
VV/UQ	
  Implications	
  of	
  Performance	
  
Models	
  for	
  Large	
  Scale	
  Computing	
  

Ryan	
  G.	
  McClarren	
  
Texas	
  A&M	
  University	
  

PSAAP	
  V&V/UQ	
  Meeting	
  August	
  2012	
  



A	
  Performance	
  Model	
  Enables	
  VV/UQ	
  Insight	
  
�  In	
  this	
  talk	
  I	
  will	
  argue	
  that	
  performance	
  models	
  are	
  more	
  than	
  just	
  a	
  way	
  to	
  predict	
  

how	
  a	
  given	
  algorithm,	
  code	
  or	
  method	
  will	
  scale	
  on	
  a	
  particular	
  machine.	
  

�  This	
  information	
  can	
  be	
  vital	
  in	
  planning	
  run	
  sets	
  for	
  UQ	
  investigations.	
  

�  A	
  perhaps	
  novel	
  application	
  of	
  a	
  performance	
  model	
  is	
  for	
  algorithmic	
  verification.	
  

�  I’ll	
  talk	
  about	
  a	
  particular	
  example	
  of	
  this:	
  

�  Radiation	
  (or	
  other	
  particle)	
  transport	
  algorithms	
  for	
  large	
  scale,	
  parallel	
  
computing.	
  

�  In	
  the	
  end,	
  I	
  hope	
  to	
  motivate	
  the	
  investment	
  in	
  performance	
  models	
  for	
  large	
  scale	
  
codes	
  in	
  the	
  VV/UQ	
  context.	
  



The	
  was	
  a	
  large	
  collaborative	
  effort	
  
�  TAMU	
  Nuclear	
  Engineering:	
  Marvin	
  Adams,	
  Daryl	
  Hawkins,	
  

Michael	
  Adams	
  

�  TAMU	
  Computer	
  Science:	
  Timmie	
  Smith,	
  Lawrence	
  
Rauchwerger,	
  Nancy	
  Amato	
  

�  Hawkins,	
  Smith,	
  et	
  al.,	
  “Efficient	
  Massively	
  Parallel	
  
Transport	
  Sweeps”,	
  to	
  appear	
  in	
  Transactions	
  of	
  the	
  
American	
  Nuclear	
  Society	
  



Allocation	
  of	
  computational	
  resources	
  
can	
  be	
  a	
  difficult	
  challenge	
  

�  In	
  a	
  UQ	
  campaign	
  it	
  is	
  often	
  the	
  case	
  that	
  the	
  size	
  of	
  the	
  campaign	
  is	
  limited	
  by	
  the	
  
available	
  computational	
  resources.	
  

�  In	
  many	
  UQ	
  strategies	
  one	
  desires	
  to	
  complete	
  many	
  different	
  simulations	
  to	
  study	
  the	
  
importance	
  of	
  important	
  parameters.	
  

�  This	
  is	
  further	
  complicated	
  by	
  the	
  fact	
  that	
  one	
  often	
  doesn’t	
  know	
  how	
  long	
  a	
  given	
  
run	
  will	
  take.	
  
�  This	
  is	
  often	
  partially	
  due	
  to	
  the	
  fact	
  that	
  the	
  run	
  sets	
  are	
  meant	
  to	
  explore	
  input	
  space-­‐-­‐-­‐likely	
  in	
  

regions	
  of	
  parameters	
  you’ve	
  never	
  tried	
  before.	
  

�  Therefore,	
  you	
  might	
  not	
  know	
  how	
  many	
  runs	
  you	
  can	
  afford.	
  

�  At	
  CRASH	
  this	
  has	
  lead	
  to	
  some	
  clever	
  approaches	
  to	
  right-­‐size	
  our	
  run	
  sets.	
  
�  For	
  a	
  run	
  set	
  of	
  3D	
  rad-­‐hydro	
  calculations,	
  the	
  design	
  consisted	
  of	
  a	
  Latin-­‐Hypercube	
  design	
  of	
  

size	
  X	
  plus	
  two	
  smaller	
  sets	
  to	
  fill	
  in	
  the	
  design.	
  



A	
  solution	
  can	
  be	
  a	
  robust,	
  flexible	
  performance	
  model	
  

�  For	
  a	
  given	
  problem	
  and	
  computer	
  if	
  one	
  knows	
  
�  The	
  problem	
  

�  Size	
  (Degrees	
  of	
  freedom,	
  number	
  of	
  time	
  steps,	
  etc.)	
  

�  The	
  machine	
  
�  Clock	
  speed	
  

�  Communication	
  latency	
  

�  Number	
  of	
  nodes/procs	
  

�  One	
  can,	
  in	
  many	
  instances,	
  predict	
  the	
  performance	
  and,	
  as	
  a	
  corollary	
  the	
  run	
  time,	
  
for	
  a	
  given	
  problem.	
  

�  Specifically,	
  we	
  are	
  talking	
  about	
  first	
  principles	
  type	
  performance	
  models	
  where	
  we	
  
aggregate	
  the	
  cost	
  of	
  several	
  smaller	
  pieces	
  of	
  the	
  calculation.	
  

�  One	
  can,	
  in	
  principle,	
  develop	
  statistical	
  models	
  for	
  performance	
  where	
  the	
  runtime	
  
model	
  is	
  inferred	
  from	
  actual	
  results.	
  
�  These	
  can	
  be	
  useful	
  in	
  the	
  absence	
  of	
  a	
  first	
  principles	
  model,	
  but	
  can	
  have	
  problems	
  outside	
  

the	
  domain	
  of	
  previous	
  runs.	
  

�  This	
  model	
  may	
  be	
  less	
  useful	
  for	
  algorithmic	
  verification.	
  



Performance	
  can	
  be	
  a	
  verification	
  metric	
  
�  With	
  a	
  performance	
  model,	
  it	
  is	
  possible	
  to	
  test	
  the	
  

implementation	
  of	
  the	
  parallel	
  algorithms.	
  

�  We	
  call	
  this	
  algorithmic	
  verification.	
  	
  

�  Just	
  like	
  in	
  a	
  verification	
  exercise	
  where	
  one	
  looks	
  at	
  code	
  
convergence	
  an	
  verifies	
  that	
  the	
  convergence	
  rate	
  is	
  correct	
  
�  One	
  can	
  look	
  at	
  the	
  parallel	
  performance	
  and	
  verify	
  that	
  the	
  

scaling	
  is	
  as	
  expected.	
  
�  This	
  can	
  point	
  to	
  failing	
  in	
  the	
  implementation,	
  machine,	
  runtime	
  

environment,	
  etc.	
  

�  Without	
  a	
  performance	
  model	
  it’s	
  easy	
  to	
  attribute	
  anomalous	
  
scaling	
  to	
  things	
  out	
  of	
  the	
  developer/user’s	
  control.	
  

�  Of	
  course,	
  one	
  needs	
  a	
  believable	
  performance	
  model.	
  	
  



AN	
  EXAMPLE	
  OF	
  THE	
  BENEFIT	
  OF	
  
A	
  PERFORMANCE	
  MODEL	
  



A	
  performance	
  model	
  for	
  parallel,	
  
particle	
  transport	
  calculations.	
  

�  Particle	
  transport	
  calculations	
  are	
  often	
  the	
  most	
  expensive	
  piece	
  of	
  
simulation.	
  

�  This	
  is	
  because	
  the	
  kinetic	
  density	
  of	
  particles	
  varies	
  over	
  a	
  seven-­‐
dimensional	
  phase	
  space	
  (3	
  space,	
  3	
  momentum,	
  and	
  1	
  time)	
  

�  The	
  discrete	
  ordinates	
  method	
  is	
  the	
  most	
  common	
  deterministic	
  
transport	
  method.	
  
�  This	
  method	
  solves	
  a	
  series	
  of	
  advection-­‐reaction	
  equations	
  of	
  the	
  

form	
  

�  These	
  equations	
  are	
  advection	
  equations	
  with	
  constant	
  speed,	
  which	
  
can	
  be	
  solved	
  via	
  a	
  simple	
  iteration	
  scheme	
  

�  In	
  practice,	
  more	
  complicated	
  iterations	
  are	
  used,	
  but	
  they	
  all	
  have	
  the	
  
same	
  underpinnings.	
  

@t l + ⌦l ·r l = C( 1, 2, . . . , L)

@t 
n+1
l + ⌦l ·r n+1

l = C( n
1 , 

n
2 , . . . , 

n
L)



Each	
  iteration	
  involves	
  a	
  “sweep”	
  across	
  the	
  grid	
  

1-D Example 

⌦l !

2-D Example 

⌦l

Starting at the boundary, 
the computation moves 
across the grid. 



The	
  sweeps	
  have	
  a	
  particular	
  dependencies	
  for	
  
parallel	
  processing	
  

�  To	
  compute	
  a	
  sweep	
  in	
  parallel	
  using	
  
spatial	
  domain	
  decomposition,	
  there	
  is	
  
a	
  particular	
  order	
  in	
  which	
  processors	
  
can	
  do	
  their	
  work.	
  

�  This	
  can	
  be	
  represented	
  in	
  a	
  task	
  
dependency	
  graph.	
  

�  In	
  the	
  example,	
  notice	
  that	
  processor	
  
4	
  is	
  idle	
  in	
  steps	
  1-­‐3,	
  and	
  processor	
  1	
  is	
  
idle	
  in	
  stages	
  9-­‐11.	
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INTRODUCTION

The full-domain “sweep,” in which all angular fluxes
in a problem are calculated given previous-iterate values
only for the volumetric source, forms the foundation for
many iterative methods that have desirable properties
[1]. One important property is that iteration counts do
not grow with mesh refinement [1]. The sweep solution
on parallel machines is complicated by the dependency of
a given cell on its upstream neighbors. A simple task de-
pendence graph (TDG) for a single quadrature direction
in a 2D example (Fig.1) illustrates the issue: tasks at a
given level of the graph cannot be executed until some
tasks finish on the previous level. The KBA algorithm
[2] partitions the problem by assigning a column of cells
to each processor, indicated by the four diagonal task
groupings in Fig.1. KBA parallelizes over planes perpen-
dicular to the sweep direction—over the breadth of the
TDG. Early and late in a single-direction sweep, some
processors are idle, as in stages 1-3 and 9-11 in Fig.1. In
this example, parallel e�ciency could be no better than
8/11 = 0.73. KBA is much better, because when a pro-
cessor finishes its tasks for the first direction it begins its
tasks for the next direction in the octant-pair with the
same sweep ordering. That is, each processor begins a
new TDG as soon as it completes its work on the pre-
vious TDG, until all directions in the octant-pair finish.
This e↵ectively lengthens the “pipe” and increases e�-
ciency. If there were 2M directions in the octant pair,
then the pipe length is 2M ⇥ 8 in this example, and the
e�ciency could be up to (2M ⇥ 8)/(3 + 2M ⇥ 8).

KBA’s pipe-fill penalty grows as processor count
grows, even if cell count grows proportionally. The width
of the TDG grows only as P 2/3, so traditional KBA even-
tually runs out of parallelism to exploit. These issues
fuel the common belief that sweeps cannot perform well
in parallel beyond a few thousand processing elements.
One purpose of this summary is to help dispel this belief.

A sweep algorithm is defined by its partitioning (divid-
ing the domain among processors), aggregation (grouping
cells, directions, and energy groups into “tasks”), and
scheduling (choosing which task to execute if more than
one is available). The work presented here follows that
of Bailey and Falgout, who theoretically and computa-
tionally evaluated the performance of three sweep algo-
rithms including KBA [3]. Their “data-driven” schedule
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FIG. 1. Example TDG for a single direction’s sweep on an
XY rectangular grid. Each of four columns of cells is assigned
to one processor, and each column is divided into eight tasks.
Tasks on a given level of the graph can be executed in parallel.

appeared to be optimal—executing the sweep in the min-
imum possible number of stages—for tested partitionings
and aggregations, but they were unable to prove this
mathematically and they did not attempt to optimize
across possible partitionings and aggregations.
Here we consider 3D Cartesian grids of N

x

⇥ N
y

⇥
N

z

spatial cells and simple P
x

⇥ P
y

⇥ P
z

partitioning,
and we permit general aggregation of cells, directions,
and energy groups. We have found a provably optimal
family of scheduling algorithms and we present results
from one of these. We exploit our guaranteed minimum
stage count to further optimize sweep-execution time by
choosing the best possible partitioning and aggregation
parameters. Our results show excellent scaling out to
32,768 cores, significantly better than results previously
reported for sweeps [4] and in line with the optimistic
projections of [3].

PARALLEL SWEEPS

Consider a P
x

⇥ P
y

⇥ P
z

processor layout on a
N

x

⇥ N
y

⇥ N
z

spatial grid, with integer values for all
{N

u

/P
u

} for simplicity. Suppose there are M quadra-
ture directions per octant and G energy groups that
can be swept simultaneously. Then each processor must
perform (N

z

N
y

N
z

8MG)/(P
z

P
y

P
z

) cell-direction-group
calculations. Aggregate these into tasks, with each
task containing A

x

A
y

A
z

cells, A
m

directions, and A
g

groups. Then each processor must perform N
tasks

⌘



Improving	
  efficiency:	
  pipefill	
  
�  The	
  idleness	
  of	
  processor	
  1,	
  can	
  be	
  

remedied	
  by	
  having	
  it	
  start	
  on	
  the	
  next	
  
angle	
  in	
  the	
  same	
  octant.	
  

�  Then	
  when	
  stage	
  11	
  is	
  complete,	
  
processor	
  4	
  can	
  begin	
  without	
  being	
  
idle.	
  

�  This	
  pipe	
  filling	
  helps	
  efficiency	
  but	
  has	
  
it’s	
  limits.	
  

�  The	
  task	
  graph	
  width	
  scales	
  as	
  P2/3	
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a given cell on its upstream neighbors. A simple task de-
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to each processor, indicated by the four diagonal task
groupings in Fig.1. KBA parallelizes over planes perpen-
dicular to the sweep direction—over the breadth of the
TDG. Early and late in a single-direction sweep, some
processors are idle, as in stages 1-3 and 9-11 in Fig.1. In
this example, parallel e�ciency could be no better than
8/11 = 0.73. KBA is much better, because when a pro-
cessor finishes its tasks for the first direction it begins its
tasks for the next direction in the octant-pair with the
same sweep ordering. That is, each processor begins a
new TDG as soon as it completes its work on the pre-
vious TDG, until all directions in the octant-pair finish.
This e↵ectively lengthens the “pipe” and increases e�-
ciency. If there were 2M directions in the octant pair,
then the pipe length is 2M ⇥ 8 in this example, and the
e�ciency could be up to (2M ⇥ 8)/(3 + 2M ⇥ 8).

KBA’s pipe-fill penalty grows as processor count
grows, even if cell count grows proportionally. The width
of the TDG grows only as P 2/3, so traditional KBA even-
tually runs out of parallelism to exploit. These issues
fuel the common belief that sweeps cannot perform well
in parallel beyond a few thousand processing elements.
One purpose of this summary is to help dispel this belief.

A sweep algorithm is defined by its partitioning (divid-
ing the domain among processors), aggregation (grouping
cells, directions, and energy groups into “tasks”), and
scheduling (choosing which task to execute if more than
one is available). The work presented here follows that
of Bailey and Falgout, who theoretically and computa-
tionally evaluated the performance of three sweep algo-
rithms including KBA [3]. Their “data-driven” schedule
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FIG. 1. Example TDG for a single direction’s sweep on an
XY rectangular grid. Each of four columns of cells is assigned
to one processor, and each column is divided into eight tasks.
Tasks on a given level of the graph can be executed in parallel.

appeared to be optimal—executing the sweep in the min-
imum possible number of stages—for tested partitionings
and aggregations, but they were unable to prove this
mathematically and they did not attempt to optimize
across possible partitionings and aggregations.
Here we consider 3D Cartesian grids of N

x

⇥ N
y

⇥
N

z

spatial cells and simple P
x

⇥ P
y

⇥ P
z

partitioning,
and we permit general aggregation of cells, directions,
and energy groups. We have found a provably optimal
family of scheduling algorithms and we present results
from one of these. We exploit our guaranteed minimum
stage count to further optimize sweep-execution time by
choosing the best possible partitioning and aggregation
parameters. Our results show excellent scaling out to
32,768 cores, significantly better than results previously
reported for sweeps [4] and in line with the optimistic
projections of [3].
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Consider a P
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spatial grid, with integer values for all
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} for simplicity. Suppose there are M quadra-
ture directions per octant and G energy groups that
can be swept simultaneously. Then each processor must
perform (N
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calculations. Aggregate these into tasks, with each
task containing A

x
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directions, and A
g

groups. Then each processor must perform N
tasks
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Optimal	
  Sweep	
  Algorithms	
  
�  A	
  sweep	
  algorithm	
  is	
  defined	
  by	
  its	
  

�  Partitioning	
  (how	
  the	
  domain	
  is	
  divided	
  among	
  procs)	
  
�  Aggregation	
  (grouping	
  of	
  cells,	
  directions,	
  energy	
  groups	
  into	
  

tasks)	
  
�  Scheduling	
  (choosing	
  what	
  task	
  to	
  execute	
  if	
  several	
  are	
  available)	
  

�  It	
  is	
  possible	
  to	
  choose	
  the	
  best	
  possible	
  parameters	
  for	
  the	
  algorithm	
  
so	
  that	
  it	
  is	
  provably	
  optimal.	
  	
  

�  This	
  algorithm	
  has	
  been	
  implemented	
  in	
  the	
  PDT	
  code	
  developed	
  at	
  	
  
Texas	
  A&M	
  and	
  built	
  on	
  the	
  Standard	
  Template	
  Adaptive	
  Parallel	
  
Library	
  (STAPL). 



Parallel	
  Efficiency	
  for	
  Optimal	
  Algorithm	
  
�  For	
  a	
  3-­‐D	
  problem	
  with	
  Nx	
  x	
  Ny	
  x	
  Nz	
  cells,	
  partitioned	
  with	
  a	
  Px	
  x	
  Py	
  x	
  Pz	
  

processor	
  layout,	
  with	
  G	
  groups	
  and	
  M	
  directions,	
  and	
  

�  With	
  tasks	
  containing	
  AxAyAz	
  cells,	
  Am	
  directions,	
  and	
  Ag	
  groups.	
  

�  The	
  optimal	
  weak	
  scaling	
  efficiency	
  is	
  

�  Where	
  

(N
z

N
y

N
z

8MG)/(A
x

A
y

A
z

A
m

A
g

P
x

P
y

P
z

) tasks. At each
stage at least one processor computes a task and commu-
nicates to downstream neighbors. The complete sweep
requires N

stages

= N
tasks

+ N
idle

stages, where N
idle

is
the number of idle stages for each processor. Parallel
sweep e�ciency (serial time per unknown / parallel time
per unknown per processor) is therefore approximately

✏ =
T
task

N
tasks

[N
stages

] [T
task

+ T
comm

]

=
1h

1 + N

idle

N

tasks

i h
1 + T

comm

T

task

i , (1)

where T
task

is the time to compute one task and T
comm

is the time to communicate after completing a task. In
the second line, the term in the first [ ] is 1+ the pipe-
fill penalty and the term in the second [ ] is 1+ the
comm penalty. Aggregating for many small tasks (N

tasks

large) minimizes pipe-fill penalty but increases the comm
penalty: latency causes T

comm

/T
task

to increase as tasks
become smaller. This assumes the most basic comm
modelt, which can be refined to account for architectural
realities (hierarchical networks, random variations, dedi-
cated comm hardware, latency-hiding techniques, etc.).

Traditional KBA chooses P
z

= 1, A
m

= 1, G = A
g

=
1, A

x

= N
x

/P
x

, A
y

= N
y

/P
y

, and A
z

= selectable num-
ber of z-planes to be aggregated into each task. If K

z

⌘
N

z

/A
z

, each processor performs N
tasks

= 8MK
z

tasks.
With KBA, 2MK

z

tasks (two octants) are “launched”
from a given corner of the 2D processor layout. For any
octant pair the far-corner processor remains idle for the
first P

x

+P
y

� 2 stages, so a two-octant sweep completes
in 2MK

z

+ P
x

+ P
y

� 2 stages. The other two-octant
sweeps are similar, so if an octant-pair sweep does not
begin until the previous pair’s finishes, the full sweep re-
quires 8MK

z

+4(P
x

+P
y

� 2) stages. The KBA parallel
e�ciency is then

✏KBA =
1h

1 + 4(P
x

+P

y

�2)
8MK

z

i h
1 + T

comm

T

task

i (2)

KBA inspires our algorithms, but we do not force
P
z

= 1 or force aggregation factors to have particular
values (such as A

m

= 1), and we allow multiple octants
to sweep simultaneously. In contrast to KBA, this re-
quires a scheduling algorithm—a set of rules that tells
each processor the order in which to execute tasks when
more than one is available. Scheduling algorithms pro-
foundly a↵ect parallel performance, as was noted in [3].

The minimum possible number of stages for given par-
titioning parameters {P

i

} and aggregation factors {A
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}
is 2N

fill

+ N
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, where N
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is the minimum num-
ber of stages before a sweepfront can reach the center-
most processors = number needed to finish a direc-
tion’s sweep after the center-most processors have fin-
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Important observation: Nmin

idle

is lower for P
z

= 2 than
for the KBA choice of P

z

= 1, for a given P . In both
cases P

z

� r
z

= 0, but with P
z

= 2, P
x

+ P
y

is lower.

OPTIMAL SWEEPS

It is not obvious that any schedule can achieve the
lower bound of Eq. (4), because “collisions” of the 8M
sweepfronts force processors to delay some fronts by
working on others. Bailey and Falgout described a “data-
driven” schedule that achieved this in limited testing, but
they were unable to prove that it always would.
We have found a family of provably optimal schedul-

ing algorithms: they are guaranteed to execute sweeps
in the number of stages given by Eq. (4). (If ties are
broken properly, the “data-driven” algorithm of [3] is
a provably optimal scheduling algorithm.) We will de-
scribe in forthcoming communications the scheduling al-
gorithms we have found, proofs of their optimal execu-
tions, and the implementation of one in our PDT code,
which is built on the Standard Template Adaptive Par-
allel Library (STAPL) [5–7]. Here we describe how we
have used our optimal scheduling algorithm to generate
an optimal sweep algorithm, and we present weak-scaling
results (constant work per core) from 1 to 32,768 cores
on two di↵erent platforms.
Given an optimal schedule we know exactly how many

stages a complete sweep will take, and Eq. (1) becomes
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Given Eq. (5) we can choose the {P
i

} and {A
j

} that
maximize e�ciency and thus minimize total sweep time.
This optimization over {P

i

} and {A
j

}, coupled with the
scheduling algorithm that executes the sweep in Nmin

stages

stages, yields what we call an optimal sweep algorithm.
It is interesting to compare ✏KBA to ✏

opt

, especially in
the limit of large P (which allows us to ignore the r

u

and 2 that appear in N
idle

). In the large-P limit, with
P
x

+ P
y

⇡ P 1/2 + P 1/2, Eq. (2) becomes
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Now consider ✏
opt

with G = 1, P
z

= 2, and P
x

+ P
y

⇡
2(P/2)1/2. Because P

z

= 2, N
zp

= N
z

/2. For com-
parison we aggregate to the same number of tasks as in

Nzp = Nz/Pz Kz = Nzp/Az

ri =

(
1 Pi even

2 Pi even
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  million	
  cores	
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FIG. 3. Model sweep e�ciency (solid line) and PDT data
(circles) for the h = 1 Zerr-Azmy test problem.

and code for PWLD on the Cray is that the code’s sweep
slows by 1.09⇥ when going from 1 to 8 cores. There is no
pipe-fill penalty at 8 cores and little comm cost, so this
large slowdown remains a mystery. Beyond 8 cores the
results and model agree more closely: the per-sweep slow-
down is only 1.22⇥ going from 8 cores to 32,768 cores.
In the DD results from the BG/L, the sweep slowdown
going from 1 to 8 cores was a remarkably high 1.27⇥,
while the sweep slowdown from 8 to 32,768 was 1.47⇥.

There is significant interest in e�ciently exploiting ma-
chines with 106 or more processing elements. (LLNL’s
Sequoia computer, which recently debuted at #1 on the
top 500 list, has 1.6M cores,) Our results and model show
that while sweeps degrade in e�ciency as processor count
grows, they degrade so slowly that factors other than
pipe-fill are more likely to dominate performance. Fig-
ure 3 shows our model prediction out to 134M cores,
along with our data to 32k cores from PWLD on the
Cray machine, for the h=1 problem. Optimal sweeps
may never achieve 50% e�ciency on 134M cores, but it
is clear that the pipe-fill penalty—the main criticism of
parallel sweeps—is not a show-stopper even out to 108

cores. This is a direct consequence of Eq. (5), which is
a consequence of optimal sweep scheduling. Our model
predictions are consistent with those of [3].

DISCUSSION

Sweeps can be executed e�ciently at high core counts.
One key is an optimal scheduling algorithm that exe-
cutes simultaneous multi-octant sweeps with the mini-
mum possible idle time. Another is partitioning and ag-
gregation factors that minimize total sweep time.
The analysis and results in this summary are for 3D

Cartesian grids with “brick” cells. We are working on
sweeps for AMR-brick grids, for nuclear-reactor grids
that resolve pin geometries, and for arbitrary polyhedral-
cell grids. For some grids there may be e�ciency gains
if processors are allowed to “own” non-contiguous cell-
sets, an option considered in [3]. We are also working on
hybrid parallelism in which compute nodes would own
spatial subdomains and the cores on each node would
share the work of executing the node’s tasks.
For completeness we remark that reflecting boundaries

introduce direction-to-direction dependencies that de-
crease available parallelism. This can be addressed either
by iterating on the reflected angular fluxes or by accept-
ing reduced parallelism. The best choice will be problem-
dependent. Curvilinear coordinates introduce a di↵erent
kind of direction-to-direction dependency, again reducing
available parallelism and ultimately making sweeps some-
what less e�cient than in Cartesian coordinates. We are
working to quantify this.
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and code for PWLD on the Cray is that the code’s sweep
slows by 1.09⇥ when going from 1 to 8 cores. There is no
pipe-fill penalty at 8 cores and little comm cost, so this
large slowdown remains a mystery. Beyond 8 cores the
results and model agree more closely: the per-sweep slow-
down is only 1.22⇥ going from 8 cores to 32,768 cores.
In the DD results from the BG/L, the sweep slowdown
going from 1 to 8 cores was a remarkably high 1.27⇥,
while the sweep slowdown from 8 to 32,768 was 1.47⇥.

There is significant interest in e�ciently exploiting ma-
chines with 106 or more processing elements. (LLNL’s
Sequoia computer, which recently debuted at #1 on the
top 500 list, has 1.6M cores,) Our results and model show
that while sweeps degrade in e�ciency as processor count
grows, they degrade so slowly that factors other than
pipe-fill are more likely to dominate performance. Fig-
ure 3 shows our model prediction out to 134M cores,
along with our data to 32k cores from PWLD on the
Cray machine, for the h=1 problem. Optimal sweeps
may never achieve 50% e�ciency on 134M cores, but it
is clear that the pipe-fill penalty—the main criticism of
parallel sweeps—is not a show-stopper even out to 108

cores. This is a direct consequence of Eq. (5), which is
a consequence of optimal sweep scheduling. Our model
predictions are consistent with those of [3].

DISCUSSION

Sweeps can be executed e�ciently at high core counts.
One key is an optimal scheduling algorithm that exe-
cutes simultaneous multi-octant sweeps with the mini-
mum possible idle time. Another is partitioning and ag-
gregation factors that minimize total sweep time.
The analysis and results in this summary are for 3D

Cartesian grids with “brick” cells. We are working on
sweeps for AMR-brick grids, for nuclear-reactor grids
that resolve pin geometries, and for arbitrary polyhedral-
cell grids. For some grids there may be e�ciency gains
if processors are allowed to “own” non-contiguous cell-
sets, an option considered in [3]. We are also working on
hybrid parallelism in which compute nodes would own
spatial subdomains and the cores on each node would
share the work of executing the node’s tasks.
For completeness we remark that reflecting boundaries

introduce direction-to-direction dependencies that de-
crease available parallelism. This can be addressed either
by iterating on the reflected angular fluxes or by accept-
ing reduced parallelism. The best choice will be problem-
dependent. Curvilinear coordinates introduce a di↵erent
kind of direction-to-direction dependency, again reducing
available parallelism and ultimately making sweeps some-
what less e�cient than in Cartesian coordinates. We are
working to quantify this.
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Performance	
  models	
  are	
  part	
  of	
  the	
  VV/UQ	
  discussion	
  

�  Can	
  we	
  perform	
  the	
  runs	
  we	
  want	
  to	
  do?	
  

�  Are	
  we	
  getting	
  the	
  right	
  efficiency	
  (do	
  we	
  know?)?	
  

�  Is	
  there	
  a	
  bug	
  in	
  our	
  parallel	
  implementation.	
  

�  A	
  performance	
  model	
  helps	
  to	
  answer	
  all	
  of	
  these	
  
questions.	
  


