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INTRODUCTION

In this work we describe and implement an extension of the
Bayesian Multivariate Adaptive Regression Splines (BMARS)
[1] emulator to include gradient information. Emulators (or
response surfaces [2–5]) use available pairs of predictor (~xi)
and response (yi) variables, where yi = f (~xi), to approximate
the function f at untried inputs. A “well-tuned” emulator is a
valuable tool when large samples of an expensive function f are
needed, as in an uncertainty quantification (UQ) study [6–9].

In many applications, the forward model which solves f
also provides gradient information using adjoint or automatic
differentiation methods, possibly at a small relative cost [10].
Recent work with gradient-informed kriging models [10, 11]
found improvement over traditional kriging models in regres-
sion and error bound estimates. In this summary, we apply the
same techniques for extending the BMARS algorithm. Regres-
sion tests on a suite of bivariate test functions as well as on a
higher-dimensional particle shielding problem indicate that the
inclusion of gradient information does enhance the BMARS
emulator, especially for sparsely sampled input spaces.

EXTENSION OF THE BMARS EMULATOR TO IN-
CLUDE GRADIENT INFORMATION

The BMARS algorithm uses Markov Chain Monte Carlo
(MCMC) to search for a posterior distribution of MARS basis
functions which minimize the error in the approximation

B(~xi)≈ f (~xi), i = 1 . . . I, ~x ∈ RN .

For brevity, we will omit many details of the construction of
the emulator (see [1, 5]), but a description of the structure of
the splines is necessary for an understanding of our work.

The general MARS basis function is a sum of K multi-
dimensional polynomial splines, and each of these splines (say,
of dimension Lk) is the product of L 1D splines. In equation
form, the basis function is

B(~x) = β0 +
K

∑
k=1

βk

Lk

∏
l=0

(xl− tk,l)
ok,l
+ . (1)

The function (y)+ evaluates to y if y > 0, else it is 0; thus, the
contributing 1D splines are zero on part of the domain and have
polynomial order ok,l on the remainder. The knot point tk,l is
where this definition changes. Finally, the βks are regression
coefficients which are estimated using a Bayesian least squares
approach.

Our contribution is to modify the BMARS algorithm for the
case that gradient information is available. We seek to minimize
the error in the fit

B(~xi)≈ f (~xi), i = 1 . . . I

∇xB(~x j)≈ ∇x f (~x j), j = 1 . . .J.

Crucial to our method is the ability to write the derivative of
the MARS function with respect to one dimension of its input.
For example, the derivative of Eq. (1) w.r.t. dimension n ∈ N:

dB(~x)
dxn

=
K

∑
k=1

ok,nβk

L

∏
l=0

(xl− tk,l)
o∗k,l
+ .

where

o∗k,l =

{
ok,l−1 l = n

ok,l l 6= n
.

We note that this derivative is exact (analytic) and that it retains
the general form of a MARS basis function.

Our modification of the algorithm takes place primarily in
the solution for the least squares coefficients. The least squares
problem is written as an over-constrained linear system, namely

A~β =~b, A ∈ RP×K , P > K.

The first I rows of matrix A contain the K unscaled splines
B̂
(
~x | ok,l , tk,l

)
evaluated at each ~xi. The next N blocks of J

rows contain the derivative of the unscaled splines with respect

to the dimensions in~x,
dB̂
dxn

(~x), evaluated at each~x j. Here we

assume that the derivative with respect to each dimension is
available at each ~x j, such that P = I + N ∗ J. The vector ~β is
the vector of regression coefficients which we seek, and the
right-hand-side vector~b contains the response data. In explicit
form (for n = 1 . . .N):

A =



B̂1(~x1) B̂2(~x1) . . . B̂K(~x1)
B̂1(~x2) B̂2(~x2) . . . B̂K(~x2)

...
...

. . .
...

B̂1(~xI) B̂2(~xI) . . . B̂K(~xI)
dB̂1

dxn
(~x1)

dB̂2

dxn
(~x1) . . .

dB̂K

dxn
(~x1)

...
...

. . .
...

dB̂1

dxn
(~xJ)

dB̂2

dxn
(~xJ) . . .

dB̂K

dxn
(~xJ)


, ~b =



f (~x1)
f (~x2)

...
f (~xI)

∇xn f (~x1)
...

∇xn f (~xI)





For the remainder of the algorithm, we maintain the same
form of the Bayes factor, acceptance probability, MCMC step
probabilities, and Bayesian least squares regression estimator
for ~β as originally presented by Denison, et. al. [1].

RESULTS USING SYNTHETIC BIVARIATE FUNC-
TIONS

Following Denison, et. al. [1], we generate training data us-
ing five bivariate test functions. The I predictors are uniformly
distributed on the unit square, and the response is assumed to
be yi = f (~xi)+ N(0,0.252). The test functions are written in
the appendix of this summary.

To test the regression, we use the emulator to predict the
value of the test function at both the original I training points
and at 10 000 uniformly-spaced testing points, and compare
the predictions to the true test function value. Our error metric
is the fraction of variance unexplained, or FVU:

FVU =
1
M ∑

M
i=1 (B(~xi)− f (~xi))

2

1
M ∑

M
i=1
(

f (~xi)− f̄
)2 ,

where f̄ is the mean value of the function over the M predictor
pairs.

To generate a sample from the posterior MARS distribution,
we saved every 20 models from 5 000 iterations after a 50 000
iteration burn-in cycle (this was observed to be sufficient for
convergence). Table 1 gives the arithmetic mean of the FVU
resulting from five repetitions of the algorithm for each test
function and three different values of I. The column “BMARS”
includes no gradient information, while the column “gBMARS”
includes gradient information w.r.t. both inputs at each of the I
samples.

In most cases, the inclusion of gradient information at the
predictors increases the accuracy of the fit by an order of magni-
tude or more. Some of the largest improvements are in the most
sparse case, I = 5, and only in a few cases did the inclusion
of gradient information result in little (or negative) improve-
ment. Finally, we note that the case of I=15 without gradient
information has the same amount of information as the case
of I=5 with gradient information. In all such pairings, the fit
for the former is more accurate, indicating that a spread of
function evaluations yields more valuable information than an
equal number of function/gradient pairs concentrated on fewer
coordinates.

UNCERTAINTY QUANTIFICATION FOR A SHIELD-
ING PROBLEM

We use a shielding example to illustrate the increased re-
turn on gradient information for a problem with seven un-
certain dimensions. We model a particle flux incident on a
three region, purely absorbing shield. The region thicknesses,
∆zq, q = 1,2,3, are 1.0, 0.25, and 1.0 cm respectively. We
model the angular flux distribution as a nonlinear function of

TABLE 1: FVU results for bivariate predictors

Case (I) Training Data Testing Data

Simple BMARS gBMARS BMARS gBMARS
5 1.359e-03 6.371e-04 7.769e-03 1.110e-03

10 4.606e-04 2.059e-04 6.877e-04 2.769e-04
15 2.786e-04 6.666e-05 2.814e-04 1.313e-04

Radial BMARS gBMARS BMARS gBMARS
5 3.110e-01 2.055e-03 3.907e-01 4.855e-03

10 1.314e-03 2.964e-04 1.565e-03 2.255e-04
15 8.291e-04 1.171e-04 7.237e-04 8.192e-05

Harmonic BMARS gBMARS BMARS gBMARS
5 8.761e-01 3.254e-02 9.821e-01 1.176e-01

10 2.464e-03 1.179e-03 8.407e-02 3.221e-03
15 1.926e-03 3.683e-04 3.594e-03 5.553e-04

Additive BMARS gBMARS BMARS gBMARS
5 1.020e-03 1.112e-03 3.432e-01 4.009e-02

10 6.644e-04 8.399e-04 1.297e-02 3.696e-03
15 7.373e-04 4.269e-04 3.577e-03 8.133e-04

Complicated BMARS gBMARS BMARS gBMARS
5 8.828e-01 8.756e-01 8.594e-01 6.884e-01

10 1.216e-01 1.209e-01 5.322e-01 2.266e-01
15 2.166e-02 7.844e-03 1.677e-01 8.653e-03

four uncertain predictors drawn from the unit hypercube (this
is a common nonlinear regression test function [5]):

ψ(µ|a,b,c,d)= 40
(

2sin(πµa)+4(b−0.5)2 + sin(d)(2c+d)
)

.

Finally we assume the cross-sections Σa,q q = 1,2,3[cm−1] are
unknown with probability densities of Γ(5,0.1), N(5,0.252),
and Γ(5,0.1), respectively.

Our model computes the exiting particle flow rate using S8
Gaussian quadrature

J+(Z) =
8

∑
m=1

µmwmψm(z = 0)
3

∏
q=1

exp
(

Σa,q∆zq

µm

)
,

and again our regression metric will be the fraction of variance
unexplained.

Our procedure is as follows: we generate two training sets
(one of 28 and one of 56 samples) with no derivative infor-
mation, fit a BMARS surface using each set, and compute the
FVU using 100 000 samples of our uncertain inputs (we can
afford this high number of samples in this case; other emulator
verification methods are more practical for expensive forward
models). We then supplement each training set with seven (one



per dimension, each randomly placed at an existing training
coordinate), fit a new BMARS model, and recompute the FVU.
Table 2 gives the average FVU resulting from 10 repetitions of
this procedure.

TABLE 2: Shielding Problem FVU

Gradient 28 Samples 56 Samples

No 0.476 0.373
Yes 0.302 0.240

Again we see that the regression was improved when gradient
information was available to the emulator. Each of these data
sets are relatively sparse, and we see a fairly large improvement
in both cases. Repetitions of the procedure with less than 28
samples saw less success (and in some cases worse fits), likely
because the samples were too small to capture the features of
the response surface. We note that the errors in these regressions
are still large. On average, with these sample sizes, a third and
a quarter (respectively) of the output distribution is unexplained
by the emulator. Although this is probably too much regression
error for meaningful application in a UQ study, we provide the
results to illustrate the regression accuracy that may be gained
with gradient information.

DISCUSSION AND CONCLUSIONS

In this work we demonstrated an extension of the BMARS
emulator to include gradient information and conclude that the
derivative information can reduce regression error. This may
give reason for a modeler to pay the computational cost for
gradient calculations, especially if relatively few samples of
the forward model will be available. Further, we note that the
addition of gradient information did not result in significant
slowdown of the algorithm, which goes roughly as the O

(
K3
)

work required to solve the least squares system. We observed
that the size of the basis function did not systematically grow
in response to the additional training information.

Future work should focus on computing some kind of im-
portance metric for the gradient values, as we do observe that
the emulator tends to over-fit gradient information, particu-
larly near the boundary. We also hope to apply the improved
emulator to a more complex simulation or UQ study.
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APPENDIX: BIVARIATE TEST FUNCTIONS

The explicit form of the bivariate test functions are:

• Simple function

f (~x) = 10.391 [(x1− .4)(x2− .6)+0.36]

• Radial function

f (~x) = 24.234
[
r2 (0.75− r2)] ,

r2 = (x1−0.5)2 +(x2−0.5)2

• Harmonic function

f (~x) = 42.659
[
0.1+ x̂1

(
0.05+ x̂4

1−10x̂2
1x̂2

2 +5x̂4
2
)]

,

x̂n = xn− .5

• Additive function

f (~x) = 1.3356{1.5(1− x1)

+ exp(2x1−1)sin
(

3π (x1− .6)2
)

+ exp(3(x2− .5))sin
(

4π (x2− .9)2
)
}

• Complicated function

f (~x) = 1.9{1.35+exp(x1)sin
[
13(x1− .6)2

]
× exp(−x2)sin(7x2)}
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