VV/UQ Implications of Performance
Models for Large Scale Computing

Ryan G. McClarren
Texas A&M University
PSAAP V&V/UQ Meeting August 2012

A Performance Model Enables VV/UQ Insight

® In this talk I will argue that performance models are more than just a way to predict
how a given algorithm, code or method will scale on a particular machine.

® This information can be vital in planning run sets for UQ investigations.
® A perhaps novel application of a performance model is for algorithmic verification.

® [l talk about a particular example of this:

® Radiation (or other particle) transport algorithms for large scale, parallel
computing.

® Inthe end, | hope to motivate the investment in performance models for large scale
codes in the VW/UQ context.

The was a large collaborative effort

® TAMU Nuclear Engineering: Marvin Adams, Daryl Hawkins,
Michael Adams

® TAMU Computer Science: Timmie Smith, Lawrence
Rauchwerger, Nancy Amato

® Hawkins, Smith, et al., “Efficient Massively Parallel

Transport Sweeps”’, to appear in Transactions of the
American Nuclear Society

Allocation of computational resources
can be a difficult challenge

In a UQ campaign it is often the case that the size of the campaign is limited by the
available computational resources.

In many UQ strategies one desires to complete many different simulations to study the
importance of important parameters.

This is further complicated by the fact that one often doesn’t know how long a given
run will take.

® Thisis often partially due to the fact that the run sets are meant to explore input space--likely in
regions of parameters you’ve never tried before.

Therefore, you might not know how many runs you can afford.

At CRASH this has lead to some clever approaches to right-size our run sets.

® Forarun set of 3D rad-hydro calculations, the design consisted of a Latin-Hypercube design of
size X plus two smaller sets to fill in the design.

A solution can be a robust, flexible performance model

For a given problem and computer if one knows
® The problem

® Size (Degrees of freedom, number of time steps, etc.)
® The machine

® C(Clock speed

¢ Communication latency

® Number of nodes/procs

One can, in many instances, predict the performance and, as a corollary the run time,
for a given problem.

Specifically, we are talking about first principles type performance models where we
aggregate the cost of several smaller pieces of the calculation.

One can, in principle, develop statistical models for performance where the runtime
model is inferred from actual results.

® These can be useful in the absence of a first principles model, but can have problems outside
the domain of previous runs.

® This model may be less useful for algorithmic verification.

Performance can be a verification metric

® With a performance model, it is possible to test the
implementation of the parallel algorithms.

® We call this algorithmic verification.

® Just like in a verification exercise where one looks at code
convergence an verifies that the convergence rate is correct

® One canlook at the parallel performance and verify that the
scaling is as expected.

® This can point to failing in the implementation, machine, runtime
environment, etc.

® Without a performance model it’s easy to attribute anomalous
scaling to things out of the developer/user’s control.

® Of course, one needs a believable performance model.

AN EXAMPLE OF THE BENEFIT OF
A PERFORMANCE MODEL

A performance model for parallel,
particle transport calculations.

® Particle transport calculations are often the most expensive piece of
simulation.

® This is because the kinetic density of particles varies over a seven-
dimensional phase space (3 space, 3 momentum, and 1 time)

® The discrete ordinates method is the most common deterministic
transport method.

® This method solves a series of advection-reaction equations of the
form

Oty + 8y - Vo = C(1, v, ..., 1)

® These equations are advection equations with constant speed, which
can be solved via a simple iteration scheme

O] + Q- VTt = O, 9, . W)

® |n practice, more complicated iterations are used, but they all have the
same underpinnings.

b\ /: : 3 \
Y, SFU FA T Y™ e

Each iteration involves a “sweep” across the grid

1-D Example

Ql%

2-D Example

Starting at the boundary,
the computation moves
across the grid.

The sweeps have a particular dependencies for
parallel processing

® To compute a sweep in parallel using
spatial domain decomposition, there is
a particular order in which processors
can do their work.

Processor 1\

® This can be represented in a task
dependency graph.

® Inthe example, notice that processor
4 is idle in steps 1-3, and processor 1is
idle in stages 9-11.

Improving efficiency: pipefill

The idleness of processor 1, can be
remedied by having it start on the next
angle in the same octant.

Processor 1\

Then when stage 11 is complete,
processor 4 can begin without being
idle.

This pipe filling helps efficiency but has
it’s limits.

The task graph width scales as P*3

Optimal Sweep Algorithms

® Asweep algorithm is defined by its
® Partitioning (how the domain is divided among procs)

® Aggregation (grouping of cells, directions, energy groups into
tasks)

® Scheduling (choosing what task to execute if several are available)

® Itis possible to choose the best possible parameters for the algorithm
so that it is provably optimal.

® This algorithm has been implemented in the PDT code developed at
Texas A&M and built on the Standard Template Adaptive Parallel
Library (STAPL).

Parallel Efficiency for Optimal Algorithm

® Fora 3-D problem with N, x N, x N, cells, partitioned witha P, X P, x P,
processor layout, with G groups and M directions, and

® With tasks containing A/A A, cells, A, directions, and A, groups.

® The optimal weak scaling efficiency is
1

1 _|_ Pm_T;U‘i_Py_Ty—i_KZ(PZ_TZ) 1 Teomm
8MGsz/(AmAgAz) TtCLSkZ

€Copt — {

® Where

N., =N, /P, K,=N,,/A,
{1 P; even
T, —

2 P;even

The implementation of the optimal schedule

® We've used particular test problem designed to test parallel scaling
(the Zerr-Azmy problem).

® (Constant 4096 cells/core; results normalized to 1 processor
performance.

® Model predicts above 70% efficiency at 1 million cores

Parallel Efficiency vs. Core Count
1.20

¢

o
3
©

o
[=2]
o

o
>
o

—+—Maodel prediction: sweeps

Parallel Efficiency

O PDT results: sweeps

o
N
o

0.00
1.00E+00 8.00E+00 6.40E+01 5.12E+02 4.10E+03 3.28E+04 2.62E+05 2.10E+06 1.68E+07 1.34E+08
cores

LN\, s \
J s [FV'A" J“

It wasn’t always so rosy

® Inthe graph, at 32k cores we are achieving above 807% efficiency.

® Does not exactly agree with model, but the slope appears to be the same, and
the dips and bumps in the model appear.

® Not that long ago, the results looked much worse.

® Given that we had a performance model, we knew there was an O(P)
communication somewhere in the implementation.

Parallel Efficiency vs. Core Count
1.20

1.00 o — i
> L]
£ 0.80 Q
3 P
i 0.60 ®
o
E 0.40 —+=Model prediction: sweeps - x
o

O PDT results: sweeps

o
N
o

0.00
1.00E+00 8.00E+00 6.40E+01 5.12E+02 4.10E+03 3.28E+04 2.62E+05 2.10E+06 1.68E+07 1.34E+08

[1 cores " J“ \
VAN Tl sru VAR A\
“HH—M

Performance models are part of the VV/UQ discussion
® (Can we perform the runs we want to do?
® Are we getting the right efficiency (do we know?)?

® [s there a bug in our parallel implementation.

® A performance model helps to answer all of these
questions.

