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Section 1

@ Introduction
@ Background
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What is this talk about?

@ In engineering and science we often use approximations,
reconstructions, and representations that have nice properties such as

e Linearity
e Minimizing the error in the L, norm

@ This talk covers the benefits of relaxing these nice properties, to
enable new technologies and improve simulations.

@ Much of the technology we need to get these improvements can be
explained in terms of compressed sensing.
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What is compressed sensing?

@ Compressed sensing is an approach to obtaining, reconstructing, and
reducing signals.

@ Usually requires solving an underdetermined linear system augmented
with a cost function to be optimized.
@ To understand how compressed sensing works we will need to
understand the following concepts:
o Representation: How do we express a signal in terms of a discrete set
of functions?
e Measurement: How do we acquire the signal?
@ We will use the example of a grayscale image to demonstrate these
concepts.
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Signal Representation

@ The image at right can be
stored as 1600 x 1200 ~ 2 x 10°
numbers between 0 and 1.

@ We could think of this as a long
vector of 2 million numbers.

@ Other representations are
possible, and some of them
could exactly match the image
data using fewer numbers.

@ This is possible because images 1000
have structure in them: they are
not random noise.

1000 1200 1400 1600

@ For instance, if one pixel is dark,
the pixels near it are likely to be
dark as well.
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Signal Representation

@ This image of a checkerboard has
millions of pixels, but we can
represent it using only 13 numbers.

@ We say that we can represent this
image in a basis set where the basis
is the 25 different functions that
are 1 in a single square and 0
everywhere else:

25
z= Z w;ib(x,y).
i=1

@ Because only 13 of these functions

will have nonzero weights, w;, we
say that the image is sparse in this
basis.
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Measuring a Signal

@ In general we can an image x to the measurement b via the linear
system
Ax =b.

@ The measurement matrix A represents how the image maps onto the
measurement.

@ In your phone there is a CCD element for every pixel in the image. In
such an instance x =b, and A is the identity matrix.

@ There are other possible measurement matrices: consider a single,
large CCD where we block all but a single pixel, and record the value
from the single CCD, and then repeatedly move the unblocked pixel
N times.

@ This measurement matrix A is also an identity matrix.
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Measuring a Signal

@ What we would like to do is take M measurements of an image of N
pixels with M < N.

@ This will make the number of entries in b equal to M, and make A
rectangular with size M x N.

@ The system Ax =b no longer has a unique solution.

@ To come up with a unique solution we have to constrain the problem
somehow.

@ Before we talk about constraining the problem, we will show how this
has been done in practice.
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Single Pixel Camera

@ This is the idea behind the single-pixel camera: sample the image
projected onto random linear combinations of the pixels in the image.

Each linear combination only requires the measurement of a single
scalar value, i.e., a single CCD.
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Single Pixel Camera

DMD+ALP Board

Low-cost, fast, sensitive
optical detection

Kmtr

Compressed, encoded
image data sent via RF
Image encoded by DMD for reconstruction
and random basis

Rovr Photodlode circult

from http://dsp.rice.edu/cscamera
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Single Pixel Camera

In the case of the single pixel camera, each row of the measurement
matrix A is a random string of zeros and ones of length N.

The vector b is the sum of the pixels that are reflected to the detector
by the mirror.

In this case we find the solution to the system Ax = b through the
optimization problem

minimize TV(x) subject to||[Ax —b|], <&,

where the total variation (TV) of an image is the sum of the squares
of the forward difference in the horizontal and vertical directions for
each pixel (i.e., how much does the image change from pixel to pixel).
This problem will have a unique solution, that minimizes the
reconstruction error (the second term) and the total variation in the
image.

Other optimization problems are possible, but for images, minimizing
the TV norm is reasonable.
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Single Pixel Camera Experimental Results

Left: Original 256 x 256 image, Right: Reconstruction from 1500
single-pixel samples (1/50)
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Single Pixel Camera

@ The actual matrix A does not need to be stored (just the random
number seed used to generate it).

@ The signal is encrypted because one needs to know b and A to
determine the image.

@ Trades computation for memory: the b vector is much smaller that
the full image, but we must solve an optimization problem to recover
the image.
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Section 2

© The Single Detector Neutron Camera
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Neutron Detection is Hard; Imaging is Harder

@ Neutrons, due to their lack of charge, are difficult to detect, especially
at high energies.

@ Typically to detect a neutron it must be slowed to low energy through
a series of scattering collisions.

@ For imaging purposes, this scattering process removes any information
about where the neutrons came from.

@ Moreover, due to the difficulty in capturing neutrons we would like
our detector to be as big as possible.

@ There is not a mirror for neutrons, so we have to be a bit more clever.
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Collimator plus Mask Equals Single Detector Camera

e Consider a fast neutron collimator, (e.g., a borated polyethylene block
with holes drilled through it, densalloy, etc.),

@ With a means to block channels in the collimator, either by inserting
borated poly, or closing a flap or shutter, etc.

@ Behind the collimator we place a thermalizing medium, then a
thermal neutron detector.

@ By blocking a number of channels at random, recording the signal in
the detector and repeating, we can mimic the single pixel camera.

@ The upshot is that we can image with neutrons of any energy, using
only a single detector.
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Simulation results

@ We consider an active interrogation
problem? of a cargo container with
14.1 MeV neutrons.

@ We have a collimator that is a 3 m
square and has 64 x 64 = 4,096
openings. The collimator is made

of densalloy and each has a
closable flap of thickness 2 cm.

aEberhardt, J., S. Rainey, R. Stevens, B. Sowerby, J.
Tickner, Fast neutron radiography scanner for the detection of
contraband in air cargo containers, Applied Radiation and
Isotopes 63 (2) (2005) 179188. 100
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Simulation results

Qii

(b) c) (d)

'. i s

(¢) () (8) (h)

The logarithmic view of the reconstructions for the active interrogation
problem using (a) 1%, (b) 5%, (c) 10%, (d) 20%, (e) 30%, (f) 40%, (g)
50%, and (h) 70% of the pixel count
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Single-Detector Neutron Camera

@ Simulation results are promising, but building a bench-top prototype
is an important next step.

@ The time needed to acquire the images is on open question and will
depend on several factors.

@ Can this technology be combined with position-sensitive neutron
detectors?
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Section 3

© Disjoint Monte Carlo Tallies
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Disjoint Monte Carlo Tallies

@ One of the benefits of using the Monte Carlo method for particle
transport simulations is that it uses simulated particles as analogs of
the real particles in a system.

@ As such we can create an analog of the single pixel camera inside of a
Monte Carlo simulation to

e Reduce the memory required to tally quantities, and
o Reduce statistical noise in the simulation.

@ The idea is to store random linear combinations of quantities
estimated via Monte Carlo rather than a single value for each spatial
location.

RG McClarren (TAMU) NC State Seminar Dec 2016 2016-12-01 23 /59



Demonstration of Disjoint Monte Carlo Tallies

o If we want the solution on the
grid on the right, we need a
tally for each voxel.

@ Instead, we could define a series
of disjoint tallies that take linear
combinations of the tallies for
each voxel.

o If we need fewer disjoint tallies
than the number of voxels, we
can reduce the memory
footprint for the calculation.
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Demonstration of Disjoint Monte Carlo Tallies

o If we want the solution on the
grid on the right, we need a 123 3 2 p)
tally for each voxel. - -

@ Instead, we could define a series

p |
of disjoint tallies that take linear 1 1 J
combinations of the tallies for
each voxel.
2 2 2

o If we need fewer disjoint tallies
than the number of voxels, we
can reduce the memory 12 1 2
footprint for the calculation.
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Demonstration of Disjoint Monte Carlo Tallies

Tally 1

e
_ T

Tally 3

—

123 7

N
=AY

Tall

A L
/

RG McClarren (TAMU) NC State Seminar Dec 2016 2016-12-01 26 / 59



Reactor Calculation with Disjoint Tallies

@ As a test we look at a 2-D grid
of the fast scalar flux in the
Texas A&M TRIGA reactor.

@ The grid has 1024 x 1024 voxels.

o Criticality calculation with 2,500
fission cycles and 200,000
neutrons per cycle.
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Reactor Calculation with Disjoint Tallies: Details

@ To make the reconstruction more simple, we divide the problem into
blocks, and constrict the disjoint tallies to belong to only a single
block.

@ In the results that follow, the blocks are of size 64 x 64.

@ This makes the optimization problem we have to solve smaller, but we
have to solve more of them.

@ Gives the user the ability to reconstruct the solution only in places of
interest.

@ We are trading calculation time for memory.
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Memory means Power

Intra-node/SMP Inter-node/MPI

e Communication Communication
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Reactor Calculation with Disjoint Tallies

1. Run MC simulation

2. Tally the neutron flux
using disjoint tallies

Store each tally as
a single number!

3. Reconstruct a 2D map
of the neutron flux

ICTT 2015 - 24th International Conference on Transport Theory
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Reactor Calculation with Disjoint Tallies

Original 10% of Memory Difference
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Reactor Calculation with Disjoint Tallies: Noise Reduction

@ We found that using disjoint tallies plus reconstruction can give lower
statistical noise than standard tallies.

@ This is likely due to the form of the reconstruction problem:
minimize TV(x) subject to||[Ax — b, <e.

o If the measurement vector is noisy, the reconstruction problem only
tries to match it up to €. Therefore, it can smooth out the noise.

@ To show this we run the problem again but with 100x fewer histories
and compare the results with the fine resolution calculation.
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Reactor Calculation with Disjoint Tallies

Original 2D mesh
tally of flux in NSCR
(left) and statistical
error (right)

Compressed to 10%
of computer memory
(left) and statistical
error (right)
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@ Sparse Estimation of Sensitivities
@ Problem settings
@ Coefficient Estimation
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Sensitivity Estimation

@ When we perform simulations, not all the inputs to the simulation are
known exactly, (e.g., cross-sections).

@ These cases we are often interested in the sensitivity of our
calculation to the input parameters.

@ For instance, if we compute the reactivity p, we can express this
quantity as a first-order Taylor series

p(x)=p(x)+ 5515X1 +- 5)25xp +e.

@ The sensitivity to a given parameter is the partial derivative with
respect to that parameter. Using finite differences this takes p+1
runs of the code to compute.

@ In practice, many of these sensitivities have a small magnitude, even
zero.

@ Goal: Estimate the sensitivities with fewer code evaluations than
finite differences by exploiting the sparsity of the sensitivities.
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|dea: Treat Sensitivity Estimation as a Regression Problem

@ If we run the code n times we will have a data set of the form

B ap ap
p1 = p(x) + 87)(16)(11 +-+ TXP5XP1 + €,

_ ap ap
p2=p(X)+ a—xl&qz +- a—xp5xpz,+s

@ We could estimate the sensitivities using ordinary least squares.
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General Regression Problem

@ The general regression problem is written as
Y=XB+¢

@ Y: data (outcomes), X: input matrix, fB: regression coefficients,

E: errors
o
Y1 1 X X2 o Xpp Bo £
Y2 1 X Xn o Xyp B &
vy=| . X= g=| . and &=
Yo 1 Xp X2 o Xnp Bp €n
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Problems with Ordinary Least Squares

@ The direct “solve” by ordinary least squares (OLS)
B~ (XTX)IXTy.
@ Several common situations can make OLS ill-conditioned or ill-posed:
e n < p: Number of samples is smaller than number of parameters
e X contains interdependencies, i.e., multi-collinearity, if high order terms
are included
o In either case, XTX is rank deficient and not invertible

e Alternative approaches like the pseudo-inverse can give unreasonable
results as has been demonstrated in previous work.

@ OLS is the solution to the minimization problem

B = argmin Y — XB|3.
B

@ However, due to sparsity in the sensitivities (many are near zero), we
can solve this using an optimization problem (just like in the image
reconstruction).

@ This is known as regularized regression.
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Modified Minimization Problem

@ What we want to do is change the functional we minimize to include
a penalty based on the magnitude of the 's.

@ This makes sense because we want to find a fit that has many small
values for f3.

o Consider the problem of estimating the coefficients in the problem
y=a+bx+eg,

by minimizing
1
Y&+ (lal°+ |blP)P.
1

e The curve of equal value of (|a|?+|b|P)*/? is a circle for p=2 and a
diamond for p = 1.

@ The curves of equal value for || are ellipses.

@ Using an /1 penalty will favor making one of the coefficients smaller.
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The magic of the ¢; norm

[/l [N

from https://tianyizhou.wordpress.com/2010/08/23/compressed-sensing-review-1-reconstruction-algorithms/
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Previous UQ Work

@ In the nuclear field, Watanabe et al. used L1 minimization to
estimate first-order sensitivity coefficients for a pincell burnup
problem with 5000 parameters. They needed 500 simulations to
estimate the parameters efficiently. These results did not leverage a
regression framework, which could lead to improvement.

@ For climate uncertainty analysis, LLNL researchers have used
lasso-type approaches to estimate polynomial chaos expansion
coefficients.

@ In this presentation I'll present the results of a bake-off to compare
different approaches to estimate second-order sensitivity coefficients,
i.e., the quadratic and interaction terms neglected in a first-order
sensitivity analysis.
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Regularized Regression Approaches

In these methods we explicitly change the minimization problem.
@ Lasso regression (OLS plus an ¢; penalty based on size of B's):

ﬁ=argl;nin{llY—XB||§+/11III3H1} (1)

e Ridge regression (OLS plus an ¢, penalty based on size of 's):

ﬁ=arg/;nin{llY—XBII§+/12IIBH§} (2)

e Elastic net regression (Combination of Lasso and Ridge):

B= argl;nin {IY =XB3+ar Bl +(1 - )2 B3} (3)

e Dantzig selector (Minimize /. error in fit with /1 penalty on f's):

B =arg[;nin{HBT(Y—Xﬁ)llw+)»1\lﬁlh} (4)
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Non-Bayesian Regularization Regression Approaches

(cont'd)

@ Non-Bayesian L-2 norm constraint put too much strength on limiting
parameters with higher magnitudes: over-penalization
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Problem settings

Lattice of TRIGA fuels pin modeled with MCNP
e Qol: kefr
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Problem descriptions

There are 299 sensitivity coefficients taken into account in this problem:
@ 23 input parameters:

e 6 geometric parameters: e.g. r-fuel (fuel radius)
o 17 material parameters: e.g. p—Zr (Zr rod mass density)

@ 253 pairwise interactions (23 choose 2)
@ 23 quadratic terms

The aim is to investigate the sensitivity of the criticality to the parameters,
especially the second order terms. The model is:

FEe (U EEH(N)(5) B () @

Xi i=1j=i+1 Xi Xj i=1 i

where ¢;, ¢j and ¢ji,i =1,---,23,j # i, are the first order, interactive and
quadratic sensitivity coefficients, respectively.
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Reference data

@ We are going to compare reference sensitivity coefficients to the
coefficients computed by various regularized regression techniques
using many few code runs (cases).

@ The reference coefficients are computed using 1058 cases.

e We need 46 total simulations for the linear and quadratic parameters
o 1012 simulations are needed for the 253 interactions (4 simulations for
each)

@ The goal of this research is to see if regularized regression techniques
can give coefficient estimates close to the references using many
fewer simulation runs than the 1058 cases.
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Coefficient estimation

We wish to estimate the numeric value of the coefficients and compare
with the reference result.

@ Each parameter is assigned an ID
o IDs from 24 to 276: interactive coefficients
@ IDs from 277 to 299: quadratic coefficients

The results that follow all use 299 samples, about 28% of those used in
the reference calculation.
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Coefficient Estimation: Interactions
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Coef. Ridge
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Coefficient Estimation: Quadratic
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Section 5

© mproving Numerical Methods Using Optimization
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Problems with Standard Numerical Representations

@ In numerical methods we often represent a solution as an expansion in
basis functions:

N
u(x) =~ Z crby(x).
(=1

@ The standard way of estimating coefficients is by solving the
least-squares optimization problem:

2
N
minimize/ (u(x) -Y Cgbg(X)) dx.
(=1
@ The solution to this problem is

Cg:/U(X)bg(X) dx.

@ These types of approximations arise in finite element methods, and
the P,, method for radiation transport.
@ These can have the same shortcomings as least-squares.
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Example: The Line Source Problem 2

(a) analytic (b) Monte-Carlo
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Transport of a beam

ehi

~1.072e+00 phi

_1.027e+00
—0.8325

7925

0.555

05283
0.2775

02642
=-3.813e-02

=-2.936e-02

25: Ly in void 26: Ly in absorber
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Change the Optimization Problem

@ Instead of solving the least-squares optimization problem we could
regularize it with a penalty:

N 2 N
minimize / <u(x) - ; C/{bg(X)) dx + Z c?.
=1 =

=1
@ This solution filters out high frequency oscillations and leads to a
filtered P,, method.
@ Or, we could solve an #1 minimization problem:

minimize / dx.

N
u(x)— Z cebe(x)
(=1

@ The absolute value is easy to work with, but we can approximate it as

la| =~V a’+0, 0<oxl

@ This leads to a regularized L finite element method.
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The Line Source Problem Again
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Transport of a beam

phi
=1.000e+00
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Section 6

© Summary
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Summaries

@ The unifying theme in this talk is that we can use optimization to
change the way that we approach problems of detection, simulation,
and analysis.

@ Can enable a single detector to be a camera: results exist for optical
images and simulations suggest that it is possible for neutrons.

@ Can improve simulation memory footprint and accuracy.
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