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New Approach for Modeling Thermal Neutrons 

 Our underlying model for thermal neutrons is derived 

through an asymptotic analysis of the 1-D energy-

dependent transport equation 

 In this asymptotic analysis: 
• σa is assumed to be small  Order ϵ  

• Q is assumed to be small  Order ϵ  

• σs is assumed to be large  Order 1/ϵ  

 This asymptotic analysis leads to a drift-diffusion equation  
• which is believed to handle large temperature gradients  
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Numerical Comparison 

 The second half of this presentation will show numerical 

comparisons between the drift-diffusion model and MCNP6  
• This will demonstrate how closely our analytical model can 

predict the spatial-flux distribution in large moderator with a 

temperature gradient 

 The first test problem for our analytical model is to predict 

the flux in a graphite slab with a linear temperature 

gradient 

 The second test problem is to predict the flux in a graphite 

slab with a quadratic temperature gradient 
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Asymptotic Analysis of Transport Eq. 

 We start with the 1-D energy-dependent transport equation 

 We write the angular flux as a power series 

 Make the following assumptions:  σa is small  Order ϵ  

Q is small  Order ϵ  

σs is large  Order 1/ϵ  
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Splitting up the Transport Eq. by Order 

 If ϵ is very small  the terms of order 1/ϵ are only effected 

by other terms of order 1/ϵ 
• By canceling out all other terms in the equation we’re left with a 

1/ϵ order equation 

 The same can be done for terms of order 1 and terms of 

order ϵ 

 Thus the equation 

can be used to make 3 separate equations: one with terms 

of order 1/ϵ, another of order 1, and another of order ϵ 
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Equation of Order 1/ϵ 

 By noticing that the equation above is for an infinite 

medium with no source and no absorption, we know the 

solution will be a Maxwellian   

 After eliminating smaller terms, the 1/ϵ order equation is   
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Equation of Order 1 

 After eliminating all other terms, the equation of order 1 is  

 After multiplying both sides by μ and integrating from -1 

to 1 we arrive at 

where S1 is a group-to-group scattering operator for the 

first Legendre moment 
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Equation of Order ϵ 

 After eliminating all other terms, the equation of order ϵ is   

 After multiplying both sides by μ and integrating from -1 

to 1, and using the property that  

it can be shown that 
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The Drift-Diffusion Equation 

 After combining resulting equations of order 1/ϵ, 1, and ϵ 

we arrive at the drift-diffusion equation 

Diffusion Drift 
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Discretizing the Drift-Diffusion Eq.  

 We used a summation instead of an integral for calculating 

the macroscopic absorption cross section 

 M g  is the integral of the local Maxwellian between the 

energy bounds for group g 
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Discretizing the Drift-Diffusion Eq.  
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First Benchmark for Drift-Diffusion Equation 

 Verify whether this drift-diffusion equation is indeed an 

asymptotic limit to the neutron transport equation 

 MCNP6 was used to construct the test problem  

• Graphite slab with a 1-eV neutron source uniformly 

distributed within the slab 

• Fixed linear temperature gradient across the slab 

• No incoming neutrons in MCNP6 simulation 
o Thus, zero-flux boundary conditions were used at both boundaries of 

the slab for the analytical model  
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Simplistic Linear Temperature Gradient 

 NJOY-99 was used to generate continuous-energy cross sections 

at discrete temperatures for MCNP6 and corresponding multi-

group cross sections for the analytical model 

 Blue dots indicate “detector locations” 
• These are used to compare MCNP6 results to our analytical model 
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Group Structure 

 The following group structure was used in the analytical models 
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Results for Slab with Linear Temperature Gradient 
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Distribution of Neutron Energies in Different Slab Locations 
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Quadratic Temperature Gradient 
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THE DRIFT-DIFFUSION LIMIT OF 
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Conclusion 

 Numerical results show that the transport of thermal 

neutrons in the absence of strong sources and absorbers 

can be described by a drift-diffusion model 

 The model has a scalar flux that is a Maxwellian 

corresponding to the local material temperature 
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Future Work 

 The drift-diffusion solution agreed with an MCNP6 solution in 

the interior of both slab-geometry problems 

 Near the boundary though, there was a discrepancy between the solutions 

 The derivation of appropriate boundary conditions, as well as initial 

conditions for the time dependent case, should be the topic of future work 

 In the test problems involving a graphite slab, the value of the 

drift velocity was small compared to the diffusion coefficient 

 After deriving appropriate initial conditions and boundary conditions, we 

can experiment with problems with large drift velocities 



QUESTIONS? 
 


