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New Approach for Modeling Thermal Neutrons

= Our underlying model for thermal neutrons is derived
through an asymptotic analysis of the 1-D energy-
dependent transport equation

= |n this asymptotic analysis:
* o, Isassumed to be small = Order €
* Qs assumed to be small - Order ¢
* o, lIsassumed to be large = Order 1/e

= This asymptotic analysis leads to a drift-diffusion equation
« which is believed to handle large temperature gradients
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Numerical Comparison

» The second half of this presentation will show numerical

comparisons between the drift-diffusion model and MCNP6
« This will demonstrate how closely our analytical model can
predict the spatial-flux distribution in large moderator with a
temperature gradient

= The first test problem for our analytical model is to predict
the flux in a graphite slab with a linear temperature
gradient

= The second test problem is to predict the flux in a graphite
slab with a quadratic temperature gradient
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Asymptotic Analysis of Transport EqQ.

= \WWe start with the 1-D energy-dependent transport equation
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= We write the angular flux as a power series
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= Make the following assumptions: o, is small > Order €
Q Is small - Order ¢
o, Is large = Order 1/e
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Splitting up the Transport EqQ. by Order

= |If e1s very small - the terms of order 1/¢ are only effected

by other terms of order 1/¢
* By canceling out all other terms 1n the equation we’re left with a
1/€ order equation

= The same can be done for terms of order 1 and terms of
order €

* Thus the equation
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€ 2
can be used to make 3 separate equations: one with terms

of order 1/e, another of order 1, and another of order €
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Equation of Order 1/¢
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= After eliminating smaller terms, the 1/e order equation Is
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= By noticing that the equation above is for an infinite
medium with no source and no absorption, we know the
solution will be a Maxwellian
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Equation of Order 1

= After eliminating all other terms, the equation of order 1 is
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After multiplying both sides by x and integrating from -1
to 1 we arrive at
1d¢0) (z, E
3 dx
where S, Is a group-to-group scattering operator for the
first Legendre moment
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Equation of Order ¢

= After eliminating all other terms, the equation of order € Is
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= After multlplylng both sides by « and integrating from -1
to 1, and using the property that
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It can be shown that
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The Drift-Diffusion Equation

= After combining resulting equations of order 1/¢, 1, and €
we arrive at the drift-diffusion equation
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Discretizing the Drift-Diffusion Eqg.
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= We used a summation instead of an integral for calculating
the macroscopic absorption cross section
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= M9 isthe integral of the local Maxwellian between the
energy bounds for group g
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Discretizing the Drift-Diffusion Eqg.
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First Benchmark for Drift-Diffusion Equation

= Verify whether this drift-diffusion equation is indeed an
asymptotic limit to the neutron transport equation

= MCNP6 was used to construct the test problem

 Graphite slab with a 1-eV neutron source uniformly
distributed within the slab

 Fixed linear temperature gradient across the slab

* No incoming neutrons in MCNP6 simulation

o Thus, zero-flux boundary conditions were used at both boundaries of
the slab for the analytical model
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= NJOY-99 was used to generate continuous-energy cross sections
at discrete temperatures for MCNP6 and corresponding multi-
group cross sections for the analytical model

Blue dots indicate “detector locations”

These are used to compare MCNP6 results to our analytical model
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Group Structure

» The following group structure was used in the analytical models

Group Lower Energy Bound (e¢V) Upper Energy Bound (eV)

1 1.001 5.000
2 0.999 1.001
3 0.300 0.999
| 0.100 0.300
S 0.030 0.100
6 0.010 0.030
7 0.003 0.010
8 0.001 0.003
9 1x10~* 0.001
10 1x10~° 1x10~*
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Results for Slab with Linear Temperature Gradient
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Distribution of Neutron Energies in Different Slab Locations

Scalar Flux

— Location: 50 cm, Temperature: 680 K
— Location: 950 cm, Temperature: 320 K |;
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Quadratic Temperature Gradient
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THE DRIFT-DIFFUSION LIMIT OF
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Conclusion

= Numerical results show that the transport of thermal
neutrons In the absence of strong sources and absorbers
can be described by a drift-diffusion model

= The model has a scalar flux that is a Maxwellian
corresponding to the local material temperature
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Future Work

* The drift-diffusion solution agreed with an MCNPG6 solution in
the interior of both slab-geometry problems

= Near the boundary though, there was a discrepancy between the solutions

= The derivation of appropriate boundary conditions, as well as initial
conditions for the time dependent case, should be the topic of future work

= In the test problems involving a graphite slab, the value of the
drift velocity was small compared to the diffusion coefficient

= After deriving appropriate initial conditions and boundary conditions, we
can experiment with problems with large drift velocities
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