
VV/UQ	
 Implications	
 of	
 Performance	

Models	
 for	
 Large	
 Scale	
 Computing	

Ryan	
 G.	
 McClarren	

Texas	
 A&M	
 University	

PSAAP	
 V&V/UQ	
 Meeting	
 August	
 2012	

A	
 Performance	
 Model	
 Enables	
 VV/UQ	
 Insight	

�  In	
 this	
 talk	
 I	
 will	
 argue	
 that	
 performance	
 models	
 are	
 more	
 than	
 just	
 a	
 way	
 to	
 predict	

how	
 a	
 given	
 algorithm,	
 code	
 or	
 method	
 will	
 scale	
 on	
 a	
 particular	
 machine.	

�  This	
 information	
 can	
 be	
 vital	
 in	
 planning	
 run	
 sets	
 for	
 UQ	
 investigations.	

�  A	
 perhaps	
 novel	
 application	
 of	
 a	
 performance	
 model	
 is	
 for	
 algorithmic	
 verification.	

�  I’ll	
 talk	
 about	
 a	
 particular	
 example	
 of	
 this:	

�  Radiation	
 (or	
 other	
 particle)	
 transport	
 algorithms	
 for	
 large	
 scale,	
 parallel	

computing.	

�  In	
 the	
 end,	
 I	
 hope	
 to	
 motivate	
 the	
 investment	
 in	
 performance	
 models	
 for	
 large	
 scale	

codes	
 in	
 the	
 VV/UQ	
 context.	

The	
 was	
 a	
 large	
 collaborative	
 effort	

�  TAMU	
 Nuclear	
 Engineering:	
 Marvin	
 Adams,	
 Daryl	
 Hawkins,	

Michael	
 Adams	

�  TAMU	
 Computer	
 Science:	
 Timmie	
 Smith,	
 Lawrence	

Rauchwerger,	
 Nancy	
 Amato	

�  Hawkins,	
 Smith,	
 et	
 al.,	
 “Efficient	
 Massively	
 Parallel	

Transport	
 Sweeps”,	
 to	
 appear	
 in	
 Transactions	
 of	
 the	

American	
 Nuclear	
 Society	

Allocation	
 of	
 computational	
 resources	

can	
 be	
 a	
 difficult	
 challenge	

�  In	
 a	
 UQ	
 campaign	
 it	
 is	
 often	
 the	
 case	
 that	
 the	
 size	
 of	
 the	
 campaign	
 is	
 limited	
 by	
 the	

available	
 computational	
 resources.	

�  In	
 many	
 UQ	
 strategies	
 one	
 desires	
 to	
 complete	
 many	
 different	
 simulations	
 to	
 study	
 the	

importance	
 of	
 important	
 parameters.	

�  This	
 is	
 further	
 complicated	
 by	
 the	
 fact	
 that	
 one	
 often	
 doesn’t	
 know	
 how	
 long	
 a	
 given	

run	
 will	
 take.	

�  This	
 is	
 often	
 partially	
 due	
 to	
 the	
 fact	
 that	
 the	
 run	
 sets	
 are	
 meant	
 to	
 explore	
 input	
 space-­‐-­‐-­‐likely	
 in	

regions	
 of	
 parameters	
 you’ve	
 never	
 tried	
 before.	

�  Therefore,	
 you	
 might	
 not	
 know	
 how	
 many	
 runs	
 you	
 can	
 afford.	

�  At	
 CRASH	
 this	
 has	
 lead	
 to	
 some	
 clever	
 approaches	
 to	
 right-­‐size	
 our	
 run	
 sets.	

�  For	
 a	
 run	
 set	
 of	
 3D	
 rad-­‐hydro	
 calculations,	
 the	
 design	
 consisted	
 of	
 a	
 Latin-­‐Hypercube	
 design	
 of	

size	
 X	
 plus	
 two	
 smaller	
 sets	
 to	
 fill	
 in	
 the	
 design.	

A	
 solution	
 can	
 be	
 a	
 robust,	
 flexible	
 performance	
 model	

�  For	
 a	
 given	
 problem	
 and	
 computer	
 if	
 one	
 knows	

�  The	
 problem	

�  Size	
 (Degrees	
 of	
 freedom,	
 number	
 of	
 time	
 steps,	
 etc.)	

�  The	
 machine	

�  Clock	
 speed	

�  Communication	
 latency	

�  Number	
 of	
 nodes/procs	

�  One	
 can,	
 in	
 many	
 instances,	
 predict	
 the	
 performance	
 and,	
 as	
 a	
 corollary	
 the	
 run	
 time,	

for	
 a	
 given	
 problem.	

�  Specifically,	
 we	
 are	
 talking	
 about	
 first	
 principles	
 type	
 performance	
 models	
 where	
 we	

aggregate	
 the	
 cost	
 of	
 several	
 smaller	
 pieces	
 of	
 the	
 calculation.	

�  One	
 can,	
 in	
 principle,	
 develop	
 statistical	
 models	
 for	
 performance	
 where	
 the	
 runtime	

model	
 is	
 inferred	
 from	
 actual	
 results.	

�  These	
 can	
 be	
 useful	
 in	
 the	
 absence	
 of	
 a	
 first	
 principles	
 model,	
 but	
 can	
 have	
 problems	
 outside	

the	
 domain	
 of	
 previous	
 runs.	

�  This	
 model	
 may	
 be	
 less	
 useful	
 for	
 algorithmic	
 verification.	

Performance	
 can	
 be	
 a	
 verification	
 metric	

�  With	
 a	
 performance	
 model,	
 it	
 is	
 possible	
 to	
 test	
 the	

implementation	
 of	
 the	
 parallel	
 algorithms.	

�  We	
 call	
 this	
 algorithmic	
 verification.	
 	

�  Just	
 like	
 in	
 a	
 verification	
 exercise	
 where	
 one	
 looks	
 at	
 code	

convergence	
 an	
 verifies	
 that	
 the	
 convergence	
 rate	
 is	
 correct	

�  One	
 can	
 look	
 at	
 the	
 parallel	
 performance	
 and	
 verify	
 that	
 the	

scaling	
 is	
 as	
 expected.	

�  This	
 can	
 point	
 to	
 failing	
 in	
 the	
 implementation,	
 machine,	
 runtime	

environment,	
 etc.	

�  Without	
 a	
 performance	
 model	
 it’s	
 easy	
 to	
 attribute	
 anomalous	

scaling	
 to	
 things	
 out	
 of	
 the	
 developer/user’s	
 control.	

�  Of	
 course,	
 one	
 needs	
 a	
 believable	
 performance	
 model.	
 	

AN	
 EXAMPLE	
 OF	
 THE	
 BENEFIT	
 OF	

A	
 PERFORMANCE	
 MODEL	

A	
 performance	
 model	
 for	
 parallel,	

particle	
 transport	
 calculations.	

�  Particle	
 transport	
 calculations	
 are	
 often	
 the	
 most	
 expensive	
 piece	
 of	

simulation.	

�  This	
 is	
 because	
 the	
 kinetic	
 density	
 of	
 particles	
 varies	
 over	
 a	
 seven-­‐
dimensional	
 phase	
 space	
 (3	
 space,	
 3	
 momentum,	
 and	
 1	
 time)	

�  The	
 discrete	
 ordinates	
 method	
 is	
 the	
 most	
 common	
 deterministic	

transport	
 method.	

�  This	
 method	
 solves	
 a	
 series	
 of	
 advection-­‐reaction	
 equations	
 of	
 the	

form	

�  These	
 equations	
 are	
 advection	
 equations	
 with	
 constant	
 speed,	
 which	

can	
 be	
 solved	
 via	
 a	
 simple	
 iteration	
 scheme	

�  In	
 practice,	
 more	
 complicated	
 iterations	
 are	
 used,	
 but	
 they	
 all	
 have	
 the	

same	
 underpinnings.	

@t l + ⌦l ·r l = C(1, 2, . . . , L)

@t
n+1
l + ⌦l ·r n+1

l = C(n
1 ,

n
2 , . . . ,

n
L)

Each	
 iteration	
 involves	
 a	
 “sweep”	
 across	
 the	
 grid	

1-D Example

⌦l !

2-D Example

⌦l

Starting at the boundary,
the computation moves
across the grid.

The	
 sweeps	
 have	
 a	
 particular	
 dependencies	
 for	

parallel	
 processing	

�  To	
 compute	
 a	
 sweep	
 in	
 parallel	
 using	

spatial	
 domain	
 decomposition,	
 there	
 is	

a	
 particular	
 order	
 in	
 which	
 processors	

can	
 do	
 their	
 work.	

�  This	
 can	
 be	
 represented	
 in	
 a	
 task	

dependency	
 graph.	

�  In	
 the	
 example,	
 notice	
 that	
 processor	

4	
 is	
 idle	
 in	
 steps	
 1-­‐3,	
 and	
 processor	
 1	
 is	

idle	
 in	
 stages	
 9-­‐11.	

E�cient Massively Parallel Transport Sweeps

W. Daryl Hawkins1, Timmie Smith2, Michael P. Adams1, Lawrence Rauchwerger2, Nancy Amato2, Marvin L. Adams1
1Department of Nuclear Engineering; 2Department of Computer Science and Computer Engineering

Texas A&M University
College Station, TX 77843-3133⇤

INTRODUCTION

The full-domain “sweep,” in which all angular fluxes
in a problem are calculated given previous-iterate values
only for the volumetric source, forms the foundation for
many iterative methods that have desirable properties
[1]. One important property is that iteration counts do
not grow with mesh refinement [1]. The sweep solution
on parallel machines is complicated by the dependency of
a given cell on its upstream neighbors. A simple task de-
pendence graph (TDG) for a single quadrature direction
in a 2D example (Fig.1) illustrates the issue: tasks at a
given level of the graph cannot be executed until some
tasks finish on the previous level. The KBA algorithm
[2] partitions the problem by assigning a column of cells
to each processor, indicated by the four diagonal task
groupings in Fig.1. KBA parallelizes over planes perpen-
dicular to the sweep direction—over the breadth of the
TDG. Early and late in a single-direction sweep, some
processors are idle, as in stages 1-3 and 9-11 in Fig.1. In
this example, parallel e�ciency could be no better than
8/11 = 0.73. KBA is much better, because when a pro-
cessor finishes its tasks for the first direction it begins its
tasks for the next direction in the octant-pair with the
same sweep ordering. That is, each processor begins a
new TDG as soon as it completes its work on the pre-
vious TDG, until all directions in the octant-pair finish.
This e↵ectively lengthens the “pipe” and increases e�-
ciency. If there were 2M directions in the octant pair,
then the pipe length is 2M ⇥ 8 in this example, and the
e�ciency could be up to (2M ⇥ 8)/(3 + 2M ⇥ 8).

KBA’s pipe-fill penalty grows as processor count
grows, even if cell count grows proportionally. The width
of the TDG grows only as P 2/3, so traditional KBA even-
tually runs out of parallelism to exploit. These issues
fuel the common belief that sweeps cannot perform well
in parallel beyond a few thousand processing elements.
One purpose of this summary is to help dispel this belief.

A sweep algorithm is defined by its partitioning (divid-
ing the domain among processors), aggregation (grouping
cells, directions, and energy groups into “tasks”), and
scheduling (choosing which task to execute if more than
one is available). The work presented here follows that
of Bailey and Falgout, who theoretically and computa-
tionally evaluated the performance of three sweep algo-
rithms including KBA [3]. Their “data-driven” schedule

⇤ dhawkins@tamu.edu; timmie@tamu.edu

1

2 5

3 6

4 7

8

10 13

18 21 12 15

14 17 11

9

22 25 16 19

26 29 20 23

30 24 27

28 31

32

Stage 1

Stage 2

Stage 3

Stage 9

Stage 10

Stage 11

.

.

.

Processor 1

Processor 2

Processor 3

Processor 4

Stage 4

FIG. 1. Example TDG for a single direction’s sweep on an
XY rectangular grid. Each of four columns of cells is assigned
to one processor, and each column is divided into eight tasks.
Tasks on a given level of the graph can be executed in parallel.

appeared to be optimal—executing the sweep in the min-
imum possible number of stages—for tested partitionings
and aggregations, but they were unable to prove this
mathematically and they did not attempt to optimize
across possible partitionings and aggregations.
Here we consider 3D Cartesian grids of N

x

⇥ N
y

⇥
N

z

spatial cells and simple P
x

⇥ P
y

⇥ P
z

partitioning,
and we permit general aggregation of cells, directions,
and energy groups. We have found a provably optimal
family of scheduling algorithms and we present results
from one of these. We exploit our guaranteed minimum
stage count to further optimize sweep-execution time by
choosing the best possible partitioning and aggregation
parameters. Our results show excellent scaling out to
32,768 cores, significantly better than results previously
reported for sweeps [4] and in line with the optimistic
projections of [3].

PARALLEL SWEEPS

Consider a P
x

⇥ P
y

⇥ P
z

processor layout on a
N

x

⇥ N
y

⇥ N
z

spatial grid, with integer values for all
{N

u

/P
u

} for simplicity. Suppose there are M quadra-
ture directions per octant and G energy groups that
can be swept simultaneously. Then each processor must
perform (N

z

N
y

N
z

8MG)/(P
z

P
y

P
z

) cell-direction-group
calculations. Aggregate these into tasks, with each
task containing A

x

A
y

A
z

cells, A
m

directions, and A
g

groups. Then each processor must perform N
tasks

⌘

Improving	
 efficiency:	
 pipefill	

�  The	
 idleness	
 of	
 processor	
 1,	
 can	
 be	

remedied	
 by	
 having	
 it	
 start	
 on	
 the	
 next	

angle	
 in	
 the	
 same	
 octant.	

�  Then	
 when	
 stage	
 11	
 is	
 complete,	

processor	
 4	
 can	
 begin	
 without	
 being	

idle.	

�  This	
 pipe	
 filling	
 helps	
 efficiency	
 but	
 has	

it’s	
 limits.	

�  The	
 task	
 graph	
 width	
 scales	
 as	
 P2/3	
 	

E�cient Massively Parallel Transport Sweeps

W. Daryl Hawkins1, Timmie Smith2, Michael P. Adams1, Lawrence Rauchwerger2, Nancy Amato2, Marvin L. Adams1
1Department of Nuclear Engineering; 2Department of Computer Science and Computer Engineering

Texas A&M University
College Station, TX 77843-3133⇤

INTRODUCTION

The full-domain “sweep,” in which all angular fluxes
in a problem are calculated given previous-iterate values
only for the volumetric source, forms the foundation for
many iterative methods that have desirable properties
[1]. One important property is that iteration counts do
not grow with mesh refinement [1]. The sweep solution
on parallel machines is complicated by the dependency of
a given cell on its upstream neighbors. A simple task de-
pendence graph (TDG) for a single quadrature direction
in a 2D example (Fig.1) illustrates the issue: tasks at a
given level of the graph cannot be executed until some
tasks finish on the previous level. The KBA algorithm
[2] partitions the problem by assigning a column of cells
to each processor, indicated by the four diagonal task
groupings in Fig.1. KBA parallelizes over planes perpen-
dicular to the sweep direction—over the breadth of the
TDG. Early and late in a single-direction sweep, some
processors are idle, as in stages 1-3 and 9-11 in Fig.1. In
this example, parallel e�ciency could be no better than
8/11 = 0.73. KBA is much better, because when a pro-
cessor finishes its tasks for the first direction it begins its
tasks for the next direction in the octant-pair with the
same sweep ordering. That is, each processor begins a
new TDG as soon as it completes its work on the pre-
vious TDG, until all directions in the octant-pair finish.
This e↵ectively lengthens the “pipe” and increases e�-
ciency. If there were 2M directions in the octant pair,
then the pipe length is 2M ⇥ 8 in this example, and the
e�ciency could be up to (2M ⇥ 8)/(3 + 2M ⇥ 8).

KBA’s pipe-fill penalty grows as processor count
grows, even if cell count grows proportionally. The width
of the TDG grows only as P 2/3, so traditional KBA even-
tually runs out of parallelism to exploit. These issues
fuel the common belief that sweeps cannot perform well
in parallel beyond a few thousand processing elements.
One purpose of this summary is to help dispel this belief.

A sweep algorithm is defined by its partitioning (divid-
ing the domain among processors), aggregation (grouping
cells, directions, and energy groups into “tasks”), and
scheduling (choosing which task to execute if more than
one is available). The work presented here follows that
of Bailey and Falgout, who theoretically and computa-
tionally evaluated the performance of three sweep algo-
rithms including KBA [3]. Their “data-driven” schedule

⇤ dhawkins@tamu.edu; timmie@tamu.edu

1

2 5

3 6

4 7

8

10 13

18 21 12 15

14 17 11

9

22 25 16 19

26 29 20 23

30 24 27

28 31

32

Stage 1

Stage 2

Stage 3

Stage 9

Stage 10

Stage 11

.

.

.

Processor 1

Processor 2

Processor 3

Processor 4

Stage 4

FIG. 1. Example TDG for a single direction’s sweep on an
XY rectangular grid. Each of four columns of cells is assigned
to one processor, and each column is divided into eight tasks.
Tasks on a given level of the graph can be executed in parallel.

appeared to be optimal—executing the sweep in the min-
imum possible number of stages—for tested partitionings
and aggregations, but they were unable to prove this
mathematically and they did not attempt to optimize
across possible partitionings and aggregations.
Here we consider 3D Cartesian grids of N

x

⇥ N
y

⇥
N

z

spatial cells and simple P
x

⇥ P
y

⇥ P
z

partitioning,
and we permit general aggregation of cells, directions,
and energy groups. We have found a provably optimal
family of scheduling algorithms and we present results
from one of these. We exploit our guaranteed minimum
stage count to further optimize sweep-execution time by
choosing the best possible partitioning and aggregation
parameters. Our results show excellent scaling out to
32,768 cores, significantly better than results previously
reported for sweeps [4] and in line with the optimistic
projections of [3].

PARALLEL SWEEPS

Consider a P
x

⇥ P
y

⇥ P
z

processor layout on a
N

x

⇥ N
y

⇥ N
z

spatial grid, with integer values for all
{N

u

/P
u

} for simplicity. Suppose there are M quadra-
ture directions per octant and G energy groups that
can be swept simultaneously. Then each processor must
perform (N

z

N
y

N
z

8MG)/(P
z

P
y

P
z

) cell-direction-group
calculations. Aggregate these into tasks, with each
task containing A

x

A
y

A
z

cells, A
m

directions, and A
g

groups. Then each processor must perform N
tasks

⌘

Optimal	
 Sweep	
 Algorithms	

�  A	
 sweep	
 algorithm	
 is	
 defined	
 by	
 its	

�  Partitioning	
 (how	
 the	
 domain	
 is	
 divided	
 among	
 procs)	

�  Aggregation	
 (grouping	
 of	
 cells,	
 directions,	
 energy	
 groups	
 into	

tasks)	

�  Scheduling	
 (choosing	
 what	
 task	
 to	
 execute	
 if	
 several	
 are	
 available)	

�  It	
 is	
 possible	
 to	
 choose	
 the	
 best	
 possible	
 parameters	
 for	
 the	
 algorithm	

so	
 that	
 it	
 is	
 provably	
 optimal.	
 	

�  This	
 algorithm	
 has	
 been	
 implemented	
 in	
 the	
 PDT	
 code	
 developed	
 at	
 	

Texas	
 A&M	
 and	
 built	
 on	
 the	
 Standard	
 Template	
 Adaptive	
 Parallel	

Library	
 (STAPL).

Parallel	
 Efficiency	
 for	
 Optimal	
 Algorithm	

�  For	
 a	
 3-­‐D	
 problem	
 with	
 Nx	
 x	
 Ny	
 x	
 Nz	
 cells,	
 partitioned	
 with	
 a	
 Px	
 x	
 Py	
 x	
 Pz	

processor	
 layout,	
 with	
 G	
 groups	
 and	
 M	
 directions,	
 and	

�  With	
 tasks	
 containing	
 AxAyAz	
 cells,	
 Am	
 directions,	
 and	
 Ag	
 groups.	

�  The	
 optimal	
 weak	
 scaling	
 efficiency	
 is	

�  Where	

(N
z

N
y

N
z

8MG)/(A
x

A
y

A
z

A
m

A
g

P
x

P
y

P
z

) tasks. At each
stage at least one processor computes a task and commu-
nicates to downstream neighbors. The complete sweep
requires N

stages

= N
tasks

+ N
idle

stages, where N
idle

is
the number of idle stages for each processor. Parallel
sweep e�ciency (serial time per unknown / parallel time
per unknown per processor) is therefore approximately

✏ =
T
task

N
tasks

[N
stages

] [T
task

+ T
comm

]

=
1h

1 + N

idle

N

tasks

i h
1 + T

comm

T

task

i , (1)

where T
task

is the time to compute one task and T
comm

is the time to communicate after completing a task. In
the second line, the term in the first [] is 1+ the pipe-
fill penalty and the term in the second [] is 1+ the
comm penalty. Aggregating for many small tasks (N

tasks

large) minimizes pipe-fill penalty but increases the comm
penalty: latency causes T

comm

/T
task

to increase as tasks
become smaller. This assumes the most basic comm
modelt, which can be refined to account for architectural
realities (hierarchical networks, random variations, dedi-
cated comm hardware, latency-hiding techniques, etc.).

Traditional KBA chooses P
z

= 1, A
m

= 1, G = A
g

=
1, A

x

= N
x

/P
x

, A
y

= N
y

/P
y

, and A
z

= selectable num-
ber of z-planes to be aggregated into each task. If K

z

⌘
N

z

/A
z

, each processor performs N
tasks

= 8MK
z

tasks.
With KBA, 2MK

z

tasks (two octants) are “launched”
from a given corner of the 2D processor layout. For any
octant pair the far-corner processor remains idle for the
first P

x

+P
y

� 2 stages, so a two-octant sweep completes
in 2MK

z

+ P
x

+ P
y

� 2 stages. The other two-octant
sweeps are similar, so if an octant-pair sweep does not
begin until the previous pair’s finishes, the full sweep re-
quires 8MK

z

+4(P
x

+P
y

� 2) stages. The KBA parallel
e�ciency is then

✏KBA =
1h

1 + 4(P
x

+P

y

�2)
8MK

z

i h
1 + T

comm

T

task

i (2)

KBA inspires our algorithms, but we do not force
P
z

= 1 or force aggregation factors to have particular
values (such as A

m

= 1), and we allow multiple octants
to sweep simultaneously. In contrast to KBA, this re-
quires a scheduling algorithm—a set of rules that tells
each processor the order in which to execute tasks when
more than one is available. Scheduling algorithms pro-
foundly a↵ect parallel performance, as was noted in [3].

The minimum possible number of stages for given par-
titioning parameters {P

i

} and aggregation factors {A
j

}
is 2N

fill

+ N
tasks

, where N
fill

is the minimum num-
ber of stages before a sweepfront can reach the center-
most processors = number needed to finish a direc-
tion’s sweep after the center-most processors have fin-
ished [3]. If N

zp

⌘ N
z

/P
z

and K
z

⌘ N
zp

/A
z

and we

force A
x

= N
x

/P
x

and A
y

= N
y

/P
y

, then

N
fill

=
1

2
[P

x

� r
x

+ P
y

� r
y

+K
z

(P
z

� r
z

)] ,

Nmin

idle

= [P
x

� r
x

+ P
y

� r
y

+K
z

(P
z

� r
z

)] , (3)

where r
u

⌘ 1(2) for P
u

odd(even), and

Nmin

stages

= Nmin

idle

+ (8MGN
zp

)/(A
m

A
g

A
z

) , (4)

Important observation: Nmin

idle

is lower for P
z

= 2 than
for the KBA choice of P

z

= 1, for a given P . In both
cases P

z

� r
z

= 0, but with P
z

= 2, P
x

+ P
y

is lower.

OPTIMAL SWEEPS

It is not obvious that any schedule can achieve the
lower bound of Eq. (4), because “collisions” of the 8M
sweepfronts force processors to delay some fronts by
working on others. Bailey and Falgout described a “data-
driven” schedule that achieved this in limited testing, but
they were unable to prove that it always would.
We have found a family of provably optimal schedul-

ing algorithms: they are guaranteed to execute sweeps
in the number of stages given by Eq. (4). (If ties are
broken properly, the “data-driven” algorithm of [3] is
a provably optimal scheduling algorithm.) We will de-
scribe in forthcoming communications the scheduling al-
gorithms we have found, proofs of their optimal execu-
tions, and the implementation of one in our PDT code,
which is built on the Standard Template Adaptive Par-
allel Library (STAPL) [5–7]. Here we describe how we
have used our optimal scheduling algorithm to generate
an optimal sweep algorithm, and we present weak-scaling
results (constant work per core) from 1 to 32,768 cores
on two di↵erent platforms.
Given an optimal schedule we know exactly how many

stages a complete sweep will take, and Eq. (1) becomes

✏
opt

=
1h

1 + P

x

�r

x

+P

y

�r

y

+K

z

(P
z

�r

z

)
8MGN

zp

/(A
m

A

g

A

z

)

i h
1 + T

comm

T

task

i .(5)

Given Eq. (5) we can choose the {P
i

} and {A
j

} that
maximize e�ciency and thus minimize total sweep time.
This optimization over {P

i

} and {A
j

}, coupled with the
scheduling algorithm that executes the sweep in Nmin

stages

stages, yields what we call an optimal sweep algorithm.
It is interesting to compare ✏KBA to ✏

opt

, especially in
the limit of large P (which allows us to ignore the r

u

and 2 that appear in N
idle

). In the large-P limit, with
P
x

+ P
y

⇡ P 1/2 + P 1/2, Eq. (2) becomes

✏KBA ! 1h
1 + 4(2P 1/2)

8MN

z

/A

z

i h
1 + T

comm

T

task

i

=
1h

1 + P

1/2

MN

z

/A

KBA
z

i h
1 + T

comm

T

task

i (6)

Now consider ✏
opt

with G = 1, P
z

= 2, and P
x

+ P
y

⇡
2(P/2)1/2. Because P

z

= 2, N
zp

= N
z

/2. For com-
parison we aggregate to the same number of tasks as in

Nzp = Nz/Pz Kz = Nzp/Az

ri =

(
1 Pi even

2 Pi even

The	
 implementation	
 of	
 the	
 optimal	
 schedule	

�  We’ve	
 used	
 particular	
 test	
 problem	
 designed	
 to	
 test	
 parallel	
 scaling	

(the	
 Zerr-­‐Azmy	
 problem).	

�  Constant	
 4096	
 cells/core;	
 results	
 normalized	
 to	
 1	
 processor	

performance.	

�  Model	
 predicts	
 above	
 70%	
 efficiency	
 at	
 1	
 million	
 cores	

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.00E+00 8.00E+00 6.40E+01 5.12E+02 4.10E+03 3.28E+04 2.62E+05 2.10E+06 1.68E+07 1.34E+08

P
ar

al
le

l E
ff

ic
ie

nc
y

cores

Parallel&Efficiency&vs.&Core&Count&

Model prediction: sweeps

PDT results: sweeps

FIG. 3. Model sweep e�ciency (solid line) and PDT data
(circles) for the h = 1 Zerr-Azmy test problem.

and code for PWLD on the Cray is that the code’s sweep
slows by 1.09⇥ when going from 1 to 8 cores. There is no
pipe-fill penalty at 8 cores and little comm cost, so this
large slowdown remains a mystery. Beyond 8 cores the
results and model agree more closely: the per-sweep slow-
down is only 1.22⇥ going from 8 cores to 32,768 cores.
In the DD results from the BG/L, the sweep slowdown
going from 1 to 8 cores was a remarkably high 1.27⇥,
while the sweep slowdown from 8 to 32,768 was 1.47⇥.

There is significant interest in e�ciently exploiting ma-
chines with 106 or more processing elements. (LLNL’s
Sequoia computer, which recently debuted at #1 on the
top 500 list, has 1.6M cores,) Our results and model show
that while sweeps degrade in e�ciency as processor count
grows, they degrade so slowly that factors other than
pipe-fill are more likely to dominate performance. Fig-
ure 3 shows our model prediction out to 134M cores,
along with our data to 32k cores from PWLD on the
Cray machine, for the h=1 problem. Optimal sweeps
may never achieve 50% e�ciency on 134M cores, but it
is clear that the pipe-fill penalty—the main criticism of
parallel sweeps—is not a show-stopper even out to 108

cores. This is a direct consequence of Eq. (5), which is
a consequence of optimal sweep scheduling. Our model
predictions are consistent with those of [3].

DISCUSSION

Sweeps can be executed e�ciently at high core counts.
One key is an optimal scheduling algorithm that exe-
cutes simultaneous multi-octant sweeps with the mini-
mum possible idle time. Another is partitioning and ag-
gregation factors that minimize total sweep time.
The analysis and results in this summary are for 3D

Cartesian grids with “brick” cells. We are working on
sweeps for AMR-brick grids, for nuclear-reactor grids
that resolve pin geometries, and for arbitrary polyhedral-
cell grids. For some grids there may be e�ciency gains
if processors are allowed to “own” non-contiguous cell-
sets, an option considered in [3]. We are also working on
hybrid parallelism in which compute nodes would own
spatial subdomains and the cores on each node would
share the work of executing the node’s tasks.
For completeness we remark that reflecting boundaries

introduce direction-to-direction dependencies that de-
crease available parallelism. This can be addressed either
by iterating on the reflected angular fluxes or by accept-
ing reduced parallelism. The best choice will be problem-
dependent. Curvilinear coordinates introduce a di↵erent
kind of direction-to-direction dependency, again reducing
available parallelism and ultimately making sweeps some-
what less e�cient than in Cartesian coordinates. We are
working to quantify this.

ACKNOWLEDGEMENTS

Part of this work was funded under a collaborative
research contract from Lawrence Livermore National Se-
curity, LLC. Part of this work was performed under the
auspices of the Center for Radiative Shock Hydrodynam-
ics at the University of Michigan, which is funded by
the DOE NNSA ASC Predictive Science Academic Al-
liances Program. Part of this work was funded under a
collaborative research contract from the Center for Exas-
cale Simulation of Advanced Reactors (CESAR), a DOE
ASCR project.

[1] M. L. Adams and E. W. Larsen, “Fast iterative meth-
ods for discrete-ordinates particle transport calculations,”
Prog. Nucl. Energy, 40, No. 1, pp. 3-159, (2002).

[2] R. S. Baker and K. R. Koch, ”An Sn Algorithm for the
Massively Parallel CM-200 Computer,” Nucl. Sci. Eng.,
128, 312 (1998).

[3] T. S. Bailey and R. D. Falgout, “Analysis Of Mas-
sively Parallel Discrete-Ordinates Transport Sweep Al-
gorithms With Collisions,” Proc. International Confer-
ence on Mathematics, Computational Methods & Reactor
Physics, Saratoga Springs, May 3-7, CDROM (2009).

[4] R. J. Zerr and Y. Y. Azmy, “Solution of the Within-Group
Multidimensional Discrete Ordinates Transport Equations
on Massively Parallel Architectures,” Trans. Amer. Nucl.
Soc., 105, 429 (2011).

[5] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T.
Smith, G. Tanase, N. Thomas, X. Xu, M. Bianco, N.
M. Amato, L. Rauchwerger, “STAPL: Standard Template
Adaptive Parallel Library,” SYSTOR, Haifa, Israel, June
4-6, 2010, ACM, pp.1–10, http://doi.acm.org/

[6] G. Tanase, A. Buss, A. Fidel, Harshvardhan, I. Pa-
padopoulos, O. Pearce, T. Smith, N. Thomas, X. Xu, N.
Mourad, J. Vu, M. Bianco, N. M. Amato, L. Rauchw-
erger, “The STAPL Parallel Container Framework,” Proc.
ACM SIGPLAN Symp. Prin. Prac. Par. Prog. (PPOPP),
(2011).

[7] A. Buss, A. Fidel, Harshvardhan, T. Smith, G. Tanase,
N. Thomas, X. Xu, M. Bianco, N. M. Amato, L. Rauch-
werger, “The STAPL pView,” LCPC, Houston, October
7-9, (2010).

It	
 wasn’t	
 always	
 so	
 rosy	

�  In	
 the	
 graph,	
 at	
 32k	
 cores	
 we	
 are	
 achieving	
 above	
 80%	
 efficiency.	

�  Does	
 not	
 exactly	
 agree	
 with	
 model,	
 but	
 the	
 slope	
 appears	
 to	
 be	
 the	
 same,	
 and	

the	
 dips	
 and	
 bumps	
 in	
 the	
 model	
 appear.	

�  Not	
 that	
 long	
 ago,	
 the	
 results	
 looked	
 much	
 worse.	

�  Given	
 that	
 we	
 had	
 a	
 performance	
 model,	
 we	
 knew	
 there	
 was	
 an	
 O(P)	

communication	
 somewhere	
 in	
 the	
 implementation.	

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.00E+00 8.00E+00 6.40E+01 5.12E+02 4.10E+03 3.28E+04 2.62E+05 2.10E+06 1.68E+07 1.34E+08

P
ar

al
le

l E
ff

ic
ie

nc
y

cores

Parallel&Efficiency&vs.&Core&Count&

Model prediction: sweeps

PDT results: sweeps

FIG. 3. Model sweep e�ciency (solid line) and PDT data
(circles) for the h = 1 Zerr-Azmy test problem.

and code for PWLD on the Cray is that the code’s sweep
slows by 1.09⇥ when going from 1 to 8 cores. There is no
pipe-fill penalty at 8 cores and little comm cost, so this
large slowdown remains a mystery. Beyond 8 cores the
results and model agree more closely: the per-sweep slow-
down is only 1.22⇥ going from 8 cores to 32,768 cores.
In the DD results from the BG/L, the sweep slowdown
going from 1 to 8 cores was a remarkably high 1.27⇥,
while the sweep slowdown from 8 to 32,768 was 1.47⇥.

There is significant interest in e�ciently exploiting ma-
chines with 106 or more processing elements. (LLNL’s
Sequoia computer, which recently debuted at #1 on the
top 500 list, has 1.6M cores,) Our results and model show
that while sweeps degrade in e�ciency as processor count
grows, they degrade so slowly that factors other than
pipe-fill are more likely to dominate performance. Fig-
ure 3 shows our model prediction out to 134M cores,
along with our data to 32k cores from PWLD on the
Cray machine, for the h=1 problem. Optimal sweeps
may never achieve 50% e�ciency on 134M cores, but it
is clear that the pipe-fill penalty—the main criticism of
parallel sweeps—is not a show-stopper even out to 108

cores. This is a direct consequence of Eq. (5), which is
a consequence of optimal sweep scheduling. Our model
predictions are consistent with those of [3].

DISCUSSION

Sweeps can be executed e�ciently at high core counts.
One key is an optimal scheduling algorithm that exe-
cutes simultaneous multi-octant sweeps with the mini-
mum possible idle time. Another is partitioning and ag-
gregation factors that minimize total sweep time.
The analysis and results in this summary are for 3D

Cartesian grids with “brick” cells. We are working on
sweeps for AMR-brick grids, for nuclear-reactor grids
that resolve pin geometries, and for arbitrary polyhedral-
cell grids. For some grids there may be e�ciency gains
if processors are allowed to “own” non-contiguous cell-
sets, an option considered in [3]. We are also working on
hybrid parallelism in which compute nodes would own
spatial subdomains and the cores on each node would
share the work of executing the node’s tasks.
For completeness we remark that reflecting boundaries

introduce direction-to-direction dependencies that de-
crease available parallelism. This can be addressed either
by iterating on the reflected angular fluxes or by accept-
ing reduced parallelism. The best choice will be problem-
dependent. Curvilinear coordinates introduce a di↵erent
kind of direction-to-direction dependency, again reducing
available parallelism and ultimately making sweeps some-
what less e�cient than in Cartesian coordinates. We are
working to quantify this.

ACKNOWLEDGEMENTS

Part of this work was funded under a collaborative
research contract from Lawrence Livermore National Se-
curity, LLC. Part of this work was performed under the
auspices of the Center for Radiative Shock Hydrodynam-
ics at the University of Michigan, which is funded by
the DOE NNSA ASC Predictive Science Academic Al-
liances Program. Part of this work was funded under a
collaborative research contract from the Center for Exas-
cale Simulation of Advanced Reactors (CESAR), a DOE
ASCR project.

[1] M. L. Adams and E. W. Larsen, “Fast iterative meth-
ods for discrete-ordinates particle transport calculations,”
Prog. Nucl. Energy, 40, No. 1, pp. 3-159, (2002).

[2] R. S. Baker and K. R. Koch, ”An Sn Algorithm for the
Massively Parallel CM-200 Computer,” Nucl. Sci. Eng.,
128, 312 (1998).

[3] T. S. Bailey and R. D. Falgout, “Analysis Of Mas-
sively Parallel Discrete-Ordinates Transport Sweep Al-
gorithms With Collisions,” Proc. International Confer-
ence on Mathematics, Computational Methods & Reactor
Physics, Saratoga Springs, May 3-7, CDROM (2009).

[4] R. J. Zerr and Y. Y. Azmy, “Solution of the Within-Group
Multidimensional Discrete Ordinates Transport Equations
on Massively Parallel Architectures,” Trans. Amer. Nucl.
Soc., 105, 429 (2011).

[5] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T.
Smith, G. Tanase, N. Thomas, X. Xu, M. Bianco, N.
M. Amato, L. Rauchwerger, “STAPL: Standard Template
Adaptive Parallel Library,” SYSTOR, Haifa, Israel, June
4-6, 2010, ACM, pp.1–10, http://doi.acm.org/

[6] G. Tanase, A. Buss, A. Fidel, Harshvardhan, I. Pa-
padopoulos, O. Pearce, T. Smith, N. Thomas, X. Xu, N.
Mourad, J. Vu, M. Bianco, N. M. Amato, L. Rauchw-
erger, “The STAPL Parallel Container Framework,” Proc.
ACM SIGPLAN Symp. Prin. Prac. Par. Prog. (PPOPP),
(2011).

[7] A. Buss, A. Fidel, Harshvardhan, T. Smith, G. Tanase,
N. Thomas, X. Xu, M. Bianco, N. M. Amato, L. Rauch-
werger, “The STAPL pView,” LCPC, Houston, October
7-9, (2010).

Performance	
 models	
 are	
 part	
 of	
 the	
 VV/UQ	
 discussion	

�  Can	
 we	
 perform	
 the	
 runs	
 we	
 want	
 to	
 do?	

�  Are	
 we	
 getting	
 the	
 right	
 efficiency	
 (do	
 we	
 know?)?	

�  Is	
 there	
 a	
 bug	
 in	
 our	
 parallel	
 implementation.	

�  A	
 performance	
 model	
 helps	
 to	
 answer	
 all	
 of	
 these	

questions.	

