
VV/UQ	 Implications	 of	 Performance	
Models	 for	 Large	 Scale	 Computing	

Ryan	 G.	 McClarren	
Texas	 A&M	 University	

PSAAP	 V&V/UQ	 Meeting	 August	 2012	

A	 Performance	 Model	 Enables	 VV/UQ	 Insight	
�  In	 this	 talk	 I	 will	 argue	 that	 performance	 models	 are	 more	 than	 just	 a	 way	 to	 predict	

how	 a	 given	 algorithm,	 code	 or	 method	 will	 scale	 on	 a	 particular	 machine.	

�  This	 information	 can	 be	 vital	 in	 planning	 run	 sets	 for	 UQ	 investigations.	

�  A	 perhaps	 novel	 application	 of	 a	 performance	 model	 is	 for	 algorithmic	 verification.	

�  I’ll	 talk	 about	 a	 particular	 example	 of	 this:	

�  Radiation	 (or	 other	 particle)	 transport	 algorithms	 for	 large	 scale,	 parallel	
computing.	

�  In	 the	 end,	 I	 hope	 to	 motivate	 the	 investment	 in	 performance	 models	 for	 large	 scale	
codes	 in	 the	 VV/UQ	 context.	

The	 was	 a	 large	 collaborative	 effort	
�  TAMU	 Nuclear	 Engineering:	 Marvin	 Adams,	 Daryl	 Hawkins,	

Michael	 Adams	

�  TAMU	 Computer	 Science:	 Timmie	 Smith,	 Lawrence	
Rauchwerger,	 Nancy	 Amato	

�  Hawkins,	 Smith,	 et	 al.,	 “Efficient	 Massively	 Parallel	
Transport	 Sweeps”,	 to	 appear	 in	 Transactions	 of	 the	
American	 Nuclear	 Society	

Allocation	 of	 computational	 resources	
can	 be	 a	 difficult	 challenge	

�  In	 a	 UQ	 campaign	 it	 is	 often	 the	 case	 that	 the	 size	 of	 the	 campaign	 is	 limited	 by	 the	
available	 computational	 resources.	

�  In	 many	 UQ	 strategies	 one	 desires	 to	 complete	 many	 different	 simulations	 to	 study	 the	
importance	 of	 important	 parameters.	

�  This	 is	 further	 complicated	 by	 the	 fact	 that	 one	 often	 doesn’t	 know	 how	 long	 a	 given	
run	 will	 take.	
�  This	 is	 often	 partially	 due	 to	 the	 fact	 that	 the	 run	 sets	 are	 meant	 to	 explore	 input	 space-‐-‐-‐likely	 in	

regions	 of	 parameters	 you’ve	 never	 tried	 before.	

�  Therefore,	 you	 might	 not	 know	 how	 many	 runs	 you	 can	 afford.	

�  At	 CRASH	 this	 has	 lead	 to	 some	 clever	 approaches	 to	 right-‐size	 our	 run	 sets.	
�  For	 a	 run	 set	 of	 3D	 rad-‐hydro	 calculations,	 the	 design	 consisted	 of	 a	 Latin-‐Hypercube	 design	 of	

size	 X	 plus	 two	 smaller	 sets	 to	 fill	 in	 the	 design.	

A	 solution	 can	 be	 a	 robust,	 flexible	 performance	 model	

�  For	 a	 given	 problem	 and	 computer	 if	 one	 knows	
�  The	 problem	

�  Size	 (Degrees	 of	 freedom,	 number	 of	 time	 steps,	 etc.)	

�  The	 machine	
�  Clock	 speed	

�  Communication	 latency	

�  Number	 of	 nodes/procs	

�  One	 can,	 in	 many	 instances,	 predict	 the	 performance	 and,	 as	 a	 corollary	 the	 run	 time,	
for	 a	 given	 problem.	

�  Specifically,	 we	 are	 talking	 about	 first	 principles	 type	 performance	 models	 where	 we	
aggregate	 the	 cost	 of	 several	 smaller	 pieces	 of	 the	 calculation.	

�  One	 can,	 in	 principle,	 develop	 statistical	 models	 for	 performance	 where	 the	 runtime	
model	 is	 inferred	 from	 actual	 results.	
�  These	 can	 be	 useful	 in	 the	 absence	 of	 a	 first	 principles	 model,	 but	 can	 have	 problems	 outside	

the	 domain	 of	 previous	 runs.	

�  This	 model	 may	 be	 less	 useful	 for	 algorithmic	 verification.	

Performance	 can	 be	 a	 verification	 metric	
�  With	 a	 performance	 model,	 it	 is	 possible	 to	 test	 the	

implementation	 of	 the	 parallel	 algorithms.	

�  We	 call	 this	 algorithmic	 verification.	 	

�  Just	 like	 in	 a	 verification	 exercise	 where	 one	 looks	 at	 code	
convergence	 an	 verifies	 that	 the	 convergence	 rate	 is	 correct	
�  One	 can	 look	 at	 the	 parallel	 performance	 and	 verify	 that	 the	

scaling	 is	 as	 expected.	
�  This	 can	 point	 to	 failing	 in	 the	 implementation,	 machine,	 runtime	

environment,	 etc.	

�  Without	 a	 performance	 model	 it’s	 easy	 to	 attribute	 anomalous	
scaling	 to	 things	 out	 of	 the	 developer/user’s	 control.	

�  Of	 course,	 one	 needs	 a	 believable	 performance	 model.	 	

AN	 EXAMPLE	 OF	 THE	 BENEFIT	 OF	
A	 PERFORMANCE	 MODEL	

A	 performance	 model	 for	 parallel,	
particle	 transport	 calculations.	

�  Particle	 transport	 calculations	 are	 often	 the	 most	 expensive	 piece	 of	
simulation.	

�  This	 is	 because	 the	 kinetic	 density	 of	 particles	 varies	 over	 a	 seven-‐
dimensional	 phase	 space	 (3	 space,	 3	 momentum,	 and	 1	 time)	

�  The	 discrete	 ordinates	 method	 is	 the	 most	 common	 deterministic	
transport	 method.	
�  This	 method	 solves	 a	 series	 of	 advection-‐reaction	 equations	 of	 the	

form	

�  These	 equations	 are	 advection	 equations	 with	 constant	 speed,	 which	
can	 be	 solved	 via	 a	 simple	 iteration	 scheme	

�  In	 practice,	 more	 complicated	 iterations	 are	 used,	 but	 they	 all	 have	 the	
same	 underpinnings.	

@t l + ⌦l ·r l = C(1, 2, . . . , L)

@t
n+1
l + ⌦l ·r n+1

l = C(n
1 ,

n
2 , . . . ,

n
L)

Each	 iteration	 involves	 a	 “sweep”	 across	 the	 grid	

1-D Example

⌦l !

2-D Example

⌦l

Starting at the boundary,
the computation moves
across the grid.

The	 sweeps	 have	 a	 particular	 dependencies	 for	
parallel	 processing	

�  To	 compute	 a	 sweep	 in	 parallel	 using	
spatial	 domain	 decomposition,	 there	 is	
a	 particular	 order	 in	 which	 processors	
can	 do	 their	 work.	

�  This	 can	 be	 represented	 in	 a	 task	
dependency	 graph.	

�  In	 the	 example,	 notice	 that	 processor	
4	 is	 idle	 in	 steps	 1-‐3,	 and	 processor	 1	 is	
idle	 in	 stages	 9-‐11.	

E�cient Massively Parallel Transport Sweeps

W. Daryl Hawkins1, Timmie Smith2, Michael P. Adams1, Lawrence Rauchwerger2, Nancy Amato2, Marvin L. Adams1
1Department of Nuclear Engineering; 2Department of Computer Science and Computer Engineering

Texas A&M University
College Station, TX 77843-3133⇤

INTRODUCTION

The full-domain “sweep,” in which all angular fluxes
in a problem are calculated given previous-iterate values
only for the volumetric source, forms the foundation for
many iterative methods that have desirable properties
[1]. One important property is that iteration counts do
not grow with mesh refinement [1]. The sweep solution
on parallel machines is complicated by the dependency of
a given cell on its upstream neighbors. A simple task de-
pendence graph (TDG) for a single quadrature direction
in a 2D example (Fig.1) illustrates the issue: tasks at a
given level of the graph cannot be executed until some
tasks finish on the previous level. The KBA algorithm
[2] partitions the problem by assigning a column of cells
to each processor, indicated by the four diagonal task
groupings in Fig.1. KBA parallelizes over planes perpen-
dicular to the sweep direction—over the breadth of the
TDG. Early and late in a single-direction sweep, some
processors are idle, as in stages 1-3 and 9-11 in Fig.1. In
this example, parallel e�ciency could be no better than
8/11 = 0.73. KBA is much better, because when a pro-
cessor finishes its tasks for the first direction it begins its
tasks for the next direction in the octant-pair with the
same sweep ordering. That is, each processor begins a
new TDG as soon as it completes its work on the pre-
vious TDG, until all directions in the octant-pair finish.
This e↵ectively lengthens the “pipe” and increases e�-
ciency. If there were 2M directions in the octant pair,
then the pipe length is 2M ⇥ 8 in this example, and the
e�ciency could be up to (2M ⇥ 8)/(3 + 2M ⇥ 8).

KBA’s pipe-fill penalty grows as processor count
grows, even if cell count grows proportionally. The width
of the TDG grows only as P 2/3, so traditional KBA even-
tually runs out of parallelism to exploit. These issues
fuel the common belief that sweeps cannot perform well
in parallel beyond a few thousand processing elements.
One purpose of this summary is to help dispel this belief.

A sweep algorithm is defined by its partitioning (divid-
ing the domain among processors), aggregation (grouping
cells, directions, and energy groups into “tasks”), and
scheduling (choosing which task to execute if more than
one is available). The work presented here follows that
of Bailey and Falgout, who theoretically and computa-
tionally evaluated the performance of three sweep algo-
rithms including KBA [3]. Their “data-driven” schedule

⇤ dhawkins@tamu.edu; timmie@tamu.edu

1

2 5

3 6

4 7

8

10 13

18 21 12 15

14 17 11

9

22 25 16 19

26 29 20 23

30 24 27

28 31

32

Stage 1

Stage 2

Stage 3

Stage 9

Stage 10

Stage 11

.

.

.

Processor 1

Processor 2

Processor 3

Processor 4

Stage 4

FIG. 1. Example TDG for a single direction’s sweep on an
XY rectangular grid. Each of four columns of cells is assigned
to one processor, and each column is divided into eight tasks.
Tasks on a given level of the graph can be executed in parallel.

appeared to be optimal—executing the sweep in the min-
imum possible number of stages—for tested partitionings
and aggregations, but they were unable to prove this
mathematically and they did not attempt to optimize
across possible partitionings and aggregations.
Here we consider 3D Cartesian grids of N

x

⇥ N
y

⇥
N

z

spatial cells and simple P
x

⇥ P
y

⇥ P
z

partitioning,
and we permit general aggregation of cells, directions,
and energy groups. We have found a provably optimal
family of scheduling algorithms and we present results
from one of these. We exploit our guaranteed minimum
stage count to further optimize sweep-execution time by
choosing the best possible partitioning and aggregation
parameters. Our results show excellent scaling out to
32,768 cores, significantly better than results previously
reported for sweeps [4] and in line with the optimistic
projections of [3].

PARALLEL SWEEPS

Consider a P
x

⇥ P
y

⇥ P
z

processor layout on a
N

x

⇥ N
y

⇥ N
z

spatial grid, with integer values for all
{N

u

/P
u

} for simplicity. Suppose there are M quadra-
ture directions per octant and G energy groups that
can be swept simultaneously. Then each processor must
perform (N

z

N
y

N
z

8MG)/(P
z

P
y

P
z

) cell-direction-group
calculations. Aggregate these into tasks, with each
task containing A

x

A
y

A
z

cells, A
m

directions, and A
g

groups. Then each processor must perform N
tasks

⌘

Improving	 efficiency:	 pipefill	
�  The	 idleness	 of	 processor	 1,	 can	 be	

remedied	 by	 having	 it	 start	 on	 the	 next	
angle	 in	 the	 same	 octant.	

�  Then	 when	 stage	 11	 is	 complete,	
processor	 4	 can	 begin	 without	 being	
idle.	

�  This	 pipe	 filling	 helps	 efficiency	 but	 has	
it’s	 limits.	

�  The	 task	 graph	 width	 scales	 as	 P2/3	 	

E�cient Massively Parallel Transport Sweeps

W. Daryl Hawkins1, Timmie Smith2, Michael P. Adams1, Lawrence Rauchwerger2, Nancy Amato2, Marvin L. Adams1
1Department of Nuclear Engineering; 2Department of Computer Science and Computer Engineering

Texas A&M University
College Station, TX 77843-3133⇤

INTRODUCTION

The full-domain “sweep,” in which all angular fluxes
in a problem are calculated given previous-iterate values
only for the volumetric source, forms the foundation for
many iterative methods that have desirable properties
[1]. One important property is that iteration counts do
not grow with mesh refinement [1]. The sweep solution
on parallel machines is complicated by the dependency of
a given cell on its upstream neighbors. A simple task de-
pendence graph (TDG) for a single quadrature direction
in a 2D example (Fig.1) illustrates the issue: tasks at a
given level of the graph cannot be executed until some
tasks finish on the previous level. The KBA algorithm
[2] partitions the problem by assigning a column of cells
to each processor, indicated by the four diagonal task
groupings in Fig.1. KBA parallelizes over planes perpen-
dicular to the sweep direction—over the breadth of the
TDG. Early and late in a single-direction sweep, some
processors are idle, as in stages 1-3 and 9-11 in Fig.1. In
this example, parallel e�ciency could be no better than
8/11 = 0.73. KBA is much better, because when a pro-
cessor finishes its tasks for the first direction it begins its
tasks for the next direction in the octant-pair with the
same sweep ordering. That is, each processor begins a
new TDG as soon as it completes its work on the pre-
vious TDG, until all directions in the octant-pair finish.
This e↵ectively lengthens the “pipe” and increases e�-
ciency. If there were 2M directions in the octant pair,
then the pipe length is 2M ⇥ 8 in this example, and the
e�ciency could be up to (2M ⇥ 8)/(3 + 2M ⇥ 8).

KBA’s pipe-fill penalty grows as processor count
grows, even if cell count grows proportionally. The width
of the TDG grows only as P 2/3, so traditional KBA even-
tually runs out of parallelism to exploit. These issues
fuel the common belief that sweeps cannot perform well
in parallel beyond a few thousand processing elements.
One purpose of this summary is to help dispel this belief.

A sweep algorithm is defined by its partitioning (divid-
ing the domain among processors), aggregation (grouping
cells, directions, and energy groups into “tasks”), and
scheduling (choosing which task to execute if more than
one is available). The work presented here follows that
of Bailey and Falgout, who theoretically and computa-
tionally evaluated the performance of three sweep algo-
rithms including KBA [3]. Their “data-driven” schedule

⇤ dhawkins@tamu.edu; timmie@tamu.edu

1

2 5

3 6

4 7

8

10 13

18 21 12 15

14 17 11

9

22 25 16 19

26 29 20 23

30 24 27

28 31

32

Stage 1

Stage 2

Stage 3

Stage 9

Stage 10

Stage 11

.

.

.

Processor 1

Processor 2

Processor 3

Processor 4

Stage 4

FIG. 1. Example TDG for a single direction’s sweep on an
XY rectangular grid. Each of four columns of cells is assigned
to one processor, and each column is divided into eight tasks.
Tasks on a given level of the graph can be executed in parallel.

appeared to be optimal—executing the sweep in the min-
imum possible number of stages—for tested partitionings
and aggregations, but they were unable to prove this
mathematically and they did not attempt to optimize
across possible partitionings and aggregations.
Here we consider 3D Cartesian grids of N

x

⇥ N
y

⇥
N

z

spatial cells and simple P
x

⇥ P
y

⇥ P
z

partitioning,
and we permit general aggregation of cells, directions,
and energy groups. We have found a provably optimal
family of scheduling algorithms and we present results
from one of these. We exploit our guaranteed minimum
stage count to further optimize sweep-execution time by
choosing the best possible partitioning and aggregation
parameters. Our results show excellent scaling out to
32,768 cores, significantly better than results previously
reported for sweeps [4] and in line with the optimistic
projections of [3].

PARALLEL SWEEPS

Consider a P
x

⇥ P
y

⇥ P
z

processor layout on a
N

x

⇥ N
y

⇥ N
z

spatial grid, with integer values for all
{N

u

/P
u

} for simplicity. Suppose there are M quadra-
ture directions per octant and G energy groups that
can be swept simultaneously. Then each processor must
perform (N

z

N
y

N
z

8MG)/(P
z

P
y

P
z

) cell-direction-group
calculations. Aggregate these into tasks, with each
task containing A

x

A
y

A
z

cells, A
m

directions, and A
g

groups. Then each processor must perform N
tasks

⌘

Optimal	 Sweep	 Algorithms	
�  A	 sweep	 algorithm	 is	 defined	 by	 its	

�  Partitioning	 (how	 the	 domain	 is	 divided	 among	 procs)	
�  Aggregation	 (grouping	 of	 cells,	 directions,	 energy	 groups	 into	

tasks)	
�  Scheduling	 (choosing	 what	 task	 to	 execute	 if	 several	 are	 available)	

�  It	 is	 possible	 to	 choose	 the	 best	 possible	 parameters	 for	 the	 algorithm	
so	 that	 it	 is	 provably	 optimal.	 	

�  This	 algorithm	 has	 been	 implemented	 in	 the	 PDT	 code	 developed	 at	 	
Texas	 A&M	 and	 built	 on	 the	 Standard	 Template	 Adaptive	 Parallel	
Library	 (STAPL).

Parallel	 Efficiency	 for	 Optimal	 Algorithm	
�  For	 a	 3-‐D	 problem	 with	 Nx	 x	 Ny	 x	 Nz	 cells,	 partitioned	 with	 a	 Px	 x	 Py	 x	 Pz	

processor	 layout,	 with	 G	 groups	 and	 M	 directions,	 and	

�  With	 tasks	 containing	 AxAyAz	 cells,	 Am	 directions,	 and	 Ag	 groups.	

�  The	 optimal	 weak	 scaling	 efficiency	 is	

�  Where	

(N
z

N
y

N
z

8MG)/(A
x

A
y

A
z

A
m

A
g

P
x

P
y

P
z

) tasks. At each
stage at least one processor computes a task and commu-
nicates to downstream neighbors. The complete sweep
requires N

stages

= N
tasks

+ N
idle

stages, where N
idle

is
the number of idle stages for each processor. Parallel
sweep e�ciency (serial time per unknown / parallel time
per unknown per processor) is therefore approximately

✏ =
T
task

N
tasks

[N
stages

] [T
task

+ T
comm

]

=
1h

1 + N

idle

N

tasks

i h
1 + T

comm

T

task

i , (1)

where T
task

is the time to compute one task and T
comm

is the time to communicate after completing a task. In
the second line, the term in the first [] is 1+ the pipe-
fill penalty and the term in the second [] is 1+ the
comm penalty. Aggregating for many small tasks (N

tasks

large) minimizes pipe-fill penalty but increases the comm
penalty: latency causes T

comm

/T
task

to increase as tasks
become smaller. This assumes the most basic comm
modelt, which can be refined to account for architectural
realities (hierarchical networks, random variations, dedi-
cated comm hardware, latency-hiding techniques, etc.).

Traditional KBA chooses P
z

= 1, A
m

= 1, G = A
g

=
1, A

x

= N
x

/P
x

, A
y

= N
y

/P
y

, and A
z

= selectable num-
ber of z-planes to be aggregated into each task. If K

z

⌘
N

z

/A
z

, each processor performs N
tasks

= 8MK
z

tasks.
With KBA, 2MK

z

tasks (two octants) are “launched”
from a given corner of the 2D processor layout. For any
octant pair the far-corner processor remains idle for the
first P

x

+P
y

� 2 stages, so a two-octant sweep completes
in 2MK

z

+ P
x

+ P
y

� 2 stages. The other two-octant
sweeps are similar, so if an octant-pair sweep does not
begin until the previous pair’s finishes, the full sweep re-
quires 8MK

z

+4(P
x

+P
y

� 2) stages. The KBA parallel
e�ciency is then

✏KBA =
1h

1 + 4(P
x

+P

y

�2)
8MK

z

i h
1 + T

comm

T

task

i (2)

KBA inspires our algorithms, but we do not force
P
z

= 1 or force aggregation factors to have particular
values (such as A

m

= 1), and we allow multiple octants
to sweep simultaneously. In contrast to KBA, this re-
quires a scheduling algorithm—a set of rules that tells
each processor the order in which to execute tasks when
more than one is available. Scheduling algorithms pro-
foundly a↵ect parallel performance, as was noted in [3].

The minimum possible number of stages for given par-
titioning parameters {P

i

} and aggregation factors {A
j

}
is 2N

fill

+ N
tasks

, where N
fill

is the minimum num-
ber of stages before a sweepfront can reach the center-
most processors = number needed to finish a direc-
tion’s sweep after the center-most processors have fin-
ished [3]. If N

zp

⌘ N
z

/P
z

and K
z

⌘ N
zp

/A
z

and we

force A
x

= N
x

/P
x

and A
y

= N
y

/P
y

, then

N
fill

=
1

2
[P

x

� r
x

+ P
y

� r
y

+K
z

(P
z

� r
z

)] ,

Nmin

idle

= [P
x

� r
x

+ P
y

� r
y

+K
z

(P
z

� r
z

)] , (3)

where r
u

⌘ 1(2) for P
u

odd(even), and

Nmin

stages

= Nmin

idle

+ (8MGN
zp

)/(A
m

A
g

A
z

) , (4)

Important observation: Nmin

idle

is lower for P
z

= 2 than
for the KBA choice of P

z

= 1, for a given P . In both
cases P

z

� r
z

= 0, but with P
z

= 2, P
x

+ P
y

is lower.

OPTIMAL SWEEPS

It is not obvious that any schedule can achieve the
lower bound of Eq. (4), because “collisions” of the 8M
sweepfronts force processors to delay some fronts by
working on others. Bailey and Falgout described a “data-
driven” schedule that achieved this in limited testing, but
they were unable to prove that it always would.
We have found a family of provably optimal schedul-

ing algorithms: they are guaranteed to execute sweeps
in the number of stages given by Eq. (4). (If ties are
broken properly, the “data-driven” algorithm of [3] is
a provably optimal scheduling algorithm.) We will de-
scribe in forthcoming communications the scheduling al-
gorithms we have found, proofs of their optimal execu-
tions, and the implementation of one in our PDT code,
which is built on the Standard Template Adaptive Par-
allel Library (STAPL) [5–7]. Here we describe how we
have used our optimal scheduling algorithm to generate
an optimal sweep algorithm, and we present weak-scaling
results (constant work per core) from 1 to 32,768 cores
on two di↵erent platforms.
Given an optimal schedule we know exactly how many

stages a complete sweep will take, and Eq. (1) becomes

✏
opt

=
1h

1 + P

x

�r

x

+P

y

�r

y

+K

z

(P
z

�r

z

)
8MGN

zp

/(A
m

A

g

A

z

)

i h
1 + T

comm

T

task

i .(5)

Given Eq. (5) we can choose the {P
i

} and {A
j

} that
maximize e�ciency and thus minimize total sweep time.
This optimization over {P

i

} and {A
j

}, coupled with the
scheduling algorithm that executes the sweep in Nmin

stages

stages, yields what we call an optimal sweep algorithm.
It is interesting to compare ✏KBA to ✏

opt

, especially in
the limit of large P (which allows us to ignore the r

u

and 2 that appear in N
idle

). In the large-P limit, with
P
x

+ P
y

⇡ P 1/2 + P 1/2, Eq. (2) becomes

✏KBA ! 1h
1 + 4(2P 1/2)

8MN

z

/A

z

i h
1 + T

comm

T

task

i

=
1h

1 + P

1/2

MN

z

/A

KBA
z

i h
1 + T

comm

T

task

i (6)

Now consider ✏
opt

with G = 1, P
z

= 2, and P
x

+ P
y

⇡
2(P/2)1/2. Because P

z

= 2, N
zp

= N
z

/2. For com-
parison we aggregate to the same number of tasks as in

Nzp = Nz/Pz Kz = Nzp/Az

ri =

(
1 Pi even

2 Pi even

The	 implementation	 of	 the	 optimal	 schedule	
�  We’ve	 used	 particular	 test	 problem	 designed	 to	 test	 parallel	 scaling	

(the	 Zerr-‐Azmy	 problem).	

�  Constant	 4096	 cells/core;	 results	 normalized	 to	 1	 processor	
performance.	

�  Model	 predicts	 above	 70%	 efficiency	 at	 1	 million	 cores	

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.00E+00 8.00E+00 6.40E+01 5.12E+02 4.10E+03 3.28E+04 2.62E+05 2.10E+06 1.68E+07 1.34E+08

P
ar

al
le

l E
ff

ic
ie

nc
y

cores

Parallel&Efficiency&vs.&Core&Count&

Model prediction: sweeps

PDT results: sweeps

FIG. 3. Model sweep e�ciency (solid line) and PDT data
(circles) for the h = 1 Zerr-Azmy test problem.

and code for PWLD on the Cray is that the code’s sweep
slows by 1.09⇥ when going from 1 to 8 cores. There is no
pipe-fill penalty at 8 cores and little comm cost, so this
large slowdown remains a mystery. Beyond 8 cores the
results and model agree more closely: the per-sweep slow-
down is only 1.22⇥ going from 8 cores to 32,768 cores.
In the DD results from the BG/L, the sweep slowdown
going from 1 to 8 cores was a remarkably high 1.27⇥,
while the sweep slowdown from 8 to 32,768 was 1.47⇥.

There is significant interest in e�ciently exploiting ma-
chines with 106 or more processing elements. (LLNL’s
Sequoia computer, which recently debuted at #1 on the
top 500 list, has 1.6M cores,) Our results and model show
that while sweeps degrade in e�ciency as processor count
grows, they degrade so slowly that factors other than
pipe-fill are more likely to dominate performance. Fig-
ure 3 shows our model prediction out to 134M cores,
along with our data to 32k cores from PWLD on the
Cray machine, for the h=1 problem. Optimal sweeps
may never achieve 50% e�ciency on 134M cores, but it
is clear that the pipe-fill penalty—the main criticism of
parallel sweeps—is not a show-stopper even out to 108

cores. This is a direct consequence of Eq. (5), which is
a consequence of optimal sweep scheduling. Our model
predictions are consistent with those of [3].

DISCUSSION

Sweeps can be executed e�ciently at high core counts.
One key is an optimal scheduling algorithm that exe-
cutes simultaneous multi-octant sweeps with the mini-
mum possible idle time. Another is partitioning and ag-
gregation factors that minimize total sweep time.
The analysis and results in this summary are for 3D

Cartesian grids with “brick” cells. We are working on
sweeps for AMR-brick grids, for nuclear-reactor grids
that resolve pin geometries, and for arbitrary polyhedral-
cell grids. For some grids there may be e�ciency gains
if processors are allowed to “own” non-contiguous cell-
sets, an option considered in [3]. We are also working on
hybrid parallelism in which compute nodes would own
spatial subdomains and the cores on each node would
share the work of executing the node’s tasks.
For completeness we remark that reflecting boundaries

introduce direction-to-direction dependencies that de-
crease available parallelism. This can be addressed either
by iterating on the reflected angular fluxes or by accept-
ing reduced parallelism. The best choice will be problem-
dependent. Curvilinear coordinates introduce a di↵erent
kind of direction-to-direction dependency, again reducing
available parallelism and ultimately making sweeps some-
what less e�cient than in Cartesian coordinates. We are
working to quantify this.

ACKNOWLEDGEMENTS

Part of this work was funded under a collaborative
research contract from Lawrence Livermore National Se-
curity, LLC. Part of this work was performed under the
auspices of the Center for Radiative Shock Hydrodynam-
ics at the University of Michigan, which is funded by
the DOE NNSA ASC Predictive Science Academic Al-
liances Program. Part of this work was funded under a
collaborative research contract from the Center for Exas-
cale Simulation of Advanced Reactors (CESAR), a DOE
ASCR project.

[1] M. L. Adams and E. W. Larsen, “Fast iterative meth-
ods for discrete-ordinates particle transport calculations,”
Prog. Nucl. Energy, 40, No. 1, pp. 3-159, (2002).

[2] R. S. Baker and K. R. Koch, ”An Sn Algorithm for the
Massively Parallel CM-200 Computer,” Nucl. Sci. Eng.,
128, 312 (1998).

[3] T. S. Bailey and R. D. Falgout, “Analysis Of Mas-
sively Parallel Discrete-Ordinates Transport Sweep Al-
gorithms With Collisions,” Proc. International Confer-
ence on Mathematics, Computational Methods & Reactor
Physics, Saratoga Springs, May 3-7, CDROM (2009).

[4] R. J. Zerr and Y. Y. Azmy, “Solution of the Within-Group
Multidimensional Discrete Ordinates Transport Equations
on Massively Parallel Architectures,” Trans. Amer. Nucl.
Soc., 105, 429 (2011).

[5] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T.
Smith, G. Tanase, N. Thomas, X. Xu, M. Bianco, N.
M. Amato, L. Rauchwerger, “STAPL: Standard Template
Adaptive Parallel Library,” SYSTOR, Haifa, Israel, June
4-6, 2010, ACM, pp.1–10, http://doi.acm.org/

[6] G. Tanase, A. Buss, A. Fidel, Harshvardhan, I. Pa-
padopoulos, O. Pearce, T. Smith, N. Thomas, X. Xu, N.
Mourad, J. Vu, M. Bianco, N. M. Amato, L. Rauchw-
erger, “The STAPL Parallel Container Framework,” Proc.
ACM SIGPLAN Symp. Prin. Prac. Par. Prog. (PPOPP),
(2011).

[7] A. Buss, A. Fidel, Harshvardhan, T. Smith, G. Tanase,
N. Thomas, X. Xu, M. Bianco, N. M. Amato, L. Rauch-
werger, “The STAPL pView,” LCPC, Houston, October
7-9, (2010).

It	 wasn’t	 always	 so	 rosy	
�  In	 the	 graph,	 at	 32k	 cores	 we	 are	 achieving	 above	 80%	 efficiency.	

�  Does	 not	 exactly	 agree	 with	 model,	 but	 the	 slope	 appears	 to	 be	 the	 same,	 and	
the	 dips	 and	 bumps	 in	 the	 model	 appear.	

�  Not	 that	 long	 ago,	 the	 results	 looked	 much	 worse.	

�  Given	 that	 we	 had	 a	 performance	 model,	 we	 knew	 there	 was	 an	 O(P)	
communication	 somewhere	 in	 the	 implementation.	

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.00E+00 8.00E+00 6.40E+01 5.12E+02 4.10E+03 3.28E+04 2.62E+05 2.10E+06 1.68E+07 1.34E+08

P
ar

al
le

l E
ff

ic
ie

nc
y

cores

Parallel&Efficiency&vs.&Core&Count&

Model prediction: sweeps

PDT results: sweeps

FIG. 3. Model sweep e�ciency (solid line) and PDT data
(circles) for the h = 1 Zerr-Azmy test problem.

and code for PWLD on the Cray is that the code’s sweep
slows by 1.09⇥ when going from 1 to 8 cores. There is no
pipe-fill penalty at 8 cores and little comm cost, so this
large slowdown remains a mystery. Beyond 8 cores the
results and model agree more closely: the per-sweep slow-
down is only 1.22⇥ going from 8 cores to 32,768 cores.
In the DD results from the BG/L, the sweep slowdown
going from 1 to 8 cores was a remarkably high 1.27⇥,
while the sweep slowdown from 8 to 32,768 was 1.47⇥.

There is significant interest in e�ciently exploiting ma-
chines with 106 or more processing elements. (LLNL’s
Sequoia computer, which recently debuted at #1 on the
top 500 list, has 1.6M cores,) Our results and model show
that while sweeps degrade in e�ciency as processor count
grows, they degrade so slowly that factors other than
pipe-fill are more likely to dominate performance. Fig-
ure 3 shows our model prediction out to 134M cores,
along with our data to 32k cores from PWLD on the
Cray machine, for the h=1 problem. Optimal sweeps
may never achieve 50% e�ciency on 134M cores, but it
is clear that the pipe-fill penalty—the main criticism of
parallel sweeps—is not a show-stopper even out to 108

cores. This is a direct consequence of Eq. (5), which is
a consequence of optimal sweep scheduling. Our model
predictions are consistent with those of [3].

DISCUSSION

Sweeps can be executed e�ciently at high core counts.
One key is an optimal scheduling algorithm that exe-
cutes simultaneous multi-octant sweeps with the mini-
mum possible idle time. Another is partitioning and ag-
gregation factors that minimize total sweep time.
The analysis and results in this summary are for 3D

Cartesian grids with “brick” cells. We are working on
sweeps for AMR-brick grids, for nuclear-reactor grids
that resolve pin geometries, and for arbitrary polyhedral-
cell grids. For some grids there may be e�ciency gains
if processors are allowed to “own” non-contiguous cell-
sets, an option considered in [3]. We are also working on
hybrid parallelism in which compute nodes would own
spatial subdomains and the cores on each node would
share the work of executing the node’s tasks.
For completeness we remark that reflecting boundaries

introduce direction-to-direction dependencies that de-
crease available parallelism. This can be addressed either
by iterating on the reflected angular fluxes or by accept-
ing reduced parallelism. The best choice will be problem-
dependent. Curvilinear coordinates introduce a di↵erent
kind of direction-to-direction dependency, again reducing
available parallelism and ultimately making sweeps some-
what less e�cient than in Cartesian coordinates. We are
working to quantify this.

ACKNOWLEDGEMENTS

Part of this work was funded under a collaborative
research contract from Lawrence Livermore National Se-
curity, LLC. Part of this work was performed under the
auspices of the Center for Radiative Shock Hydrodynam-
ics at the University of Michigan, which is funded by
the DOE NNSA ASC Predictive Science Academic Al-
liances Program. Part of this work was funded under a
collaborative research contract from the Center for Exas-
cale Simulation of Advanced Reactors (CESAR), a DOE
ASCR project.

[1] M. L. Adams and E. W. Larsen, “Fast iterative meth-
ods for discrete-ordinates particle transport calculations,”
Prog. Nucl. Energy, 40, No. 1, pp. 3-159, (2002).

[2] R. S. Baker and K. R. Koch, ”An Sn Algorithm for the
Massively Parallel CM-200 Computer,” Nucl. Sci. Eng.,
128, 312 (1998).

[3] T. S. Bailey and R. D. Falgout, “Analysis Of Mas-
sively Parallel Discrete-Ordinates Transport Sweep Al-
gorithms With Collisions,” Proc. International Confer-
ence on Mathematics, Computational Methods & Reactor
Physics, Saratoga Springs, May 3-7, CDROM (2009).

[4] R. J. Zerr and Y. Y. Azmy, “Solution of the Within-Group
Multidimensional Discrete Ordinates Transport Equations
on Massively Parallel Architectures,” Trans. Amer. Nucl.
Soc., 105, 429 (2011).

[5] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T.
Smith, G. Tanase, N. Thomas, X. Xu, M. Bianco, N.
M. Amato, L. Rauchwerger, “STAPL: Standard Template
Adaptive Parallel Library,” SYSTOR, Haifa, Israel, June
4-6, 2010, ACM, pp.1–10, http://doi.acm.org/

[6] G. Tanase, A. Buss, A. Fidel, Harshvardhan, I. Pa-
padopoulos, O. Pearce, T. Smith, N. Thomas, X. Xu, N.
Mourad, J. Vu, M. Bianco, N. M. Amato, L. Rauchw-
erger, “The STAPL Parallel Container Framework,” Proc.
ACM SIGPLAN Symp. Prin. Prac. Par. Prog. (PPOPP),
(2011).

[7] A. Buss, A. Fidel, Harshvardhan, T. Smith, G. Tanase,
N. Thomas, X. Xu, M. Bianco, N. M. Amato, L. Rauch-
werger, “The STAPL pView,” LCPC, Houston, October
7-9, (2010).

Performance	 models	 are	 part	 of	 the	 VV/UQ	 discussion	

�  Can	 we	 perform	 the	 runs	 we	 want	 to	 do?	

�  Are	 we	 getting	 the	 right	 efficiency	 (do	 we	 know?)?	

�  Is	 there	 a	 bug	 in	 our	 parallel	 implementation.	

�  A	 performance	 model	 helps	 to	 answer	 all	 of	 these	
questions.	

