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This work describes an extension of the Bayesian MARS
emulator to include gradient information, when available.

Most uncertainty quantification tasks boil down to: “Estimate the sensitivity
and/or variability in some quantity y = f (x) resulting from uncertainty or
variability in its dependencies.”

I Dimensionality of x and cost of f (·) may limit sampling density.

I Emulators (or response surfaces) “functionalize” the mapping y = f (x)
using a set of available samples, yi = f (xi), i = 1 . . .N.

I An effective emulator

1. is cheap to sample,
2. provides accurate estimates of y at untried inputs, and
3. gives an estimate of its own regression error.

How can we use ∇xf ?
Adjoint and/or automatic differentiation methods can possibly provide
gradient information about f (x). How can we use this information to improve
the effectiveness of our emulators?
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Inclusion of gradient information requires differentiation of
the emulator’s basis function.

Some examples:

1. Polynomial chaos: write the unknown as a multivariate polynomial
expansion in x,

y≈ P(x) = ∑
i

aiψi(x)

and solve for the ai’s. Solution techniques vary, but gradient information
is fairly straightforward to include.

2. Gaussian process regression: Model f (x) as a multivariate random field
specified by a mean and covariance function. Inclusion of gradient
information requires differentiation of the mean and covariance function
(Lockwood, Anitescu – Summer 2011 ANS meeting).

We apply the extension to the Multivariate Adaptive Regression Splines
(MARS) emulator.



The gradient of a BMARS basis function is another BMARS
function.

The gradient in direction xn is:

∇xnB(x) =
K

∑
k=1

ok,nβk

I

∏
l=0

(xl− tk,l)
o∗k,l
+

where

o∗k,l =
{

ok,l−1 l = n
ok,l l 6= n

.

Thus, we can use the same machinery to evaluate B and ∇B. Our
regression task is now to minimize the error in the fit:

B(xi)≈ f (xi),

∇xB(xi)≈ ∇xf (xi).



The regression coefficients are solved for using a Bayesian
least-squares approach.

The least squares problem is written as an over-constrained linear
system: (

ATA+ τ
2I
)

β = ATb,

A ∈ RP×K , b ∈ RP, P > K, τ ∈ R.

where

I the first I rows of matrix A contain the K unscaled splines B̂
evaluated at each xi;

I the next N blocks of I rows contain the unscaled gradients,
∂B̂
∂xn

,

evaluated at each xi;

I b contains the function and gradient response data;

I β are the regression coefficients; and

I τ is a Bayesian precision parameter.



The regression coefficients are solved for using a Bayesian
least-squares approach, ctd. . .

In explicit form (for n = 1 . . .N):

A =



B̂1(x1) B̂2(x1) . . . B̂K(x1)
B̂1(x2) B̂2(x2) . . . B̂K(x2)

...
...

. . .
...

B̂1(xI) B̂2(xI) . . . B̂K(xI)
dB̂1

dxn
(x1)

dB̂2

dxn
(x1) . . .

dB̂K

dxn
(x1)

...
...

. . .
...

dB̂1

dxn
(xI)

dB̂2

dxn
(xI) . . .

dB̂K

dxn
(xI)


, b =



f (x1)
f (x2)

...
f (xI)

∇xn f (x1)
...

∇xn f (xI)





We first test the algorithm on a set of test functions proposed
by the original BMARS authors (Denison, et. al., 1998).

“Harmonic” Function “Additive” Function
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f (x1,x2) = 42.659
[

0.1+ x̂1(
0.05+ x̂4

1−10x̂2
1x̂2

2 +5x̂4
2

)]
,

x̂n = xn− .5

f (x1,x2) =1.3356
{

1.5(1− x1)

+exp(2x1−1)sin
(

3π(x1− .6)2
)

+exp(3(x2− .5))sin
(

4π(x2− .9)2
)}



Using gradient information decreases regression error.
Our regression metric is the Fraction of Variance Unexplained (FVU):

FVU =
∑i (B(xi)− f (xi))

2

∑i
(
f (xi)− f̄

)2 ,

Case (# Samples) Training Data Testing Data

Harmonic BMARS gBMARS BMARS gBMARS
52 8.761e-01 3.254e-02 9.821e-01 1.176e-01

102 2.464e-03 1.179e-03 8.407e-02 3.221e-03
152 1.926e-03 3.683e-04 3.594e-03 5.553e-04

Additive BMARS gBMARS BMARS gBMARS
52 1.020e-03 1.112e-03 3.432e-01 4.009e-02

102 6.644e-04 8.399e-04 1.297e-02 3.696e-03
152 7.373e-04 4.269e-04 3.577e-03 8.133e-04

I Training data: 52, 102, or 152 uniform samples on unit square

I Testing data: 10 000 uniform samples on unit square

I Reporting mean FVU of 5 repititions
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We apply gBMARS to do UQ on a mock traveling wave
reactor problem.

I A model problem for the CESAR Exascale center (ANL, TAMU, and
others)

I Coupled 3-nuclide Bateman Eqs. and 1D diffusion (nonlinear):

∂

∂t
N(r, t) = M

(
φ(r, t),p

)
N(r, t)

M(N(r, t),p)φ(r, t)−Σ
ext
a (t,p)φ(r, t) = 0

φ
T

Σf −P0 = 0

I Σext
a : Engineering degree of freedom

I p: a vector of uncertain parameters (eg: cross-sections)

I Initial conditions: power concentrated at one end of reactor

I “Downstream” fertile material breeds and reaction moves through the
slab
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An adjoint framework provides gradient information.
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I We solve both the forward and
adjoint problem.

I Define a neutron economy
metric:

G =
Neutrons Used for Breeding
Neutrons Lost to Leakage

I Adjoint problem gives
sensitivity of G w.r.t
parameters in p



Our UQ task is to estimate the mean, variance, and
individual realizations of our neutron economy metric.

I Our 10 inputs are allowed to vary
independently within 10% of their
nominal value.

I We have 40 full forward/adjoint solution
pairs (40 function/gradient evaluations)
generated by LHS sampling of the
inputs.

I We’ll build and sample a BMARS model
using 5, 10, 15, 20, 30, and 40 of these
samples both with and without the
gradient information.

I We also have 1000 forward LHS
samples – we will verify the gBMARS
predictions against these runs.
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Relative Error in Predicting the distribution mean
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Figure: NOTE: 10 repetitions of each sample size



Relative Error in Predicting the distribution variance
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Root-Mean-Squared Predictive Error

RMSPE =

√
1
N

N

∑
i=1

[
B(xi)− f (xi)

]2
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We demonstrate an extension of the BMARS algorithm to
include gradient information for improved regression.

1. Gradient information is fairly straightforward to include in the
BMARS emulator.

2. For both a suite of bivariate testing problems and a
higher-dimensional reactor problem, the use of gradient
information improved the regression of the underlying function
and reduced the predictive variance.

3. Gradient information provided the greatest gains in:
3.1 predicting both individual realizations and the variance of the

metric distribution; and
3.2 the cases of very sparse sampling of the input space.

4. Gradient enhanced emulators provide reasoning for a modeler to
pay the extra cost of an adjoint or AD solve.



Questions?

Some gradient information produced using the INTLAB forward automatic
differentiation package for MATLAB.
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