# Tail Fragility as a Tool for Model Confidence

Ryan G. McClarren
University of Notre Dame

# HOW DO WE ASSESS A COMPUTATIONAL METHOD?

#### QUAM BENE NON QUANTUM

- Most of us are raised on error analysis that speaks of convergence rates.
  - These convergence rates measure the theoretical error as some discretization parameter tends to 0.
- Important to keep in mind that these are rates and not absolute measurements
  - On a given problem, with a given mesh, etc., a first-order method may have less numerical error than a fourth-order one.
- We also might use efficiency or cost metrics as well
  - Memory usage, operations per degree of freedom, strong or weak scalability, etc.

## HOW DO USERS ASSESS NUMERICAL METHODS?

QUAM BENE VIVAS REFERRE, NON QUAM DIU

- Time to solution for a given problem
- · Lack of obvious errors that clearly violate physical principles
- Lack of too much sensitivity to small changes in problem settings.

# A CODE USER'S WORKFLOW DOES NOT RESEMBLE A CONVERGENCE STUDY A RECIPE FOR SUCCESSFUL COMPUTATION (?)

- Try to solve the problem with a refined geometry and numerical parameters (good mesh, tight tolerances on time step control, and refined in every sense) as advised by the code developers and computational scientists.
- Find out that it takes too long to get the solution, so coarsen something (or everything) and try again.
- · Repeat until one gets a solution in a reasonable amount of time.
- Use the settings/mesh to run a design or parameter study.
- Justify any possible errors (due to numerics, model equations, etc.) on a post hoc basis.
- Complain about code developers (this can be done at every step).

# WHAT THE DEVELOPERS AND USERS CARE ABOUT ARE NOT EXACTLY THE SAME

# MEASURING LOCAL ERROR CONVERGENCE RATES IS NOT ENOUGH QUI TOTUM VULT TOTUM PERDIT

- The fact that higher-order methods typically are more efficient in a measure of computational cost per unit error is often postulated as a reason to use these methods.
- Quantifying the local error is what most of us are trained to do (and how many methods are derived).
- Most "real" problems have solutions that violate the assumptions needed for highorder error convergence (non-smooth solutions, shocks, etc.).
- Higher-order methods also imply that the error increases at a faster rate when the mesh or other parameters are coarsened.

# LOCAL ERROR CONVERGENCE IS NOT WHAT USERS WANT

- Someone using simulation to design a component has specific design criteria or Quantities of Interest (QoI).
  - It is those Qols that the error is important in.
- Also, there are uncertainties in the problem inputs that will effect the Qols.
- When a user cares about the uncertainty in the QoI, the accuracy of the uncertainty estimates will also be important.
- It does not immediately follow that a numerical method that has good behavior with respect to local error will give adequate estimates of uncertainty.

# A THOUGHTFUL USERS DESIDERATA

- A user of code will, one hopes, be aware of the fact that a code solution is not the truth.
- Under these conditions a user should desire a method that yields estimates of QoIs and their uncertainty that are not sensitive to the particular choices the user has to make.
  - A small change in the discretization parameters should not lead to a large change in the Qols and their associated uncertainties.
  - A small change in the assumptions of the analyst should not have a large change in the output.

#### A REGULATOR OR DECISION MAKER WORRIES ABOUT THE EXTREME CASES

- When using simulation to inform a decision about safety, it is not the nominal case that is of interest, rather what happens when things go wrong.
- What is the probability of failure?
- The sensitivity of this parameter to inputs and discretization choices is important to making the solutions credible.
- The choice of physical model has a crucial role in this.
  - Does the model represent reality at these extremes?
- In 2008, most mortgage risk models assumed that the risk of default on a mortgage was independent of the risk in other loans.
  - This is true in normal times, but when everyone in a neighborhood defaults, the risks are highly correlated.

## HOW FRAGILE ARE UNCERTAINTY ANALYSES TO ASSUMPTIONS

- When one does perform an uncertainty analysis there are necessarily assumptions made in the process.
  - Type of input distributions, distribution parameters (e.g., variance), tail behavior etc.
- These assumptions lead to epistemic uncertainty and their implications are not distributional.
- Taleb and Douady (2013) use these uncertainties in input distributions to define the fragility of a uncertainty analysis:
  - For instance, how much does the probability of failure for the system increase with an increase in the variance in an input parameter?
  - Is the second derivative of the increase positive or negative?
- Different mathematical models will have different behaviors in this sense.

# THE FRAGILITY MEASURE OF TALEB AND DOUADY

- How much does the integral of the lower tail of the probability density change when a parameter of the probability distribution changes.
- K is the point below which something bad happens.
- $\lambda(s^-)$  is a parameter in the probability distribution set to make certain amount of mass  $s^-$  in the left tail.
- $\Omega$  is the center of the distribution.



#### NEW METRICS TO BENCHMARK NUMERICAL METHODS AND PHYSICS MODELS ARE NEEDED

- If we care about uncertainty and nominal values of a quantity of interest, we need to think about how the choices made when running the code affect the analysis.
- The solution verification community has worked on how to quantify numerical error, but the question of model error is much harder.
  - How does my choice of subgrid model A over model B affect my results, and which one is more correct?
- Propagating the numerical and model error to the uncertainty in the final answer is not straightforward.
- I'll present some ideas for metrics that seek to measure how choices in the solution process affect the results.

#### WE CONSIDER A QOI THAT IS A FUNCTION OF DISCRETIZATION AND RANDOM VARIABLES

- Consider a QoI,  $Q(\lambda, \xi)$ , where  $\lambda$  are discretization parameters and  $\xi$  are random variables.
- Two measures of uncertainty that we are interested in are
  - The variance in the QoI due to the random inputs,

$$V(Q)(\lambda) = \int_{-\infty}^{\infty} Q(\lambda, \xi)^2 p(\xi) d\xi - \left( \int_{-\infty}^{\infty} Q(\lambda, \xi) p(\xi) d\xi \right)^2$$

- The probability of failure,  $P_{\text{fail}}$ , i.e., the probability that Q exceeds some threshold,

$$P_{\mathrm{fail}} = 1 - F_Q(Q_U, \lambda),$$

where  $F_Q$  is the CDF of  $Q(\lambda, \xi)$  and  $Q_U$  is the failure point.

• Both of these quantities functions of the mesh parameters,  $\lambda$ .

#### THE VARIANCE IS EASIER TO ANALYZE THAN THE PROBABILITY OF FAILURE

- The sensitivity of these measures to the discretization parameters can be found by differentiating with respect to a single parameter  $\lambda_i$ .
- For the variance this is

$$\frac{\partial V}{\partial \lambda_i} = \int_{-\infty}^{\infty} 2Q(\lambda, \xi) \frac{\partial Q}{\partial \lambda_i} p(\xi) d\xi - 2 \int_{-\infty}^{\infty} Q(\lambda, \xi) p(\xi) d\xi \int_{-\infty}^{\infty} \frac{\partial Q}{\partial \lambda_i} p(\xi) d\xi$$
$$= 2E \left[ Q \frac{\partial Q}{\partial \lambda_i} \right] - 2E[Q]E \left[ \frac{\partial Q}{\partial \lambda_i} \right]$$

where E[g] is the expected value of a function g with respect to  $\xi$ .

- The sensitivity of the variance to a mesh parameter is expressed in terms of expected values involving the QoI and its sensitivity.
- The probability of failure's sensitivity is

$$\frac{\partial P_{\text{fail}}}{\partial \lambda_i} = -\frac{\partial F}{\partial \lambda_i}(Q_U, \lambda).$$

- This quantity is what I called tail fragility in the abstract.
- Unfortunately, there is a not a simple way to relate this to expected values. The best we might be able to do is a sensitivity of the result from a Monte Carlo study.

### A LARGE VALUE FOR EITHER OF THESE SENSITIVITIES IS A RED FLAG

- If the variance or the probability of failure is sensitive to the discretization parameters, it is hard to have faith in the results.
- The nominal values may be less useful than the relative values.
- Even if these sensitivities are not rigorously calculated, they should be estimated.
- If I were a making a critical decision, especially one with large consequences, I would ask an analyst for these numbers.
  - If the analyst has no clue as to these numbers, how can I have confidence.
- The discretization parameters in the above could also be choices in the underlying uncertainty (e.g., range or variance of the uncertain inputs).

#### THE SENSITIVITY OF THE VARIANCE CAN BE EXPRESSED IN TERMS OF A POLYNOMIAL EXPANSION

• If we expand the QoI in a polynomial chaos expansion,

$$Q(\xi,\lambda) = \sum_{\ell=0}^{\infty} c_{\ell}(\lambda)\phi_{\ell}(\xi),$$

where  $\phi_{\ell}(\xi)$  is an orthonormal basis function and

$$c_{\ell}(\lambda) = \int_{-\infty}^{\infty} Q(\xi, \lambda) \phi_{\ell}(\xi) p(\xi) d\xi.$$

• The sensitivity to the variance is then

$$\frac{\partial V}{\partial \lambda_i} = 2 \sum_{\ell=1}^{\infty} c_{\ell}(\lambda) \frac{\partial c_{\ell}}{\partial \lambda_i}.$$

• This indicates that when we compute the expansion coefficients, we also need to compute

$$\frac{\partial c_{\ell}}{\partial \lambda_{i}} = \int_{-\infty}^{\infty} \frac{\partial Q}{\partial \lambda_{i}}(\xi, \lambda) \phi_{\ell}(\xi) p(\xi) d\xi.$$

#### THE SENSITIVITY OF THE VARIANCE CAN BE EXPRESSED IN TERMS OF A POLYNOMIAL EXPANSION

• The sensitivity to the variance is then

$$\frac{\partial V}{\partial \lambda_i} = 2 \sum_{\ell=1}^{\infty} c_{\ell}(\lambda) \frac{\partial c_{\ell}}{\partial \lambda_i}.$$

• This indicates that when we compute the expansion coefficients, we also need to compute

$$\frac{\partial c_{\ell}}{\partial \lambda_{i}} = \int_{-\infty}^{\infty} \frac{\partial Q}{\partial \lambda_{i}}(\xi, \lambda) \phi_{\ell}(\xi) p(\xi) d\xi.$$

• If the sensitivity of the QoI is expanded

$$\frac{\partial Q}{\partial \lambda_i} = \sum_{\ell=0}^{\infty} \frac{\partial c_{\ell}}{\partial \lambda_i} \phi_{\ell}(\xi),$$

then we have the information we need to compute  $\partial V/\partial \lambda_i$ .

- Note that the sensitivity of the variance is not the same as the variance of the sensitivity.
- This result gives further evidence that adjoint calculations can be useful (the sensitivity information to any parameter is available).

## EXAMPLE CALCULATION: POINT REACTOR KINETICS

- Point Reactor Kinetics model the power of a nuclear reactor using a system of ODEs.
- We will look at a simple system of a reactor shutdown by inserting a control rod at time 0 (scram).
- We prescribe that system fail occurs if the power has not dropped by a factor 0.325 in 1 second.
- The control rod worth is a normal random variable with mean -2 and standard deviation 0.05.
- We will look at how our sensitivity measures change with a change in the time step size used, and with changes in the standard deviation.



Rod Drop solution with RK4

#### WITH A LARGER TIME STEP CERTAIN METHODS HAVE A LARGER SENSITIVITY TO TIME STEP SIZE

- We tested backward Euler, Crank-Nicolson, TR-BDF2, and Runge-Kutta 4, to integrate the ODEs with a fixed time step.
  - We perturb the time step size to compute the derivative of the variance and probability of failure to the step size.
- For large time steps, Crank-Nicolson displayed a larger sensitivity to the estimate variance in the power at time 1 with respect to the time step size.
- When the time steps get small, backward Euler was more sensitive in the variance.
- The probability of failure was not sensitive to the time step size.



#### THE PROBABILITY OF FAILURE IS CONVEX TO THE ESTIMATED STANDARD DEVIATION IN THE INPUTS

- When we increase or decrease the standard deviation of the control rod worth by 10% we find:
  - As the SD goes up, the probability of failure goes up.
  - Additionally, the second derivative is positive, implying a larger change will have an even larger effect on the probability of failure.
- The variance in the estimate has a positive first-order sensitivity, but a negative second derivative.

$$\frac{\partial P_{\text{fail}}}{\partial \sigma} \approx 1.48$$

$$\frac{\partial^2 P_{\text{fail}}}{\partial \sigma^2} \approx 104$$

$$\frac{\partial \sigma^2}{\partial \sigma} \approx 0.001219$$

$$\frac{\partial^2 V}{\partial \sigma^2} \approx -1.852$$

# THE MODELS, NUMERICS, AND ASSUMPTIONS ALL MATTER

- When using simulations to predict system behavior, we must be conscious of how our assumptions affect the outcome.
- I tried to argue that we should be measuring and reporting this.
- I did not talk about mathematical model selection. There could be cases where this has a large impact on the sensitivity of the analysis to assumptions.
  - Simpler models may be less fragile in the sense that a "bad" solution to them has a smaller effect on the results of an analysis than a complex model.
    - Diffusion versus Transport in radiative transfer
    - Helmholtz versus Maxwell
- Asking the hard questions as consumers of results is an important first step.