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Recent progress has produced robust spherical 
harmonics methods 

 Unicorns, a word that rhymes with orange, and a robust spherical harmonics 
method for x-ray radiation transport 
  Only one of these things exists* 

  I wouldn’t have been able to say that spherical harmonics can be made robust as 
little as a year ago 
  I’ll talk about one method 

  In this talk I’ll discuss… 
  Why one might want to develop such a method, 
  What are the roadblocks, 
  What remains to be done. 

 Along the way they’ll show some results 
  Numerical and analytical 

  I’ll also introduce a new way to solve the transport equation that looks to be 
efficient and accurate 
  The idea is to split the transport equation based on whether particles have collided 

during a time step or not. 
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What are we solving? 

 Specifically, in this talk we will be dealing with radiation transport in high energy 
density (HED) systems 
  The radiation is coupled to the material through collisions and the blackbody emission 

  In HED systems radiation transport is a significant contribution to the dynamics of 
the system 
  At high enough temperatures the radiation flux and pressure can be comparable to the 

hydrodynamic energy flux and pressure 
  Ignoring radiation therefore ignores much about the evolution of the system. 

 As such, radiation transport is an important part of radiation hydrodynamics 
calculations where radiation in the system affects the system evolution 
  E.g. radiating shocks, inertial confinement fusion, lightning 

 Unfortunately, the cost of solving the equations that govern the radiation transport 
can be prohibitively expensive 
  The specific intensity of radiation is described by 7 independent variables (3 space, 2 

direction, 1 energy, 1 time) 
  This makes the issue of developing inexpensive and accurate transport methods critical 

to high fidelity simulation of rad-hydro systems. 
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What are we solving? (continued) 

  In this talk we’ll be solving the an equation for the transport of gray x-rays 
coupled to an equation describing the material internal energy 

 Where 

 No scattering or frequency dependence (for simplicity) 

1

c
∂tI + Ω ·∇I + σaI =

cσa

4π
aT 4

Cv∂tT = cσa

(
Er − aT 4

)

I(!r,Ω, t) = specific intensity, T (!r, t) = material temperature

Er(!r, t) =

∫

4π
dΩI(!r,Ω, t) = radiation energy density

Ω ∈ S2 = a direction on the unit sphere

a = radiation constant, c = speed of light

σa = absorption opacity (units of inverse length)



Texas A&M Nuclear Engineering  

1876 

R. G. McClarren 

Approaches to solving the transport equation 

 Methods for solving the transport equation are generally classified according to 
how they treat the angular variable (Ω). 

 Discrete ordinates methods (Sn) solve the transport equation along particular 
directions and then use a quadrature rule to compute the radiation energy density. 
  There has been a lot of work on efficient solution techniques for this method. 
   Ray effects can be a problem 

 Monte Carlo methods sample the phase space and track particles along 
trajectories and stochastically model collisions and emission 
  Implicit Monte Carlo (IMC) is the most famous and widely used of these methods. 
  Can give excellent answers to the patient, though noise and overheating are issues 
  Unlike Monte Carlo for linear problems, the limit of an infinite number of particles is not the exact 

solution (linearization, temporal, and spatial errors in IMC). 

 Spherical harmonics methods (Pn) represent the angular variable using a 
truncated spherical harmonics expansion. 
  Can give exponential convergence for smooth solutions 
  The truncated expansion leads to oscillations known as wave effects 
  Little work has been done on efficient solution techniques 

 Flux-limited diffusion represents the transport operator with a diffusion process 
  Particles move from high concentrations to low concentrations 
  As a result particles flow like smoke 
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Why (or why not) the spherical harmonics method? 

 Using a orthogonal basis should be accurate in describing the radiation intensity in 
many cases 
  More accurate than pointwise estimates 

 When the solution is discontinuous, however, this representation can be 
misleading 
  Gibbs phenomenon (oscillations) 

 The intensity and radiation energy density should always be positive for physical 
reasons.  
  The oscillations in the spherical harmonics representation can make these negative! 
  Worse these can drive the material temperature negative. 

 Except for low order approaches there has been no successful method to eliminate 
these problems (until recently): 
  The Mn methods expand in an exponential basis rather than a polynomial basis. 

•  Above n=1 an optimization problem must be solved to find the moments. 
  Closures for the P1 equations have been proposed 

•  Minerbo, Kershaw, Levermore-Pomraning, etc. 

 There are two techniques that can eliminate these negative solutions and 
oscillations. 
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Negative Energy Densities in the Pn solutions 

 One might be tempted to say, “I’ll just make my n high enough so that I 
avoid these negative solutions.” 

 It turns out that is not possible to have a finite expansion that is 
bulletproof to negative solutions. 

 Theorem (McClarren, et al): For any finite value of n there exists a 
transport problem where the Pn solution will have a negative energy 
density. 

 Therefore, if we want to guarantee that our solution will never go 
negative we have to change the expansion or the resulting equations. 

 The proof of the theorem gives us a choice of what we must change. 
  The proof also relies on the plane to point transform by which we write the solution 

from a point source to the solution from a planar source. 

McClarren et al. On solutions to the P-n equations for thermal radiative transfer.  
Journal of Computational Physics (2008) vol. 227 (5) pp. 2864-2885 
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Plane to Point Transform 

 Consider the solution due to an infinite, pulsed, planar source at x=0. 

 Now we can consider the plane as being comprised of many point sources 

                     Where                        is the solution at a distance r from a point source 

x

x

Er,point(r, t)

Er,plane(x, t) =

∫ ∞

−∞
dy

∫ ∞

−∞
dz Er,point

(√
x2 + y2 + z2

)

Er,plane(x, t)yz
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Plane to Point Transform 

 We can invert this formula to get the solution from a point source in terms of the 
planar solution:  

 This transform is only valid if the underlying equations are 
  Linear 
  Rotationally invariant 

  In vacuum the solution to the Pn equations from a pulsed, planar source is a series 
of delta functions traveling out from the origin 

 The derivative of this solution is both positive and negative 
  Therefore, the radiation energy density due to a point source will be negative 

somewhere. 
  This will be the case for any finite n 

Er,point = − 1

2r
∂xEr,plane(x)|x=r

Er,plane =
n∑

k=0

akδ(x− vkt)
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To fix the equations we have a choice 

 To use the plane to point transform we needed rotational invariance and linearity. 
 The delta functions in the Pn solution were a result of the Pn equations being 

hyperbolic (information only travels at a finite speed). 
 Therefore, we need to break one of these properties to ensure positivity. 
 Losing linearity seems to be the best way to go 

  X-rays do travel with finite speed 
  Loss of rotational invariance can cause artifacts in the solution. 

 Discrete ordinates methods are not rotationally invariant 
  If I rotate the coordinate system, the location of the ordinates changes 
  This results in ray effects 

 Diffusion methods are not hyperbolic 
 Of course this is just to guarantee positive solutions 

  We might be able to do some other tricks that make negative solutions go away when 
they appear. 
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More on negative solutions 

 “But my problems don’t have any vacuum regions.” 
 Even if the problems you want to solve don’t have any evacuated regions, 

negativity can still result 
  On short enough time scales any material behaves like a vacuum. 

•  If I look at time scales much shorter than the time for absorption and re-emission. 
  In multigroup problems, the some materials might look like a vacuum to the 

high energy photons. 
 “My problems don’t have point sources” 
 Shadows in the solution can also lead to negative energy densities 

  A shadow looks like a step function in angular space, fitting this with spherical 
harmonics will lead to negative values. 

  In spherical geometry in the absence of point sources, negatives should not be a 
major problem 
  Can’t have a shadow in this geometry 

 Moreover, if I have  very coarse spatial grids and time steps the negative parts of 
the solution might be smeared out. 
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P7 Negative Solution Examples 

Infinite, pulsed line source 
Transport down a duct 

solution with Nx ¼ Nz ¼ 60. These figures show the lineout along the diagonal from the center of the heated
block through the cold block and into the shadow region. In this problem the time scale of the material tem-
perature was as short as about 0.1 ns. These figures show that there is significant time-integration error in both
the radiation and material temperature fields when time steps are larger than this material temperature time
scale. This is the case for the radiation field even when the time scale of radiation propagation is greater than
100 times shorter than the time step.

Another problem we solved was a modification of the ‘‘M” problem [6]. A schematic of this problem is
shown in Fig. 10. We modified the original linear problem to give it temperature feedback: the walls of the
duct have Cv ¼ 5" 1010 J=m3=keV and r ¼ 5000 m#1. There is a 300 eV isotropic radiation source entering
the middle leg of the duct, and we use the real value of the speed of light. This nonlinear version of the problem
produces negative energy densities whereas the purely scattering problem in Ref. [6] did not. Fig. 11 shows the
effect of different Pn approximations on the solution at an early time. The P 3 solution has too much energy
turning the corner of the duct; the P 7 solution shows less of this effect and displays a cone of radiation near
the top of the duct. In the P 3 solution there is a local maximum at the top of the middle leg of the duct. The P 7

solution has ‘‘waves” of energy in the outer legs of the duct. At this time, the magnitude of the negatives in the
P 3 solution was larger than that in the P 7 solution. However, a greater area of the solution was negative (for
both the energy density and material temperature) in the P 7 case.

The solution at a later time, 6 ns, is shown in Fig. 12. Here, we notice that the P 3 creates a ‘‘mushroom” of
photons near the top of the duct while the P 7 solution maintains a less rounded shape. In terms of material
heating, the P 3 solution has significant artificial heating of the outer legs of the duct. The P 7 solution shows
much less of this effect. This difference could be important in a problem where the heating of the wall affected
some other physical process (e.g. in a radiation-hydrodynamics simulation). Despite having less artificial heat-
ing in the outer legs of the duct, the P 7 solution has a larger region of artificial cooling.

Using this problem we can estimate the performance of our implicit method compared with an explicit
method. For the P 7 results of this problem, the CFL number is 150. The average number of GMRES iterations
in completing a time step is 1000 (approximately 600 in the first linear solve and 400 in the second). If we
assume an explicit method runs at a CFL number of 0.9 (just below the CFL limit), then it would take 167
explicit time steps to equal one implicit time step. To make the implicit method more efficient than the explicit
method would require an explicit time step to take the same amount of time as six GMRES iterations. We
would expect an explicit time step to take as long as several GMRES iterations. This expectation is based

Fig. 10. The ‘‘M” problem schematic: the maize colored regions are vacuum and the blue regions are dense material. (For interpretation of
the reference in colour in this figure legend, the reader is referred to see the web version of this article.)

R.G. McClarren et al. / Journal of Computational Physics 227 (2008) 2864–2885 2881
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P7 Negative Solution Examples 

R.G. McClarren, C.D. Hauck, and R.B. Lowrie
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(b) P7 Material Filter
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(c) P7 Slope Limited Filter
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Figure 2. Solutions to the pulsed line source problem at t = 1 using several methods.

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

8/14

Infinite, pulsed line source 
Transport down a duct 

on the fact that one GMRES iteration requires approximately O(M) operations where M is the number of
unknowns in a linear system. An explicit time step would require several iterations on the temperature feed-
back terms, each roughly equivalent to a GMRES iteration. Also, the process of slope limiting would be about
equivalent to a GMRES iteration. Given this back-of-the-envelope calculation the performance of the implicit
method is approximately equivalent to the performance of an explicit method. Numerical experiments show
that, for CFL numbers in the hundreds, the number of GMRES iterations required by the implicit method is
nearly constant as the CFL number changes. This result means that as the spatial grid is refined, the implicit
method will perform better than an explicit method.

To date we have not spent a great deal of effort on accelerating the implicit method. The topic of precon-
ditioning the linear systems in the two steps of the quasi-linear method is largely unexplored. If better precon-

Fig. 11. Radiation and material temperature (eV) at 0.9 ns for the thermal duct problem using different Pn orders. All problems were run
on a Cartesian mesh with a time step of Dt ¼ 0:05 ns.

2882 R.G. McClarren et al. / Journal of Computational Physics 227 (2008) 2864–2885



Texas A&M Nuclear Engineering  

1876 

R. G. McClarren 

The Filtered Pn (FPn) Method 

McClarren and Hauck, “Robust and Accurate Filtered Spherical Harmonics Expansions for Radiative Transfer”, J. Comput. Phys., 229, 16, 5597-5614, 2010.  
McClarren and Hauck, “Simulating Radiative Transfer with Filtered Spherical Harmonics”, Phys Ltr. A, 374,22, 2290-2296, 2010. 
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The Pn Reconstruction 

 The standard Pn reconstruction of the specific intensity is  

 This representation is usually derived by a straightforward expansion. 
  It is possible to derive this form as the result of an variational problem 
 Minimize the functional 

     over the        functions. 
 The solution to this problem gives the standard expansion. 
 This optimization problem tells us that the Pn expansion minimizes the square of 

the error 
    

J =

∫

4π

(
I(Ω)−

n∑

l=0

l∑

−l

Y m
l (Ω)Iml

)2

dΩ

Iml

I ≈
n∑

l=0

l∑

−l

Y m
l (Ω)Iml where Iml =

∫

4π
I(Ω)Ȳ m

l (Ω) dΩ
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Truncating a spherical harmonic series: is it wise? 
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Truncating a spherical harmonic series: is it wise? 

“Truncating a [spherical harmonics] series is a rather stupid idea.”  
John P. Boyd, Chebyshev and Fourier Spectral Methods  
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Gibbs Errors are the reason 

 As alluded to earlier, the Gibbs errors near sharp features are the reasons 
truncating is unwise. 

  In Boyd’s book he uses this figure (from geophysics) to illustrate his point 
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 As alluded to earlier, the Gibbs errors near sharp features are the reasons 
truncating is unwise. 

  In Boyd’s book he uses this figure (from geophysics) to illustrate his point 
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Gibbs errors are the reason 

 As alluded to earlier, the Gibbs errors near sharp features are the reasons 
truncating is unwise. 

  In Boyd’s book he uses this figure (from geophysics) to illustrate his point 

 A standard spherical harmonics expansion can’t capture the flat ocean next to the 
mountain 
  Making the fish rather unhappy 

  In transport these errors give us the negative solutions. 
 The answer is to change the expansion so that these errors are eliminated (or at 

least reduced). 
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A modified reconstruction 

  If we change the variational problem to minimize 

where α>0 is a parameter called the filter strength. 
 This new functional penalizes oscillations because it includes the derivative. 
 The resulting expansion is termed a filtered spherical harmonics expansion. 
 The solution to the above problem is 

 The filtered expansion is the standard expansion where the coefficients are forced 
to decrease as l increases. 

J =

∫

4π




(
I(Ω)−

n∑

l=0

l∑

−l

Y m
l (Ω)Îml

)2

+ α

(
∇2

Ω

n∑

l=0

l∑

−l

Y m
l (Ω)Îml

)2


 dΩ

Îml =
Iml

1 + αl2(l + 1)2
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Properties of the filtered expansion 

  In the limit of zero filter strength the standard expansion is recovered. 
 We still truncate the expansion at some order 

  The moments before the truncation will be decaying 

 The zeroth moment is not affected by the filter 
  Number of particles is preserved. 

 The equation of how to choose the filter strength has not been addressed 
  Picking a large filter strength would kill oscillations but might adversely affect the 

solution. 
  If the filter strength is not picked as a function of the moments, then negative 

solutions could arise 
  The filtered expansion and resulting equations are still rotationally invariant and 

hyperbolic. 
  We’ll see that this isn’t necessary in most problems.   

Îml =
Iml

1 + αl2(l + 1)2
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Standard Expansion Example: Shadow 

ACCEPTED MANUSCRIPT 
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(b) Shadow: I(µ, ϕ) = H(µ − 1
2 ), where H is the Heaviside function.

Figure 1: The PN reconstruction of the intensity for several values of N , plotted as a function of µ, with ϕ = 0 fixed.
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Filtered Expansion Example: Shadow 
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Figure 3: Filtered PN reconstructions at α = 10−3 fixed. Different expansion orders are plotted as a function of µ at ϕ = 0.

Note the P11 and P29 curves coincide.
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Filtered Expansion Example: Shadow 
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Choosing the Filter Strength 

 We want to choose the filter strength that 
  Minimizes oscillations 
  While doing the least damage to the solution. 

 The examples demonstrated that the strength should decrease as the order of the 
expansion is increased. 

 Also, the filter is most needed in regions of free streaming (i.e. where the 
material opacity is small). 
  Absorption and re-emission by the material relaxes the intensity towards an isotropic 

distribution. 
 With these in mind we choose the following form 

   is a characteristic length (to make the strength dimensionless),    is the order of 
the expansion, and     is a user defined, positive parameter 

 This form preserves the equilibrium diffusion limit 
  Specifically, for    small and positive  

α =
ω

n2(σaL+ n)2

nL
ω

σa = O(ε−1) → α = O(ε2)
ε
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Implementation 

 To date the filtered Pn expansion has been implemented by adding a source term 
to the standard Pn equations. 

 For an explicit code the source term basically acts as applying the filter to the 
expansion after every time step. 

 When solved implicitly, the source acts as a forward peaked scattering term. 
 The results I’ll show here use  

  A bilinear discontinuous Galerkin finite element spatial discretization 
  Second-order semi-implicit time integration 

 For the filter strength we set  
  L=1 cm 
    

 These parameters were used in all computations. 
ω = c∆t/∆x
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Pulsed Line Source Results 

 The first problem we solve is a 
2-D Cartesian problem 
  initial condition  

  Pure scattering medium. 
 There is an analytic transport 

solution to this problem 
(Ganapol). 

 This is a hard problem 
  Delta function of uncollided 

particles 
  Smooth region of collided particles 

 Both Pn and Sn methods have a 
hard time with this problem. 
  Gibbs errors and ray effect 

respectively 

20 CORY HAUCK AND RYAN MCCLARREN
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(f) Exact transport solution, t = 10.0

Fig. 12. Comparison of P3 and PP3–S8 for the linesource problem.

While we believe that the PPN method shows potential for solving large-scale
transport problems, there is still a need for future work. Chiefly, the fact that our
implementation is not asymptotic preserving needs to be addressed. Indeed, kinetic
discretizations like (31) and (37) were long ago abandoned by the transport community
for their lack of accuracy, especially in the diffusion limit. Implicit implementations
are also needed for steady-state and stiff multiphysics problems. Finally, paralleliza-
tion is required in order to make any implementation of the PPN system practical
and computationally competitive.

Acknowledgment. Both authors gratefully acknowledge the hospitality pro-
vided by the Institute for Pure and Applied Mathematics at the University of Cali-
fornia at Los Angeles, where some of this work was performed.

Analytic Radiation Energy Density at t = 1/c 

I(!r,Ω, 0) = δ(x)δ(y)



Texas A&M Nuclear Engineering  

1876 

R. G. McClarren 

Pulsed Line Source Results at t=1/c 
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Lineout at t=1/c 
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Lineout at t=1/c 

 The Pn results are not converging 
very well 
  The location of the oscillations is 

changing 
 The FPn solutions are converging 

  Location of hump moving to 1 

 Sn hard to tell 
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Cartesian Hohlraum problem 

 A Hohlraum like configuration in 
x-y geometry 
  Vacuum region (white) 
                          for T in keV (blue) 
  Constant specific heat 

 Using the standard Pn method 
  The material temperature went 

negative 
  This caused the simulation to crash 

 We’ll compare 
  IMC 
  Sn 
  FPn 
  FLD 

 In the solution we expect to see 
a shadow behind the center 
block 
  Until the walls heat up 
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Trad Hohlraum Results at t=0.1 sh 
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Tmat Hohlraum Results at t=0.1 sh 
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Lineouts at 0.1 sh 
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Lineout at y = 0.125 cm, t= 0.1 sh 
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Figure 12: Radiation temperature Trad for the hohlraum problem at t = 1 ns along the line z = 0.125 cm.
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Lineout at x = 0.85 cm, t= 0.1 sh 
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These results are encouraging 

 Gibbs Errors are a problem with spherical harmonics methods 
  Using a filter on the expansion addresses this problem 

 On two challenging problems the FPn method performed well 
  It was clearly the best method on the line source problem. 
  Gave comparable accuracy to IMC on the hohlraum problem 

 This method deserves strong consideration as a deterministic transport 
option. 

 Still some investigation to be performed 
  Multigroup: group dependent filters 
  RZ and 3D geometry 
  Time dependent filters 
  Efficient numerical methods 
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A Collisional Splitting Scheme for Radiation 
Transport 
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There are two important limits of the transport 
equation. 

 When there is no scattering or emission, the directions of particle travel don’t talk 
to each other 

  The solution at r is just an integral from the source Q to r 
 The opposite case where absorption/emission dominates leads to a diffusion 

equation for the material temperature 

 How one solves the equation in each case would be different 
  In the streaming dominated case  

  Ray tracing, integral transport, etc. 

  In the diffusion case 
  Low order transport (P1, S2)  
  Flux-limited diffusion 

 Many problems have regions of both types or are intermediate 
  The hohlraum problem we talked about above had both regions 
  Different groups might be thin or thick in a multifrequency calculation 

1

c
∂tI + Ω ·∇I + σaI = Q

Cv∂tT + a∂tT
4 = ∇ ac

3σa
∇T 4
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The common approach 

 Takes a method that works well in one limit and tries to fix it in the other. 
 Not a lot of success in doing this. 
  Implicit Monte Carlo is efficient in optically thin media 

  Inefficient in a diffusive medium due to tracking lots of collisions. 
  Discrete Diffusion MC and other approaches attempt to address this 

 Discrete Ordinates methods  
  Have ray effects in thin regions 
  Ray effect mitigation techniques are not very robust 
  Biased quadrature sets can help. 
  It optically thick regions, the solutions can be more expensive. 

 Spherical Harmonics works in thick problems 
  Gibbs errors in streaming dominated regions 
  Filtered expansions attempt to address this. 

 Flux-limited diffusion 
  Can work well in thick problems 

 Other methods exist, but not works well in all problems. 
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Idea: Split the transport equation based on whether 
particles have collided or not 

 Consider the transport equation with the emission source linearized over a time 
step 

 Now, write the intensity as                        and rearrange the equations 

where  

 These split equations have split the transport problem into 
  A pure absorber equation for particles that have not collided during the time step 
  An equation with an isotropic source for particles that have collided during the time 

step. 

I = Iu + Ic

In+1 − In

c∆t
+ Ω ·∇In+1 + σaI

n+1 =
(1− f)σac

4π
En+1

r +
fσa

4π
acT 4

n

Ω ·∇In+1
u + σ∗

aI
n+1
u =

fσa

4π
acT 4

n +
Inu + Inc
c∆t

Ω ·∇In+1
c + σ∗

aI
n+1
c =

(1− f)σac

4π

(
En+1

r,c + En+1
r,u

)

σ∗
a = σa +

1

c∆t
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What does this split buy me? 

 The first equation can be solved using a method that is accurate and efficient for 
pure absorber problems 
  Monte Carlo (won’t have to track multiple collisions) 
  High order discrete ordinates (one transport sweep) 
  Ray tracing, etc. 

 The solution to the second equation should be close to isotropic 
  Use a low order transport method (or diffusion) to solve it 

 Only one equation contributes in the limits 
  In the free streaming limit only the uncollided equation contributes 
  In the diffusion limit only the collided equation matters 

 We then can get transport effects nearly for free 
  In one sweep or history per particle 

 Can get arbitrary accuracy: 
  Have the flexibility to solve either piece with as accurate a method as I want. 

 The split can be generalized into an arbitrary number of steps 
  Instead of doing one collision then the collided equation, I could do more 

 This split could be easily implemented in existing codes 
  IMC code with a DDMC option  (Use IMC on uncollided, DDMC for collided) 
  Sn code with diffusion preconditioning 
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Coupling low order to high order transport 
approximations is not new. 

 The quasi-diffusion method (Goldin 1964) uses discrete ordinates to compute the 
particle pressure tensor,             
  This particle pressure is used to close the diffusion equation. 
  In principle this method solves the full transport equation 
  Computing the pressure cannot be done in one transport sweep. 

 Diffusion-Monte Carlo methods have been proposed  
  Simulate the particles with Monte Carlo until they enter a diffusive region, then make 

them “diffusion” particles. 
  Treating the interfaces between regions is tricky. 

 Using the discrete ordinates equations to inform diffusion  has been proposed for 
gas cooled nuclear reactors (Larsen 2009) 
  Under certain conditions one can compute an anisotropic diffusion tensor using one or 

several transport sweeps. 
 Splitting the method based on whether or not a particle has collided is new. 



Texas A&M Nuclear Engineering  

1876 

R. G. McClarren 

Example: Flux-limited Diffusion for the collided 
equation 

 We can solve the system via the following procedure: 
  Solve the uncollided equation via ray tracing or high order Sn 

  Then compute  

  Then solve the diffusion equation with a flux limiter 

  Finally, compute  

Ω ·∇In+1
u + σ∗

aI
n+1
u =

fσa

4π
acT 4

n +
Inu + Inc
c∆t

En
r,u =

1

c

∫

4π
In+1
u dΩ

−∇ ·Dn∇En+1
r,c +

(
fσa +

1

c∆t

)
En+1

r,c = (1− f)σaE
n+1
r,u

Dn =

(
(3σ∗

a)
2 +

|∇En
r |2

(En
r )

2

)1/2

In+1
c =

1

4πc
En+1

r,c − 1

3σ∗
ac

Ω ·∇En+1
r,c
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Initial 2-D Results for Linear Transport 

 A Hohlraum like configuration in 
x-y geometry 
  Vacuum region (white) 
  Strong scattering (blue) 

 To solve this problem we 
generally need to have very high 
angular accuracy to capture the 
correct solution. 

 The results demonstrate that we 
only need high order treatments 
in the uncollided part to get 
good answers. 

 We’ll compare 
  S20 
  S8 
  FLD 
  Split S20/FLD 

Problem Layout 
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2-D Results at t = 1.3/c 
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Performance on 2-D Problem 

 Given that this is a simple implementation with first-order spatial discretizations,  
  it is hard to say that this new method is going to revolutionize transport calculations. 

 We did observe, however, that the Split solution only spent 10% of the solution 
time solving the uncollided part 
  This is notable because for this 10% effort all of the features of the high-order 

transport solution were captured. 
  How this will work in other problems is an open question. 

 Still a lot to look into 
  We did not analyze how material interfaces behave 

•  These might require an asymptotic preserving method. 
  Boundary conditions we not discussed 

•  The most straightforward implementation is to have all incoming particles treated as 
uncollided 

•  Reflecting boundaries? 
  Better time accuracy 

•  Higher order integration is desireable in some problems 
•  TBDF-2 and other robust scheme should apply to this technique 

•  To make the split more accurate we could use Strang splitting 
  I only used high order Sn to solve the uncollided equation 

•  Need to look at Monte Carlo and integral techniques for this equation. 
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New methods for HED radiative transfer are being 
developed 

 The spherical harmonics method, in its standard form, has robustness issues 
  Gibbs errors lead to negative energy densities 
  These errors also hurt accuracy of method 
  Negative solutions can arise regardless of order of expansion 

 By applying a filter to the spherical harmonics expansion 
  The robustness issues are addressed 
  Accuracy is greatly improved 

•  Comparable with IMC on a hohlraum problem 

  Initial work looking at splitting the transport equation based on collisions during a 
time step look promising 
  Split the solution during a time step into 

•  A pure absorber problem 
•  A scattering problem with isotropic source 

  Get transport effects for a fraction of the cost 
 Combining these developments could be fruitful. 
 Still work to be done 

  The future looks bright. 
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Thank you for listening 
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The Positive Pn (PPn) Method 

Hauck and McClarren,  The Positive Pn Method, SIAM Journal on Scientific Computing, in press 
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The Positive Pn method guarantees a positive solution 

 The standard spherical harmonics reconstruction is the solution to an optimization 
problem 

 The solution to this problem is 

Given a set of spherical harmonic moments

Iml =

∫

4π
Y m
l (Ω)I(Ω) dΩ 0 ≤ l ≤ n, −n ≤ m ≤ n

minimize:

∫

4π
f(Ω)2 dΩ

subject to:

∫

4π
f(Ω)Y m

l (Ω) dΩ = Iml 0 ≤ l ≤ n, −n ≤ m ≤ n

f(Ω) =
n∑

l=0

l∑

m=−l

Iml Y m
l (Ω)
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The Positive Pn method guarantees a positive solution 

 We modify the optimization problem to guarantee a positive reconstruction 

 We can’t enforce the constraint everywhere (this would be an infinite number of 
constraints) 
  Instead we replace the integrals with a quadrature rule and enforce positivity at each 

quadrature point 
 We can then use this form of f as a closure 
 We have effectively made the Pn method nonlinear and not rotationally invariant 

minimize:

∫

4π
f(Ω)2 dΩ

subject to:

∫

4π
f(Ω)Y m

l (Ω) dΩ = Iml 0 ≤ l ≤ n, −n ≤ m ≤ n

and f ≥ 0
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Numerical Issues 

 The positive Pn method requires solving an optimization problem in every spatial 
cell for every time step 
  These solves can be time consuming for large values of n 
  This problem is completely local and therefore scalable. 

 One has to choose a quadrature rule and order 
  The quadrature rule must integrate order n spherical harmonics exactly 
  Using product quadrature we found using a quadrature of order 2n was most efficient 

 The value of the solution at the quadrature points does not need to be stored 
between time steps, only the moments. 

 To guarantee that there exists a solution to the optimization problem 
  One needs to make sure that the spatial and temporal discretizations do not introduce 

negative solutions. 
  To accomplish this we have used first order discretizations. 

    


