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A	  Performance	  Model	  Enables	  VV/UQ	  Insight	  
�  In	  this	  talk	  I	  will	  argue	  that	  performance	  models	  are	  more	  than	  just	  a	  way	  to	  predict	  

how	  a	  given	  algorithm,	  code	  or	  method	  will	  scale	  on	  a	  particular	  machine.	  

�  This	  information	  can	  be	  vital	  in	  planning	  run	  sets	  for	  UQ	  investigations.	  

�  A	  perhaps	  novel	  application	  of	  a	  performance	  model	  is	  for	  algorithmic	  verification.	  

�  I’ll	  talk	  about	  a	  particular	  example	  of	  this:	  

�  Radiation	  (or	  other	  particle)	  transport	  algorithms	  for	  large	  scale,	  parallel	  
computing.	  

�  In	  the	  end,	  I	  hope	  to	  motivate	  the	  investment	  in	  performance	  models	  for	  large	  scale	  
codes	  in	  the	  VV/UQ	  context.	  



The	  was	  a	  large	  collaborative	  effort	  
�  TAMU	  Nuclear	  Engineering:	  Marvin	  Adams,	  Daryl	  Hawkins,	  

Michael	  Adams	  

�  TAMU	  Computer	  Science:	  Timmie	  Smith,	  Lawrence	  
Rauchwerger,	  Nancy	  Amato	  

�  Hawkins,	  Smith,	  et	  al.,	  “Efficient	  Massively	  Parallel	  
Transport	  Sweeps”,	  to	  appear	  in	  Transactions	  of	  the	  
American	  Nuclear	  Society	  



Allocation	  of	  computational	  resources	  
can	  be	  a	  difficult	  challenge	  

�  In	  a	  UQ	  campaign	  it	  is	  often	  the	  case	  that	  the	  size	  of	  the	  campaign	  is	  limited	  by	  the	  
available	  computational	  resources.	  

�  In	  many	  UQ	  strategies	  one	  desires	  to	  complete	  many	  different	  simulations	  to	  study	  the	  
importance	  of	  important	  parameters.	  

�  This	  is	  further	  complicated	  by	  the	  fact	  that	  one	  often	  doesn’t	  know	  how	  long	  a	  given	  
run	  will	  take.	  
�  This	  is	  often	  partially	  due	  to	  the	  fact	  that	  the	  run	  sets	  are	  meant	  to	  explore	  input	  space-‐-‐-‐likely	  in	  

regions	  of	  parameters	  you’ve	  never	  tried	  before.	  

�  Therefore,	  you	  might	  not	  know	  how	  many	  runs	  you	  can	  afford.	  

�  At	  CRASH	  this	  has	  lead	  to	  some	  clever	  approaches	  to	  right-‐size	  our	  run	  sets.	  
�  For	  a	  run	  set	  of	  3D	  rad-‐hydro	  calculations,	  the	  design	  consisted	  of	  a	  Latin-‐Hypercube	  design	  of	  

size	  X	  plus	  two	  smaller	  sets	  to	  fill	  in	  the	  design.	  



A	  solution	  can	  be	  a	  robust,	  flexible	  performance	  model	  

�  For	  a	  given	  problem	  and	  computer	  if	  one	  knows	  
�  The	  problem	  

�  Size	  (Degrees	  of	  freedom,	  number	  of	  time	  steps,	  etc.)	  

�  The	  machine	  
�  Clock	  speed	  

�  Communication	  latency	  

�  Number	  of	  nodes/procs	  

�  One	  can,	  in	  many	  instances,	  predict	  the	  performance	  and,	  as	  a	  corollary	  the	  run	  time,	  
for	  a	  given	  problem.	  

�  Specifically,	  we	  are	  talking	  about	  first	  principles	  type	  performance	  models	  where	  we	  
aggregate	  the	  cost	  of	  several	  smaller	  pieces	  of	  the	  calculation.	  

�  One	  can,	  in	  principle,	  develop	  statistical	  models	  for	  performance	  where	  the	  runtime	  
model	  is	  inferred	  from	  actual	  results.	  
�  These	  can	  be	  useful	  in	  the	  absence	  of	  a	  first	  principles	  model,	  but	  can	  have	  problems	  outside	  

the	  domain	  of	  previous	  runs.	  

�  This	  model	  may	  be	  less	  useful	  for	  algorithmic	  verification.	  



Performance	  can	  be	  a	  verification	  metric	  
�  With	  a	  performance	  model,	  it	  is	  possible	  to	  test	  the	  

implementation	  of	  the	  parallel	  algorithms.	  

�  We	  call	  this	  algorithmic	  verification.	  	  

�  Just	  like	  in	  a	  verification	  exercise	  where	  one	  looks	  at	  code	  
convergence	  an	  verifies	  that	  the	  convergence	  rate	  is	  correct	  
�  One	  can	  look	  at	  the	  parallel	  performance	  and	  verify	  that	  the	  

scaling	  is	  as	  expected.	  
�  This	  can	  point	  to	  failing	  in	  the	  implementation,	  machine,	  runtime	  

environment,	  etc.	  

�  Without	  a	  performance	  model	  it’s	  easy	  to	  attribute	  anomalous	  
scaling	  to	  things	  out	  of	  the	  developer/user’s	  control.	  

�  Of	  course,	  one	  needs	  a	  believable	  performance	  model.	  	  



AN	  EXAMPLE	  OF	  THE	  BENEFIT	  OF	  
A	  PERFORMANCE	  MODEL	  



A	  performance	  model	  for	  parallel,	  
particle	  transport	  calculations.	  

�  Particle	  transport	  calculations	  are	  often	  the	  most	  expensive	  piece	  of	  
simulation.	  

�  This	  is	  because	  the	  kinetic	  density	  of	  particles	  varies	  over	  a	  seven-‐
dimensional	  phase	  space	  (3	  space,	  3	  momentum,	  and	  1	  time)	  

�  The	  discrete	  ordinates	  method	  is	  the	  most	  common	  deterministic	  
transport	  method.	  
�  This	  method	  solves	  a	  series	  of	  advection-‐reaction	  equations	  of	  the	  

form	  

�  These	  equations	  are	  advection	  equations	  with	  constant	  speed,	  which	  
can	  be	  solved	  via	  a	  simple	  iteration	  scheme	  

�  In	  practice,	  more	  complicated	  iterations	  are	  used,	  but	  they	  all	  have	  the	  
same	  underpinnings.	  

@t l + ⌦l ·r l = C( 1, 2, . . . , L)
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n
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Each	  iteration	  involves	  a	  “sweep”	  across	  the	  grid	  

1-D Example 

⌦l !

2-D Example 

⌦l

Starting at the boundary, 
the computation moves 
across the grid. 



The	  sweeps	  have	  a	  particular	  dependencies	  for	  
parallel	  processing	  

�  To	  compute	  a	  sweep	  in	  parallel	  using	  
spatial	  domain	  decomposition,	  there	  is	  
a	  particular	  order	  in	  which	  processors	  
can	  do	  their	  work.	  

�  This	  can	  be	  represented	  in	  a	  task	  
dependency	  graph.	  

�  In	  the	  example,	  notice	  that	  processor	  
4	  is	  idle	  in	  steps	  1-‐3,	  and	  processor	  1	  is	  
idle	  in	  stages	  9-‐11.	  
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INTRODUCTION

The full-domain “sweep,” in which all angular fluxes
in a problem are calculated given previous-iterate values
only for the volumetric source, forms the foundation for
many iterative methods that have desirable properties
[1]. One important property is that iteration counts do
not grow with mesh refinement [1]. The sweep solution
on parallel machines is complicated by the dependency of
a given cell on its upstream neighbors. A simple task de-
pendence graph (TDG) for a single quadrature direction
in a 2D example (Fig.1) illustrates the issue: tasks at a
given level of the graph cannot be executed until some
tasks finish on the previous level. The KBA algorithm
[2] partitions the problem by assigning a column of cells
to each processor, indicated by the four diagonal task
groupings in Fig.1. KBA parallelizes over planes perpen-
dicular to the sweep direction—over the breadth of the
TDG. Early and late in a single-direction sweep, some
processors are idle, as in stages 1-3 and 9-11 in Fig.1. In
this example, parallel e�ciency could be no better than
8/11 = 0.73. KBA is much better, because when a pro-
cessor finishes its tasks for the first direction it begins its
tasks for the next direction in the octant-pair with the
same sweep ordering. That is, each processor begins a
new TDG as soon as it completes its work on the pre-
vious TDG, until all directions in the octant-pair finish.
This e↵ectively lengthens the “pipe” and increases e�-
ciency. If there were 2M directions in the octant pair,
then the pipe length is 2M ⇥ 8 in this example, and the
e�ciency could be up to (2M ⇥ 8)/(3 + 2M ⇥ 8).

KBA’s pipe-fill penalty grows as processor count
grows, even if cell count grows proportionally. The width
of the TDG grows only as P 2/3, so traditional KBA even-
tually runs out of parallelism to exploit. These issues
fuel the common belief that sweeps cannot perform well
in parallel beyond a few thousand processing elements.
One purpose of this summary is to help dispel this belief.

A sweep algorithm is defined by its partitioning (divid-
ing the domain among processors), aggregation (grouping
cells, directions, and energy groups into “tasks”), and
scheduling (choosing which task to execute if more than
one is available). The work presented here follows that
of Bailey and Falgout, who theoretically and computa-
tionally evaluated the performance of three sweep algo-
rithms including KBA [3]. Their “data-driven” schedule

⇤ dhawkins@tamu.edu; timmie@tamu.edu
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FIG. 1. Example TDG for a single direction’s sweep on an
XY rectangular grid. Each of four columns of cells is assigned
to one processor, and each column is divided into eight tasks.
Tasks on a given level of the graph can be executed in parallel.

appeared to be optimal—executing the sweep in the min-
imum possible number of stages—for tested partitionings
and aggregations, but they were unable to prove this
mathematically and they did not attempt to optimize
across possible partitionings and aggregations.
Here we consider 3D Cartesian grids of N
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spatial cells and simple P
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partitioning,
and we permit general aggregation of cells, directions,
and energy groups. We have found a provably optimal
family of scheduling algorithms and we present results
from one of these. We exploit our guaranteed minimum
stage count to further optimize sweep-execution time by
choosing the best possible partitioning and aggregation
parameters. Our results show excellent scaling out to
32,768 cores, significantly better than results previously
reported for sweeps [4] and in line with the optimistic
projections of [3].

PARALLEL SWEEPS

Consider a P
x

⇥ P
y

⇥ P
z

processor layout on a
N

x

⇥ N
y

⇥ N
z

spatial grid, with integer values for all
{N

u

/P
u

} for simplicity. Suppose there are M quadra-
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can be swept simultaneously. Then each processor must
perform (N

z

N
y

N
z

8MG)/(P
z

P
y

P
z

) cell-direction-group
calculations. Aggregate these into tasks, with each
task containing A
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groups. Then each processor must perform N
tasks

⌘



Improving	  efficiency:	  pipefill	  
�  The	  idleness	  of	  processor	  1,	  can	  be	  

remedied	  by	  having	  it	  start	  on	  the	  next	  
angle	  in	  the	  same	  octant.	  

�  Then	  when	  stage	  11	  is	  complete,	  
processor	  4	  can	  begin	  without	  being	  
idle.	  

�  This	  pipe	  filling	  helps	  efficiency	  but	  has	  
it’s	  limits.	  

�  The	  task	  graph	  width	  scales	  as	  P2/3	  	  
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The full-domain “sweep,” in which all angular fluxes
in a problem are calculated given previous-iterate values
only for the volumetric source, forms the foundation for
many iterative methods that have desirable properties
[1]. One important property is that iteration counts do
not grow with mesh refinement [1]. The sweep solution
on parallel machines is complicated by the dependency of
a given cell on its upstream neighbors. A simple task de-
pendence graph (TDG) for a single quadrature direction
in a 2D example (Fig.1) illustrates the issue: tasks at a
given level of the graph cannot be executed until some
tasks finish on the previous level. The KBA algorithm
[2] partitions the problem by assigning a column of cells
to each processor, indicated by the four diagonal task
groupings in Fig.1. KBA parallelizes over planes perpen-
dicular to the sweep direction—over the breadth of the
TDG. Early and late in a single-direction sweep, some
processors are idle, as in stages 1-3 and 9-11 in Fig.1. In
this example, parallel e�ciency could be no better than
8/11 = 0.73. KBA is much better, because when a pro-
cessor finishes its tasks for the first direction it begins its
tasks for the next direction in the octant-pair with the
same sweep ordering. That is, each processor begins a
new TDG as soon as it completes its work on the pre-
vious TDG, until all directions in the octant-pair finish.
This e↵ectively lengthens the “pipe” and increases e�-
ciency. If there were 2M directions in the octant pair,
then the pipe length is 2M ⇥ 8 in this example, and the
e�ciency could be up to (2M ⇥ 8)/(3 + 2M ⇥ 8).

KBA’s pipe-fill penalty grows as processor count
grows, even if cell count grows proportionally. The width
of the TDG grows only as P 2/3, so traditional KBA even-
tually runs out of parallelism to exploit. These issues
fuel the common belief that sweeps cannot perform well
in parallel beyond a few thousand processing elements.
One purpose of this summary is to help dispel this belief.

A sweep algorithm is defined by its partitioning (divid-
ing the domain among processors), aggregation (grouping
cells, directions, and energy groups into “tasks”), and
scheduling (choosing which task to execute if more than
one is available). The work presented here follows that
of Bailey and Falgout, who theoretically and computa-
tionally evaluated the performance of three sweep algo-
rithms including KBA [3]. Their “data-driven” schedule
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FIG. 1. Example TDG for a single direction’s sweep on an
XY rectangular grid. Each of four columns of cells is assigned
to one processor, and each column is divided into eight tasks.
Tasks on a given level of the graph can be executed in parallel.

appeared to be optimal—executing the sweep in the min-
imum possible number of stages—for tested partitionings
and aggregations, but they were unable to prove this
mathematically and they did not attempt to optimize
across possible partitionings and aggregations.
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partitioning,
and we permit general aggregation of cells, directions,
and energy groups. We have found a provably optimal
family of scheduling algorithms and we present results
from one of these. We exploit our guaranteed minimum
stage count to further optimize sweep-execution time by
choosing the best possible partitioning and aggregation
parameters. Our results show excellent scaling out to
32,768 cores, significantly better than results previously
reported for sweeps [4] and in line with the optimistic
projections of [3].
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Optimal	  Sweep	  Algorithms	  
�  A	  sweep	  algorithm	  is	  defined	  by	  its	  

�  Partitioning	  (how	  the	  domain	  is	  divided	  among	  procs)	  
�  Aggregation	  (grouping	  of	  cells,	  directions,	  energy	  groups	  into	  

tasks)	  
�  Scheduling	  (choosing	  what	  task	  to	  execute	  if	  several	  are	  available)	  

�  It	  is	  possible	  to	  choose	  the	  best	  possible	  parameters	  for	  the	  algorithm	  
so	  that	  it	  is	  provably	  optimal.	  	  

�  This	  algorithm	  has	  been	  implemented	  in	  the	  PDT	  code	  developed	  at	  	  
Texas	  A&M	  and	  built	  on	  the	  Standard	  Template	  Adaptive	  Parallel	  
Library	  (STAPL). 



Parallel	  Efficiency	  for	  Optimal	  Algorithm	  
�  For	  a	  3-‐D	  problem	  with	  Nx	  x	  Ny	  x	  Nz	  cells,	  partitioned	  with	  a	  Px	  x	  Py	  x	  Pz	  

processor	  layout,	  with	  G	  groups	  and	  M	  directions,	  and	  

�  With	  tasks	  containing	  AxAyAz	  cells,	  Am	  directions,	  and	  Ag	  groups.	  

�  The	  optimal	  weak	  scaling	  efficiency	  is	  

�  Where	  
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stage at least one processor computes a task and commu-
nicates to downstream neighbors. The complete sweep
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stages, where N
idle
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the number of idle stages for each processor. Parallel
sweep e�ciency (serial time per unknown / parallel time
per unknown per processor) is therefore approximately
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where T
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is the time to compute one task and T
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is the time to communicate after completing a task. In
the second line, the term in the first [ ] is 1+ the pipe-
fill penalty and the term in the second [ ] is 1+ the
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to increase as tasks
become smaller. This assumes the most basic comm
modelt, which can be refined to account for architectural
realities (hierarchical networks, random variations, dedi-
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KBA inspires our algorithms, but we do not force
P
z

= 1 or force aggregation factors to have particular
values (such as A

m

= 1), and we allow multiple octants
to sweep simultaneously. In contrast to KBA, this re-
quires a scheduling algorithm—a set of rules that tells
each processor the order in which to execute tasks when
more than one is available. Scheduling algorithms pro-
foundly a↵ect parallel performance, as was noted in [3].
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OPTIMAL SWEEPS

It is not obvious that any schedule can achieve the
lower bound of Eq. (4), because “collisions” of the 8M
sweepfronts force processors to delay some fronts by
working on others. Bailey and Falgout described a “data-
driven” schedule that achieved this in limited testing, but
they were unable to prove that it always would.
We have found a family of provably optimal schedul-

ing algorithms: they are guaranteed to execute sweeps
in the number of stages given by Eq. (4). (If ties are
broken properly, the “data-driven” algorithm of [3] is
a provably optimal scheduling algorithm.) We will de-
scribe in forthcoming communications the scheduling al-
gorithms we have found, proofs of their optimal execu-
tions, and the implementation of one in our PDT code,
which is built on the Standard Template Adaptive Par-
allel Library (STAPL) [5–7]. Here we describe how we
have used our optimal scheduling algorithm to generate
an optimal sweep algorithm, and we present weak-scaling
results (constant work per core) from 1 to 32,768 cores
on two di↵erent platforms.
Given an optimal schedule we know exactly how many
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Given Eq. (5) we can choose the {P
i

} and {A
j

} that
maximize e�ciency and thus minimize total sweep time.
This optimization over {P

i

} and {A
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}, coupled with the
scheduling algorithm that executes the sweep in Nmin

stages

stages, yields what we call an optimal sweep algorithm.
It is interesting to compare ✏KBA to ✏
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the limit of large P (which allows us to ignore the r
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parison we aggregate to the same number of tasks as in
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The	  implementation	  of	  the	  optimal	  schedule	  
�  We’ve	  used	  particular	  test	  problem	  designed	  to	  test	  parallel	  scaling	  

(the	  Zerr-‐Azmy	  problem).	  

�  Constant	  4096	  cells/core;	  results	  normalized	  to	  1	  processor	  
performance.	  

�  Model	  predicts	  above	  70%	  efficiency	  at	  1	  million	  cores	  

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

1.00E+00 8.00E+00 6.40E+01 5.12E+02 4.10E+03 3.28E+04 2.62E+05 2.10E+06 1.68E+07 1.34E+08 

P
ar

al
le

l E
ff

ic
ie

nc
y 

cores 

Parallel&Efficiency&vs.&Core&Count&

Model prediction: sweeps 

PDT results: sweeps 

FIG. 3. Model sweep e�ciency (solid line) and PDT data
(circles) for the h = 1 Zerr-Azmy test problem.

and code for PWLD on the Cray is that the code’s sweep
slows by 1.09⇥ when going from 1 to 8 cores. There is no
pipe-fill penalty at 8 cores and little comm cost, so this
large slowdown remains a mystery. Beyond 8 cores the
results and model agree more closely: the per-sweep slow-
down is only 1.22⇥ going from 8 cores to 32,768 cores.
In the DD results from the BG/L, the sweep slowdown
going from 1 to 8 cores was a remarkably high 1.27⇥,
while the sweep slowdown from 8 to 32,768 was 1.47⇥.

There is significant interest in e�ciently exploiting ma-
chines with 106 or more processing elements. (LLNL’s
Sequoia computer, which recently debuted at #1 on the
top 500 list, has 1.6M cores,) Our results and model show
that while sweeps degrade in e�ciency as processor count
grows, they degrade so slowly that factors other than
pipe-fill are more likely to dominate performance. Fig-
ure 3 shows our model prediction out to 134M cores,
along with our data to 32k cores from PWLD on the
Cray machine, for the h=1 problem. Optimal sweeps
may never achieve 50% e�ciency on 134M cores, but it
is clear that the pipe-fill penalty—the main criticism of
parallel sweeps—is not a show-stopper even out to 108

cores. This is a direct consequence of Eq. (5), which is
a consequence of optimal sweep scheduling. Our model
predictions are consistent with those of [3].

DISCUSSION

Sweeps can be executed e�ciently at high core counts.
One key is an optimal scheduling algorithm that exe-
cutes simultaneous multi-octant sweeps with the mini-
mum possible idle time. Another is partitioning and ag-
gregation factors that minimize total sweep time.
The analysis and results in this summary are for 3D

Cartesian grids with “brick” cells. We are working on
sweeps for AMR-brick grids, for nuclear-reactor grids
that resolve pin geometries, and for arbitrary polyhedral-
cell grids. For some grids there may be e�ciency gains
if processors are allowed to “own” non-contiguous cell-
sets, an option considered in [3]. We are also working on
hybrid parallelism in which compute nodes would own
spatial subdomains and the cores on each node would
share the work of executing the node’s tasks.
For completeness we remark that reflecting boundaries

introduce direction-to-direction dependencies that de-
crease available parallelism. This can be addressed either
by iterating on the reflected angular fluxes or by accept-
ing reduced parallelism. The best choice will be problem-
dependent. Curvilinear coordinates introduce a di↵erent
kind of direction-to-direction dependency, again reducing
available parallelism and ultimately making sweeps some-
what less e�cient than in Cartesian coordinates. We are
working to quantify this.
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It	  wasn’t	  always	  so	  rosy	  
�  In	  the	  graph,	  at	  32k	  cores	  we	  are	  achieving	  above	  80%	  efficiency.	  

�  Does	  not	  exactly	  agree	  with	  model,	  but	  the	  slope	  appears	  to	  be	  the	  same,	  and	  
the	  dips	  and	  bumps	  in	  the	  model	  appear.	  

�  Not	  that	  long	  ago,	  the	  results	  looked	  much	  worse.	  

�  Given	  that	  we	  had	  a	  performance	  model,	  we	  knew	  there	  was	  an	  O(P)	  
communication	  somewhere	  in	  the	  implementation.	  
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FIG. 3. Model sweep e�ciency (solid line) and PDT data
(circles) for the h = 1 Zerr-Azmy test problem.

and code for PWLD on the Cray is that the code’s sweep
slows by 1.09⇥ when going from 1 to 8 cores. There is no
pipe-fill penalty at 8 cores and little comm cost, so this
large slowdown remains a mystery. Beyond 8 cores the
results and model agree more closely: the per-sweep slow-
down is only 1.22⇥ going from 8 cores to 32,768 cores.
In the DD results from the BG/L, the sweep slowdown
going from 1 to 8 cores was a remarkably high 1.27⇥,
while the sweep slowdown from 8 to 32,768 was 1.47⇥.

There is significant interest in e�ciently exploiting ma-
chines with 106 or more processing elements. (LLNL’s
Sequoia computer, which recently debuted at #1 on the
top 500 list, has 1.6M cores,) Our results and model show
that while sweeps degrade in e�ciency as processor count
grows, they degrade so slowly that factors other than
pipe-fill are more likely to dominate performance. Fig-
ure 3 shows our model prediction out to 134M cores,
along with our data to 32k cores from PWLD on the
Cray machine, for the h=1 problem. Optimal sweeps
may never achieve 50% e�ciency on 134M cores, but it
is clear that the pipe-fill penalty—the main criticism of
parallel sweeps—is not a show-stopper even out to 108

cores. This is a direct consequence of Eq. (5), which is
a consequence of optimal sweep scheduling. Our model
predictions are consistent with those of [3].

DISCUSSION

Sweeps can be executed e�ciently at high core counts.
One key is an optimal scheduling algorithm that exe-
cutes simultaneous multi-octant sweeps with the mini-
mum possible idle time. Another is partitioning and ag-
gregation factors that minimize total sweep time.
The analysis and results in this summary are for 3D

Cartesian grids with “brick” cells. We are working on
sweeps for AMR-brick grids, for nuclear-reactor grids
that resolve pin geometries, and for arbitrary polyhedral-
cell grids. For some grids there may be e�ciency gains
if processors are allowed to “own” non-contiguous cell-
sets, an option considered in [3]. We are also working on
hybrid parallelism in which compute nodes would own
spatial subdomains and the cores on each node would
share the work of executing the node’s tasks.
For completeness we remark that reflecting boundaries

introduce direction-to-direction dependencies that de-
crease available parallelism. This can be addressed either
by iterating on the reflected angular fluxes or by accept-
ing reduced parallelism. The best choice will be problem-
dependent. Curvilinear coordinates introduce a di↵erent
kind of direction-to-direction dependency, again reducing
available parallelism and ultimately making sweeps some-
what less e�cient than in Cartesian coordinates. We are
working to quantify this.
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Performance	  models	  are	  part	  of	  the	  VV/UQ	  discussion	  

�  Can	  we	  perform	  the	  runs	  we	  want	  to	  do?	  

�  Are	  we	  getting	  the	  right	  efficiency	  (do	  we	  know?)?	  

�  Is	  there	  a	  bug	  in	  our	  parallel	  implementation.	  

�  A	  performance	  model	  helps	  to	  answer	  all	  of	  these	  
questions.	  


