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Recent progress has produced robust spherical
harmonics methods

@ Unicorns, a word that rhymes with orange, and a robust spherical harmonics
method for x-ray radiation transport

» Only one of these things exists*
€ I wouldn’t have been able to say that spherical harmonics can be made robust as
little as a year ago
» [I’ll talk about one method

¥ In this talk I’ll discuss...

» Why one might want to develop such a method,
» What are the roadblocks,
» What remains to be done.

€ Along the way they’ll show some results
» Numerical and analytical
@ I'll also introduce a new way to solve the transport equation that looks to be

efficient and accurate

» The idea is to split the transport equation based on whether particles have collided
during a time step or not.
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What are we solving?

@ Specifically, in this talk we will be dealing with radiation transport in high energy
density (HED) systems

» The radiation is coupled to the material through collisions and the blackbody emission

€ In HED systems radiation transport is a significant contribution to the dynamics of
the system
> At high enough temperatures the radiation flux and pressure can be comparable to the
hydrodynamic energy flux and pressure
» Ignoring radiation therefore ignores much about the evolution of the system.

€ As such, radiation transport is an important part of radiation hydrodynamics
calculations where radiation in the system affects the system evolution

> E.g. radiating shocks, inertial confinement fusion, lightning

€ Unfortunately, the cost of solving the equations that govern the radiation transport
can be prohibitively expensive
> The specific intensity of radiation is described by 7 independent variables (3 space, 2
direction, 1 energy, 1 time)

» This makes the issue of developing inexpensive and accurate transport methods critical
to high fidelity simulation of rad-hydro systems.
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What are we solving? (continued)

@ In this talk we’ll be solving the an equation for the transport of gray x-rays
coupled to an equation describing the material internal energy

1 a
I +Q-VI+o,1 = © aT?
C

-
C,0:T = co, (Er — aT4)
€ Where
I(7,§2,t) = specific intensity, 7T(7,t) = material temperature
E.(7t) = / dQU (7, €2, t) = radiation energy density
47

() € Sy = a direction on the unit sphere
a = radiation constant, c¢ = speed of light

0, = absorption opacity (units of inverse length)

@ No scattering or frequency dependence (for simplicity)
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Approaches to solving the transport equation

¥ Methods for solving the transport equation are generally classified according to
how they treat the angular variable (Q)).

@ Discrete ordinates methods (S,) solve the transport equation along particular
directions and then use a quadrature rule to compute the radiation energy density.

> There has been a lot of work on efficient solution techniques for this method.
>  Ray effects can be a problem

¥ Monte Carlo methods sample the phase space and track particles along
trajectories and stochastically model collisions and emission

» Implicit Monte Carlo (INMC) is the most famous and widely used of these methods.
» Can give excellent answers to the patient, though noise and overheating are issues
» Unlike Monte Carlo for linear problems, the limit of an infinite number of particles is not the exact

solution (linearization, temporal, and spatial errors in IMC).
€ Spherical harmonics methods (Pn) represent the angular variable using a
truncated spherical harmonics expansion.

» Can give exponential convergence for smooth solutions
» The truncated expansion leads to oscillations known as wave effects
> Little work has been done on efficient solution techniques

@ Flux-limited diffusion represents the transport operator with a diffusion process

> Particles move from high concentrations to low concentrations
> As a result particles flow like smoke
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Why (or why not) the spherical harmonics method? @i@i‘:«‘&

P

€ Using a orthogonal basis should be accurate in describing the radiation intensity in
many cases
> More accurate than pointwise estimates

€ When the solution is discontinuous, however, this representation can be
misleading
» Gibbs phenomenon (oscillations)

€ The intensity and radiation energy density should always be positive for physical
reasons.

> The oscillations in the spherical harmonics representation can make these negative!
» Worse these can drive the material temperature negative.

¥ Except for low order approaches there has been no successful method to eliminate

these problems (until recently):

> The M, methods expand in an exponential basis rather than a polynomial basis.
Above n=1 an optimization problem must be solved to find the moments.

> Closures for the P; equations have been proposed
Minerbo, Kershaw, Levermore-Pomraning, etc.

& There are two techniques that can eliminate these negative solutions and
oscillations.
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Negative Energy Densities in the P, solutions

€ One might be tempted to say, “I’ll just make my n high enough so that I
avoid these negative solutions.”

@ It turns out that is not possible to have a finite expansion that is
bulletproof to negative solutions.

@ Theorem (McClarren, et al): For any finite value of nthere exists a
transport problem where the P, solution will have a negative energy
density.

@ Therefore, if we want to guarantee that our solution will never go
negative we have to change the expansion or the resulting equations.

@ The proof of the theorem gives us a choice of what we must change.

» The proof also relies on the plane to point transform by which we write the solution
from a point source to the solution from a planar source.

McClarren et al. On solutions to the P-n equations for thermal radiative transfer.
Journal of Computational Physics (2008) vol. 227 (5) pp. 2864-2885
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Plane to Point Transform

® Consider the solution due to an infinite, pulsed, planar source at x=0.

Er,plane(xa t)

—>
x

€ Now we can consider the plane as being comprised of many point sources

E; plane(x,t) = / dy / dz By point (\/{BQ + y? + 22)

—>
x

Where Ey point (7, ) is the solution at a distance r from a point source
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Plane to Point Transform

€ We can invert this formula to get the solution from a point source in terms of the
planar solution:

1
Er,point — = Q_TaazEr,plane (CE) |:c:r

@ This transform is only valid if the underlying equations are
» Linear
» Rotationally invariant
@ In vacuum the solution to the P, equations from a pulsed, planar source is a series
of delta functions traveling out from the origin

n

Er,plane — Z ak5(:v — Ukt)
k=0

@ The derivative of this solution is both positive and negative

» Therefore, the radiation energy density due to a point source will be negative
somewhere.
> This will be the case for any finite n
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To fix the equations we have a choice

€ To use the plane to point transform we needed rotational invariance and linearity.

@ The delta functions in the P, solution were a result of the P, equations being
hyperbolic (information only travels at a finite speed).

@ Therefore, we need to break one of these properties to ensure positivity.

@ Losing linearity seems to be the best way to go
» X-rays do travel with finite speed
> Loss of rotational invariance can cause artifacts in the solution.
@ Discrete ordinates methods are not rotationally invariant
» If I rotate the coordinate system, the location of the ordinates changes
» This results in ray effects

@ Diffusion methods are not hyperbolic

@ Of course this is just to guarantee positive solutions

> We might be able to do some other tricks that make negative solutions go away when
they appear.
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More on negative solutions

€ “But my problems don’t have any vacuum regions.”

@ Even if the problems you want to solve don’t have any evacuated regions,
negativity can still result

» 0n short enough time scales any material behaves like a vacuum.
« IfI look at time scales much shorter than the time for absorption and re-emission.

> In multigroup problems, the some materials might look like a vacuum to the
high energy photons.

€ "My problems don’t have point sources”

€ Shadows in the solution can also lead to negative energy densities

» A shadow looks like a step function in angular space, fitting this with spherical
harmonics will lead to negative values.

@ In spherical geometry in the absence of point sources, negatives should not be a
major problem
» Can’t have a shadow in this geometry

€ Moreover, if I have very coarse spatial grids and time steps the negative parts of
the solution might be smeared out.
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P. Negative Solution Examples

Infinite, pulsed line source

« 1.0 cm >

1.0cm

Isotropic Incoming Flux

Transport down a duct
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P. Negative Solution Examples
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Infinite, pulsed line source

Transport down a duct
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The Filtered P, (FP,) Method

McClarren and Hauck, “Robust and Accurate Filtered Spherical Harmonics Expansions for Radiative Transfer”, J. Comput. Phys., 229, 16, 5597-5614, 2010.
McClarren and Hauck, “Simulating Radiative Transfer with Filtered Spherical Harmonics”, Phys Ltr. A, 374,22, 2290-2296, 2010.
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The P, Reconstruction

€ The standard P, reconstruction of the specific intensity is

n l
I~ ZZYlm(Q)Ilm where [;" = / I(Q)Y;™(Q) d
=0 —I am
@ This representation is usually derived by a straightforward expansion.
@ It is possible to derive this form as the result of an variational problem
€ Minimize the functional o 2
J = I(Q) =) ) v™L"| 49
am =0 —I
over the [;™ functions.
@ The solution to this problem gives the standard expansion.

@ This optimization problem tells us that the P, expansion minimizes the square of
the error

¢
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Truncating a spherical harmonic series: is it wise?
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Truncating a spherical harmonic series: is it wise?

Chebyshev and
Fourier Spectral
Methods

“Truncating a Lspherical harmonics] series is a rather stupid idea.”
John P. Boyd, Chebyshev and Fourier Spectral Methods
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Gibbs Errors are the reason

@ As alluded to earlier, the Gibbs errors near sharp features are the reasons
truncating is unwise.

@ In Boyd’s book he uses this figure (from geophysics) to illustrate his point

Real
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Gibbs Errors are the reason

@ As alluded to earlier, the Gibbs errors near sharp features are the reasons
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Gibbs errors are the reason

@ As alluded to earlier, the Gibbs errors near sharp features are the reasons
truncating is unwise.

@ In Boyd’s book he uses this figure (from geophysics) to illustrate his point

Real Gibbs

@ A standard spherical harmonics expansion can’t capture the flat ocean next to the
mountain

> Making the fish rather unhappy
€ In transport these errors give us the negative solutions.

€ The answer is to change the expansion so that these errors are eliminated (or at
least reduced).
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A modified reconstruction

€ If we change the variational problem to minimize
_ o

J = ZZYZ " +o VQZZYZ df

dm —0 —I —0 —I

where o¢>0 is a parameter called the filter strength.
@ This new functional penalizes oscillations because it includes the derivative.
€ The resulting expansion is termed a filtered spherical harmonics expansion.
@ The solution to the above problem is m
7 l

m

LT 14 al2(1+1)2

@ The filtered expansion is the standard expansion where the coefficients are forced
to decrease as /increases.
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Properties of the filtered expansion

S ]lm
L 14 al2(1+1)2

@ In the limit of zero filter strength the standard expansion is recovered.

® We still truncate the expansion at some order
® The moments before the truncation will be decaying

@ The zeroth moment is not affected by the filter
» Number of particles is preserved.

@ The equation of how to choose the filter strength has not been addressed

> Picking a large filter strength would kill oscillations but might adversely affect the
solution.

@ If the filter strength is not picked as a function of the moments, then negative
solutions could arise

> The filtered expansion and resulting equations are still rotationally invariant and
hyperbolic.

> We’ll see that this isn’t necessary in most problems.
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Choosing the Filter Strength

€ We want to choose the filter strength that
» Minimizes oscillations
» While doing the least damage to the solution.

€ The examples demonstrated that the strength should decrease as the order of the
expansion is increased.

@ Also, the filter is most needed in regions of free streaming (i.e. where the
material opacity is small).

» Absorption and re-emission by the material relaxes the intensity towards an isotropic

distribution.
¥ With these in mind we choose the following form
o,
@ ="3 2
n?(c,L + n)

L is a characteristic length (to make the strength dimensionless), n is the order of
the expansion, and w is a user defined, positive parameter

@ This form preserves the equilibrium diffusion limit
> Specifically, for € small and positive

a=0(E) = a=0()
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Implementation

& To date the filtered Pn expansion has been implemented by adding a source term
to the standard Pn equations.

@ For an explicit code the source term basically acts as applying the filter to the
expansion after every time step.

€ When solved implicitly, the source acts as a forward peaked scattering term.

@ The results I'll show here use
> A bilinear discontinuous Galerkin finite element spatial discretization
» Second-order semi-implicit time integration
@ For the filter strength we set
» L=1cm
> w=cAt/Ax

€ These parameters were used in all computations.
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Pulsed Line Source Results

@ The first problem we solve is a
2-D Cartesian problem

> initial condition
I(7,9,0) = 6(x)d(y)

> Pure scattering medium.

@ There is an analytic transport
solution to this problem
(Ganapol).

@ This is a hard problem

» Delta function of uncollided
particles

» Smooth region of collided particles

@ Both P, and S, methods have a
hard time with this problem.

» Gibbs errors and ray effect
respectively

—

1.5

1 0 1

Analytic Radiation Energy Density att = 1/c
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Pulsed Line Source Results at t=1/c

Transport
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Lineout at t=1/c
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Lineout at t=1/c

@ The P, results are not converging : ;
Very WEII 3; —— Transport )

> The location of the oscillations is .| ;
changing f R AN :

@ The FP_ solutions are converging
> Location of hump moving to 1

€ S hard to tell
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Cartesian Hohlraum problem

€ A Hohlraum like configuration in 1
X-y geometry o

> Vacuum region (white)
> o, = 100773 for T in keV (blue)
> Constant specific heat

® Using the standard P, method

» The material temperature went
negative
> This caused the simulation to crash

& We'll compare

o©
3
o

1 keV temperature source
o©
n
()]

0.05

> IMC 000.05 0.25 0.75 0.951
> Sn 1cmX1cm

> FP, Problem Layout

» FLD

@ In the solution we expect to see
a shadow behind the center
block

» Until the walls heat up
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T.., Hohlraum Results at t=0.1 sh
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T __. Hohlraum Results at t=0.1 sh
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Lineouts at 0.1 sh
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These results are encouraging

@ Gibbs Errors are a problem with spherical harmonics methods
> Using a filter on the expansion addresses this problem
@ On two challenging problems the FP, method performed well

» It was clearly the best method on the line source problem.
» Gave comparable accuracy to IMC on the hohlraum problem

€ This method deserves strong consideration as a deterministic transport
option.

@ Still some investigation to be performed

> Multigroup: group dependent filters
» RZ and 3D geometry

> Time dependent filters

> Efficient numerical methods
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A Collisional Splitting Scheme for Radiation
Transport
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There are two important limits of the transport
equation.

€ When there is no scattering or emission, the directions of particle travel don’t talk

to each other 1
—O0ll +Q-VI+o,1 =0Q
C

> The solution at r is just an integral from the source @ to r

€ The opposite case where absorption/emission dominates leads to a diffusion
equation for the material temperature

C.o,T + a0, T* = VB—VT4
Oa
€ How one solves the equation in each case would be different

@ In the streaming dominated case
» Ray tracing, integral transport, etc.

@ In the diffusion case
» Low order transport (P;, S,)
> Flux-limited diffusion
€ Many problems have regions of both types or are intermediate

» The hohlraum problem we talked about above had both regions
> Different groups might be thin or thick in a multifrequency calculation
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The common approach

& Takes a method that works well in one limit and tries to fix it in the other.
€ Not a lot of success in doing this.

@ Implicit Monte Carlo is efficient in optically thin media

> Inefficient in a diffusive medium due to tracking lots of collisions.

» Discrete Diffusion MC and other approaches attempt to address this
@ Discrete Ordinates methods

» Have ray effects in thin regions
» Ray effect mitigation techniques are not very robust

> Biased quadrature sets can help.
» It optically thick regions, the solutions can be more expensive.

@ Spherical Harmonics works in thick problems

> Gibbs errors in streaming dominated regions
» Filtered expansions attempt to address this.

@ Flux-limited diffusion
» Can work well in thick problems

@ Other methods exist, but not works well in all problems.
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|dea: Split the transport equation based on whether
particles have collided or not

@ Consider the transport equation with the emission source linearized over a time
step

In—|—1_In 1 — N N
_|_Q.v1n—|—1_|_0_aln—i—l _ ( f)O' CETL—|—1_|_ fO- CLCT4

cAt A7 t A1 "

€ Now, write the intensity as [ = [, + I. and rearrange the equations

I+ 1"
Q0. VIn—l—l *In—l—l fO'a T4 u c
w T Oaly 47Tac + cAt
0. v[n—|—1 _|_O_>|<In—|—1 _ (1 T f)O-aC (En—l—l _I_En—i—l)
c . a‘c Ar r,C r,u
where 0, = 04 + —— N

@ These split equations have split the transport problem into

> A pure absorber equation for particles that have not collided during the time step

» An equation with an isotropic source for particles that have collided during the time
step.
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What does this split buy me?

@ The first equation can be solved using a method that is accurate and efficient for
pure absorber problems

» Monte Carlo (won’t have to track multiple collisions)
> High order discrete ordinates (one transport sweep)
» Ray tracing, etc.

@ The solution to the second equation should be close to isotropic
> Use a low order transport method (or diffusion) to solve it

€ Only one equation contributes in the limits

> In the free streaming limit only the uncollided equation contributes
> In the diffusion limit only the collided equation matters

€ We then can get transport effects nearly for free
> In one sweep or history per particle

€ Can get arbitrary accuracy:
> Have the flexibility to solve either piece with as accurate a method as I want.

@ The split can be generalized into an arbitrary number of steps
» Instead of doing one collision then the collided equation, I could do more

@ This split could be easily implemented in existing codes
» IMC code with a DDMC option (Use IMC on uncollided, DDMC for collided)
» S, code with diffusion preconditioning
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Coupling low order to high order transport
approximations is not new.

@ The quasi-diffusion method (Goldin 1964) uses discrete ordinates to compute the
particle pressure tensor,

» This particle pressure is used to close the diffusion equation.
» In principle this method solves the full transport equation
» Computing the pressure cannot be done in one transport sweep.

@ Diffusion-Monte Carlo methods have been proposed

» Simulate the particles with Monte Carlo until they enter a diffusive region, then make
them “diffusion” particles.

» Treating the interfaces between regions is tricky.

@ Using the discrete ordinates equations to inform diffusion has been proposed for
gas cooled nuclear reactors (Larsen 2009)

» Under certain conditions one can compute an anisotropic diffusion tensor using one or
several transport sweeps.

@ Splitting the method based on whether or not a particle has collided is new.
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Example: Flux-limited Diffusion for the collided
equation

€ We can solve the system via the following procedure:
> Solve the uncollided equation via ray tracing or high order S,

I+ 17
0 . v[n—|—1 *[n—l—l fO'a T4 U c
w o T Oaly 47Tac + cAt
1
> Then compute E",, = E/ I dQ)
47

> Then solve the diffusion equation with a flux limiter

1
-V -D"VE!! + (faa CAt) EMf = (1- flo BN

\ o | [VERPNY?
D = ((30a)2 ‘|‘ ‘(E—n)‘Q )

1
47e

» Finally, compute

In—l—l En—l—l

r,c

Q- VE”“

300
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Initial 2-D Results for Linear Transport

€ A Hohlraum like configuration in
X-y geometry

> Vacuum region (white)
> Strong scattering (blue)

@ To solve this problem we
generally need to have very high
angular accuracy to capture the
correct solution.

@ The results demonstrate that we
only need high order treatments
in the uncollided part to get
good answers.

Problem Layout

& We'll compare
> Sy
> S,
> FLD
> Split S,y/FLD
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2-D Results att=1.3/c
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Performance on 2-D Problem

€ Given that this is a simple implementation with first-order spatial discretizations,
> it is hard to say that this new method is going to revolutionize transport calculations.

€ We did observe, however, that the Split solution only spent 10% of the solution
time solving the uncollided part

> This is notable because for this 10% effort all of the features of the high-order
transport solution were captured.
» How this will work in other problems is an open question.

& Still a lot to look into

» We did not analyze how material interfaces behave
* These might require an asymptotic preserving method.
» Boundary conditions we not discussed
* The most straightforward implementation is to have all incoming particles treated as
uncollided
* Reflecting boundaries?
> Better time accuracy
* Higher order integration is desireable in some problems
TBDF-2 and other robust scheme should apply to this technique
* To make the split more accurate we could use Strang splitting
» T only used high order S, to solve the uncollided equation
* Need to look at Monte Carlo and integral techniques for this equation.
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New methods for HED radiative transfer are being e
¢w«aﬁ
developed

€ The spherical harmonics method, in its standard form, has robustness issues

> @Gibbs errors lead to negative energy densities
» These errors also hurt accuracy of method
» Negative solutions can arise regardless of order of expansion

@ By applying a filter to the spherical harmonics expansion

> The robustness issues are addressed

» Accuracy is greatly improved
« Comparable with IMC on a hohlraum problem

@ Initial work looking at splitting the transport equation based on collisions during a
time step look promising

» Split the solution during a time step into
* A pure absorber problem
« A scattering problem with isotropic source

» Get transport effects for a fraction of the cost
€ Combining these developments could be fruitful.

& Still work to be done
» The future looks bright.
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Thank you for listening
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The Positive P, (PP, ) Method

Hauck and McClarren, The Positive Pn Method, STAM Journal on Scientific Computing, in press
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The Positive P, method guarantees a positive solution @awa
S %

€ The standard spherical harmonics reconstruction is the solution to an optimization

problem
Given a set of spherical harmonic moments

"= [ Yy Q)I(Q)dQY 0<I<n,—n<m<n
4

minimize: f(2)*df

subject to: f() mT)dQY=I" 0<I<n,—n<m<n

@ The solution to this problemis ]

— mysm
=2 2. 1M
[=0 m=—1
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The Positive P, method guarantees a positive solution a n

&%

€ We modify the optimization problem to guarantee a positive reconstruction

minimize: f(Q)?
subject to: f() mT)dQY=I" 0<I<n,—n<m<n
and f>0

€ We can’t enforce the constraint everywhere (this would be an infinite number of
constraints)

> Instead we replace the integrals with a quadrature rule and enforce positivity at each
quadrature point

€ We can then use this form of fas a closure
€ We have effectively made the P, method nonlinear and not rotationally invariant
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Numerical Issues

@ The positive P, method requires solving an optimization problem in every spatial
cell for every time step

» These solves can be time consuming for large values of n
» This problem is completely local and therefore scalable.
@ One has to choose a quadrature rule and order
» The quadrature rule must integrate order n spherical harmonics exactly
> Using product quadrature we found using a quadrature of order 2n was most efficient

@ The value of the solution at the quadrature points does not need to be stored
between time steps, only the moments.

€ To guarantee that there exists a solution to the optimization problem

» One needs to make sure that the spatial and temporal discretizations do not introduce
negative solutions.

» To accomplish this we have used first order discretizations.
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