu/cscamera

RG McClarren (TAMU) NC State Seminar Dec 2016 2016-12-01 12 / 59

http://dsp.rice.edu/cscamera


Single Pixel Camera

In the case of the single pixel camera, each row of the measurement
matrix A is a random string of zeros and ones of length N.

The vector b is the sum of the pixels that are reflected to the detector
by the mirror.

In this case we find the solution to the system Ax = b through the
optimization problem

minimizeTV(x) subject to‖Ax−b‖2 ≤ ε,

where the total variation (TV) of an image is the sum of the squares
of the forward difference in the horizontal and vertical directions for
each pixel (i.e., how much does the image change from pixel to pixel).

This problem will have a unique solution, that minimizes the
reconstruction error (the second term) and the total variation in the
image.

Other optimization problems are possible, but for images, minimizing
the TV norm is reasonable.
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Single Pixel Camera Experimental Results 4

(a) (b) (c)

Fig. 2. Single-pixel photo album. (a) 256 × 256 conventional image of a black-and-white R. (b) Single-
pixel camera reconstructed image fromM = 1300 random measurements (50× sub-Nyquist). (c) 256 × 256
pixel color reconstruction of a printout of the Mandrill test image imaged in a low-light setting using a single
photomultiplier tube sensor, RGB color filters, andM = 6500 random measurements.

that the design inherits from the CS theory include its universality, robustness, and progressivity.

The single-pixel design falls into the class of multiplex cameras [8]. The baseline standard

for multiplexing is classical raster scanning, where the test functions {φm} are a sequence of delta

functions δ[n − m] that turn on each mirror in turn. As we will see below, there are substantial

advantages to operating in a CS rather than raster scan mode, including fewer total measurements

(M for CS rather than N for raster scan) and significantly reduced dark noise.

Image acquisition examples

Figure 2 (a) and (b) illustrates a target object (a black-and-white printout of an “R”) x and

reconstructed image x̂ taken by the single-pixel camera prototype in Fig. 1 using N = 256×256

and M = N/50 [5]. Fig. 2(c) illustrates an N = 256 × 256 color single-pixel photograph of

a printout of the Mandrill test image taken under low-light conditions using RGB color filters

and a photomultiplier tube with M = N/10. In both cases, the images were reconstructed using

Total Variation minimization, which is closely related to wavelet coefficient ℓ1 minimization [2].

Structured illumination configuration

In a reciprocal configuration to that in Fig. 1, we can illuminate the scene using a projector

displaying a sequence of random patterns {φm} and collect the reflected light using a single

lens and photodetector. Such a “structured illumination” setup has advantages in applications

where we can control the light source. In particular, there are intriguing possible combinations

of single-pixel imaging with techniques such as 3D imaging and dual photography [9].
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Fig. 2. Single-pixel photo album. (a) 256 × 256 conventional image of a black-and-white R. (b) Single-
pixel camera reconstructed image fromM = 1300 random measurements (50× sub-Nyquist). (c) 256 × 256
pixel color reconstruction of a printout of the Mandrill test image imaged in a low-light setting using a single
photomultiplier tube sensor, RGB color filters, andM = 6500 random measurements.

that the design inherits from the CS theory include its universality, robustness, and progressivity.

The single-pixel design falls into the class of multiplex cameras [8]. The baseline standard

for multiplexing is classical raster scanning, where the test functions {φm} are a sequence of delta

functions δ[n − m] that turn on each mirror in turn. As we will see below, there are substantial

advantages to operating in a CS rather than raster scan mode, including fewer total measurements

(M for CS rather than N for raster scan) and significantly reduced dark noise.

Image acquisition examples

Figure 2 (a) and (b) illustrates a target object (a black-and-white printout of an “R”) x and

reconstructed image x̂ taken by the single-pixel camera prototype in Fig. 1 using N = 256×256

and M = N/50 [5]. Fig. 2(c) illustrates an N = 256 × 256 color single-pixel photograph of

a printout of the Mandrill test image taken under low-light conditions using RGB color filters

and a photomultiplier tube with M = N/10. In both cases, the images were reconstructed using

Total Variation minimization, which is closely related to wavelet coefficient ℓ1 minimization [2].

Structured illumination configuration

In a reciprocal configuration to that in Fig. 1, we can illuminate the scene using a projector

displaying a sequence of random patterns {φm} and collect the reflected light using a single

lens and photodetector. Such a “structured illumination” setup has advantages in applications

where we can control the light source. In particular, there are intriguing possible combinations

of single-pixel imaging with techniques such as 3D imaging and dual photography [9].

Left: Original 256 x 256 image, Right: Reconstruction from 1500
single-pixel samples (1/50)
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Single Pixel Camera

The actual matrix A does not need to be stored (just the random
number seed used to generate it).

The signal is encrypted because one needs to know b and A to
determine the image.

Trades computation for memory: the b vector is much smaller that
the full image, but we must solve an optimization problem to recover
the image.
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Neutron Detection is Hard; Imaging is Harder

Neutrons, due to their lack of charge, are difficult to detect, especially
at high energies.

Typically to detect a neutron it must be slowed to low energy through
a series of scattering collisions.

For imaging purposes, this scattering process removes any information
about where the neutrons came from.

Moreover, due to the difficulty in capturing neutrons we would like
our detector to be as big as possible.

There is not a mirror for neutrons, so we have to be a bit more clever.
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Collimator plus Mask Equals Single Detector Camera

Consider a fast neutron collimator, (e.g., a borated polyethylene block
with holes drilled through it, densalloy, etc.),

With a means to block channels in the collimator, either by inserting
borated poly, or closing a flap or shutter, etc.

Behind the collimator we place a thermalizing medium, then a
thermal neutron detector.

By blocking a number of channels at random, recording the signal in
the detector and repeating, we can mimic the single pixel camera.

The upshot is that we can image with neutrons of any energy, using
only a single detector.
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Simulation results

We consider an active interrogation
problema of a cargo container with
14.1 MeV neutrons.

We have a collimator that is a 3 m

square and has 64×64 = 4,096

openings. The collimator is made

of densalloy and each has a

closable flap of thickness 2 cm.

a
Eberhardt, J., S. Rainey, R. Stevens, B. Sowerby, J.

Tickner, Fast neutron radiography scanner for the detection of
contraband in air cargo containers, Applied Radiation and
Isotopes 63 (2) (2005) 179188.

Introduction
Theory/Design

Results
Conclusion and future work

Case 3: Sample ULD contents

The regular view
distinguishes some materials
but has no contrast in others
Containers with low density
gaps show good contrast
The log view is able to pick up
features not seen otherwise

Shows the plutonium sphere
Can barely make out TNT

The MCNP detector results of the ULD test problem, which are used
for sampling.

The MCNP detector results of the ULD test problem in logarithmic
view, which are used for sampling.

Yuriy Ayzman Single Pixel Neutron Camera
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Simulation results

The logarithmic view of the reconstructions for the active interrogation
problem using (a) 1%, (b) 5%, (c) 10%, (d) 20%, (e) 30%, (f) 40%, (g)
50%, and (h) 70% of the pixel count
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Single-Detector Neutron Camera

Simulation results are promising, but building a bench-top prototype
is an important next step.

The time needed to acquire the images is on open question and will
depend on several factors.

Can this technology be combined with position-sensitive neutron
detectors?
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Disjoint Monte Carlo Tallies

One of the benefits of using the Monte Carlo method for particle
transport simulations is that it uses simulated particles as analogs of
the real particles in a system.

As such we can create an analog of the single pixel camera inside of a
Monte Carlo simulation to

Reduce the memory required to tally quantities, and
Reduce statistical noise in the simulation.

The idea is to store random linear combinations of quantities
estimated via Monte Carlo rather than a single value for each spatial
location.
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Demonstration of Disjoint Monte Carlo Tallies

If we want the solution on the
grid on the right, we need a
tally for each voxel.

Instead, we could define a series
of disjoint tallies that take linear
combinations of the tallies for
each voxel.

If we need fewer disjoint tallies
than the number of voxels, we
can reduce the memory
footprint for the calculation.

Purpose Theory Problem #1 Results Problem #2 Results Conclusions

ICTT 2015 - 24th International Conference on Transport Theory 7

Random Disjoint Tallies Example

� Consider a 4x4 mesh tally of particle flux
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Demonstration of Disjoint Monte Carlo Tallies

If we want the solution on the
grid on the right, we need a
tally for each voxel.

Instead, we could define a series
of disjoint tallies that take linear
combinations of the tallies for
each voxel.

If we need fewer disjoint tallies
than the number of voxels, we
can reduce the memory
footprint for the calculation.

Purpose Theory Problem #1 Results Problem #2 Results Conclusions

ICTT 2015 - 24th International Conference on Transport Theory 8

Step 1: Label Unit Cells
� Each unit cell labeled 1 is a subset of disjoint cell #1 

• Any particles traversing disjoint cell #1 contribute to disjoint tally #1

� Same applies to disjoint tallies #2 and #3
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Demonstration of Disjoint Monte Carlo Tallies
Purpose Theory Problem #1 Results Problem #2 Results Conclusions

ICTT 2015 - 24th International Conference on Transport Theory 9

Step 2: Simulate Particles and Store 𝒃

Tally 2

Tally 1

Tally 3

�  𝑥 is size 16

� 𝑏 is size 3

�  𝐴 is size 16x3

 𝐴  𝑥 − 𝑏 2 ≤ 𝜖
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Reactor Calculation with Disjoint Tallies

As a test we look at a 2-D grid
of the fast scalar flux in the
Texas A&M TRIGA reactor.

The grid has 1024×1024 voxels.

Criticality calculation with 2,500
fission cycles and 200,000
neutrons per cycle.
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Reactor Calculation with Disjoint Tallies: Details

To make the reconstruction more simple, we divide the problem into
blocks, and constrict the disjoint tallies to belong to only a single
block.

In the results that follow, the blocks are of size 64×64.

This makes the optimization problem we have to solve smaller, but we
have to solve more of them.

Gives the user the ability to reconstruct the solution only in places of
interest.

We are trading calculation time for memory.
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Memory means Power

Texas A&M Nuclear Engineering

1876 

R. G. McClarren

What will Exascale Data Analysis Look Like 

•  I don’t know for sure. 

•  The data generated will be large and generated with velocity. 

•  It is very likely that it will be difficult, if not impossible, to 
⇒ Transmit the data 
⇒ Compute complex functions, transformations to the data 
⇒ Store the data 

•  Part of this is due to power 
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 Exascale Computing Technology Challenges 3 

 

Fig. 2. Energy cost of data movement relative to the cost of a flop for current and 2018 systems 
(the 2018 estimate is conservative and doesn’t account for the development of an advanced 
memory part). The biggest change in energy cost is moving data off-chip.  Therefore, future 
programming environments must support the ability of algorithms and applications to exploit 
locality which will, in turn, be necessary to achieve performance and energy efficiency. 

In an ideal world, we would design systems that would never subject applications 
to any performance constraints. However, component costs and power usage force 
system architects to consider difficult trade-offs that balance the actual cost of system 
components against their effect on application performance.  For example, if doubling 
floating point execution rate nets a 10% gain in overall application performance, but 
only increases system costs by 5%, then it is a net benefit despite degrading system 
balance. It is important to have an open dialog to fully understand the cost impacts of 
key design choices so that they can be evaluated against their benefit to the applica-
tion space. 

Cost Functions 

The Cost of Power: Even with the least expensive power available in the US, the cost 
of electricity to power supercomputing systems is a substantial part of the Total Cost 
of Ownership (TCO).  When burdened with cooling and power distribution over-
heads, even the least expensive power in the U.S. (< 5cents/KWH) ultimately costs 
$1M per Megawatt per year to operate a system.  To keep the TCO manageable 
DOE’s Exascale Initiative Steering Committee adopted 20MW as the upper limit for a 
reasonable system design [1,2].  This limit is movable, but at great cost and design 
risk.  

 
The Cost of a FLOP: Floating point used to be the most costly component of a sys-
tem both in terms of design cost and power.  However, today, FPUs consume a very 
small fraction of the area of a modern chip design and a much smaller fraction of the 

Shalf, J., Dosanjh, S., & Morrison, J. (2011). 
Exascale Computing Technology Challenges.  
Lecture Notes in Computer Science (Vol. 6449, 
pp. 1–25) 

1
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Reactor Calculation with Disjoint Tallies
Purpose Theory Problem #1 Results Problem #2 Results Conclusions

Compressed Sensing Framework for MC Tallies

ICTT 2015 - 24th International Conference on Transport Theory 2

1. Run MC simulation

2. Tally the neutron flux 
using disjoint tallies

• Store each tally as 
a single number!

3. Reconstruct a 2D map 
of the neutron flux 

…
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Reactor Calculation with Disjoint Tallies

Original 10% of Memory Difference
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Reactor Calculation with Disjoint Tallies: Noise Reduction

We found that using disjoint tallies plus reconstruction can give lower
statistical noise than standard tallies.

This is likely due to the form of the reconstruction problem:

minimizeTV(x) subject to‖Ax−b‖2 ≤ ε.

If the measurement vector is noisy, the reconstruction problem only
tries to match it up to ε. Therefore, it can smooth out the noise.

To show this we run the problem again but with 100x fewer histories
and compare the results with the fine resolution calculation.
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Reactor Calculation with Disjoint Tallies

Original 2D mesh 
tally of flux in NSCR 
(left) and statistical 
error (right)

Compressed to 10% 
of computer memory 
(left) and statistical 
error (right)
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Sensitivity Estimation

When we perform simulations, not all the inputs to the simulation are
known exactly, (e.g., cross-sections).

These cases we are often interested in the sensitivity of our
calculation to the input parameters.

For instance, if we compute the reactivity ρ, we can express this
quantity as a first-order Taylor series

ρ(x) = ρ(x̄) +
∂ρ

∂x1
δx1 + · · ·+ ∂ρ

∂xp
δxp + ε.

The sensitivity to a given parameter is the partial derivative with
respect to that parameter. Using finite differences this takes p+ 1
runs of the code to compute.

In practice, many of these sensitivities have a small magnitude, even
zero.

Goal: Estimate the sensitivities with fewer code evaluations than
finite differences by exploiting the sparsity of the sensitivities.
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Idea: Treat Sensitivity Estimation as a Regression Problem

If we run the code n times we will have a data set of the form

ρ1 = ρ(x̄) +
∂ρ

∂x1
δx11 + · · ·+ ∂ρ

∂xp
δxp1 + ε,

ρ2 = ρ(x̄) +
∂ρ

∂x1
δx12 + · · ·+ ∂ρ

∂xp
δxp2,+ε

...

ρn = ρ(x̄) +
∂ρ

∂x1
δx1n + · · ·+ ∂ρ

∂xp
δxpn + ε.

We could estimate the sensitivities using ordinary least squares.
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General Regression Problem

The general regression problem is written as

Y = Xβ + ε

Y: data (outcomes), X: input matrix, β : regression coefficients,
ε: errors

Y =




Y1
Y2

.

.

.
Yn



, X=




1 X11 X12 · · · X1p
1 X21 X22 · · · X2p

.

.

.

.

.

.

.

.

.
. . .

.

.

.
1 Xn1 Xn2 · · · Xnp



, β =




β0
β1

.

.

.
βp




and ε =




ε1
ε2

.

.

.
εn



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Problems with Ordinary Least Squares

The direct “solve” by ordinary least squares (OLS)

β ≈ (XTX)−1XTY.

Several common situations can make OLS ill-conditioned or ill-posed:
n < p: Number of samples is smaller than number of parameters
X contains interdependencies, i.e., multi-collinearity, if high order terms
are included
In either case, XTX is rank deficient and not invertible
Alternative approaches like the pseudo-inverse can give unreasonable
results as has been demonstrated in previous work.

OLS is the solution to the minimization problem

β = argmin
β

‖Y−Xβ‖22.

However, due to sparsity in the sensitivities (many are near zero), we
can solve this using an optimization problem (just like in the image
reconstruction).
This is known as regularized regression.
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Modified Minimization Problem

What we want to do is change the functional we minimize to include
a penalty based on the magnitude of the β ’s.

This makes sense because we want to find a fit that has many small
values for β .

Consider the problem of estimating the coefficients in the problem

y = a+bx + ε,

by minimizing

∑
i

ε
2
i + (|a|p + |b|p)1/p .

The curve of equal value of (|a|p + |b|p)1/p is a circle for p = 2 and a
diamond for p = 1.

The curves of equal value for |ε| are ellipses.

Using an `1 penalty will favor making one of the coefficients smaller.
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The magic of the `1 norm

from https://tianyizhou.wordpress.com/2010/08/23/compressed-sensing-review-1-reconstruction-algorithms/
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Previous UQ Work

In the nuclear field, Watanabe et al. used L1 minimization to
estimate first-order sensitivity coefficients for a pincell burnup
problem with 5000 parameters. They needed 500 simulations to
estimate the parameters efficiently. These results did not leverage a
regression framework, which could lead to improvement.

For climate uncertainty analysis, LLNL researchers have used
lasso-type approaches to estimate polynomial chaos expansion
coefficients.

In this presentation I’ll present the results of a bake-off to compare
different approaches to estimate second-order sensitivity coefficients,
i.e., the quadratic and interaction terms neglected in a first-order
sensitivity analysis.

RG McClarren (TAMU) NC State Seminar Dec 2016 2016-12-01 41 / 59



Regularized Regression Approaches

In these methods we explicitly change the minimization problem.

Lasso regression (OLS plus an `1 penalty based on size of β ’s):

β = argmin
β

{‖Y−Xβ‖22 + λ1‖β‖1} (1)

Ridge regression (OLS plus an `2 penalty based on size of β ’s):

β = argmin
β

{‖Y−Xβ‖22 + λ2‖β‖22} (2)

Elastic net regression (Combination of Lasso and Ridge):

β = argmin
β

{
‖Y−Xβ‖22 + αλ1‖β‖1 + (1−α)λ2‖β‖22

}
(3)

Dantzig selector (Minimize `∞ error in fit with `1 penalty on β ’s):

β = argmin
β

{‖βT (Y−Xβ )‖∞ + λ1‖β‖1} (4)
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Non-Bayesian Regularization Regression Approaches
(cont’d)

Non-Bayesian L-2 norm constraint put too much strength on limiting
parameters with higher magnitudes: over-penalization
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Problem settings

Lattice of TRIGA fuels pin modeled with MCNP

QoI: keff
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Problem descriptions

There are 299 sensitivity coefficients taken into account in this problem:

23 input parameters:

6 geometric parameters: e.g. r-fuel (fuel radius)
17 material parameters: e.g. ρ−Zr (Zr rod mass density)

253 pairwise interactions (23 choose 2)

23 quadratic terms

The aim is to investigate the sensitivity of the criticality to the parameters,
especially the second order terms. The model is:

δk

k
≈

23

∑
i=1

ci

(
δxi
xi

)
+

22

∑
i=1

23

∑
j=i+1

cij

(
δxi
xi

)(
δxj
xj

)
+

23

∑
i=1

cii

(
δxi
xi

)2

(5)

where ci , cij and cii , i = 1, · · · ,23, j 6= i , are the first order, interactive and
quadratic sensitivity coefficients, respectively.
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Reference data

We are going to compare reference sensitivity coefficients to the
coefficients computed by various regularized regression techniques
using many few code runs (cases).

The reference coefficients are computed using 1058 cases.

We need 46 total simulations for the linear and quadratic parameters
1012 simulations are needed for the 253 interactions (4 simulations for
each)

The goal of this research is to see if regularized regression techniques
can give coefficient estimates close to the references using many
fewer simulation runs than the 1058 cases.
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Coefficient estimation

We wish to estimate the numeric value of the coefficients and compare
with the reference result.

Each parameter is assigned an ID

IDs from 24 to 276: interactive coefficients

IDs from 277 to 299: quadratic coefficients

The results that follow all use 299 samples, about 28% of those used in
the reference calculation.
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Coefficient Estimation: Interactions
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Coefficient Estimation: Quadratic

Parameter IDs
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Problems with Standard Numerical Representations

In numerical methods we often represent a solution as an expansion in
basis functions:

u(x)≈
N

∑
`=1

c`b`(x).

The standard way of estimating coefficients is by solving the
least-squares optimization problem:

minimize
∫ (

u(x)−
N

∑
`=1

c`b`(x)

)2

dx .

The solution to this problem is

c` =
∫

u(x)b`(x)dx .

These types of approximations arise in finite element methods, and
the Pn method for radiation transport.

These can have the same shortcomings as least-squares.
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Example: The Line Source Problem 2

(a) analytic (b) Monte-Carlo

(c) P1 (d) P5
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Transport of a beam
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Introduction Nonlinear Filtered PN Relaxed L1 (RL1) Contiguous-Discontinuous LS Conclusions

Negative examples

25: L2 in void 26: L2 in absorber
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Change the Optimization Problem

Instead of solving the least-squares optimization problem we could
regularize it with a penalty:

minimize
∫ (

u(x)−
N

∑
`=1

c`b`(x)

)2

dx +
N

∑
`=1

c2` .

This solution filters out high frequency oscillations and leads to a
filtered Pn method.

Or, we could solve an `1 minimization problem:

minimize
∫ ∣∣∣∣∣u(x)−

N

∑
`=1

c`b`(x)

∣∣∣∣∣ dx .

The absolute value is easy to work with, but we can approximate it as

|a| ≈
√
a2 + θ , 0 < θ � 1.

This leads to a regularized L1 finite element method.
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The Line Source Problem Again
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(b) P11-Lineout
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(d) FP11-Lineout
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Transport of a beam
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Introduction Nonlinear Filtered PN Relaxed L1 (RL1) Contiguous-Discontinuous LS Conclusions

Positivity Examples and Relaxation Strength

27: Absorber problem 28: Void 29: Line-outs with dif. theta in
void

It’s quite robust on varying θ

Maximum pointwise residuals are around 0.5, 0.05 gives plausible results

For general problems, take θ = 0.1 ∼ 0.01|R|max
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Summaries

The unifying theme in this talk is that we can use optimization to
change the way that we approach problems of detection, simulation,
and analysis.

Can enable a single detector to be a camera: results exist for optical
images and simulations suggest that it is possible for neutrons.

Can improve simulation memory footprint and accuracy.
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Thank you!

Compressed Sensing for Nuclear Engineering
NC State Nuclear Engineering Seminar

Ryan G. McClarren

Texas A&M University
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