
High Energy Density Radiative
Transfer Benchmark Solutions via

Heterogeneous Computing
Daniel A. Holladay, Ryan G. McClarren

Department of Nuclear Engineering, Texas A&M University, College Station, TX, USA 77843

3-T

I The three temperature (3-T) equations of thermal radiative transfer model
the exchange of energy between photons, electrons, and ions in a dense
plasma.

I In particular, radiation is modeled with full transport and electrons are
modeled with a conduction (diffusion) model.

I In 1-D cartesian coordinates under the gray approximation, the equations
are:

1

c

∂I

∂t
+ µ

∂I

∂x
+ σaI = σa

acT 4
e

2
+ Qr

cv ,e
∂Te

∂t
− ∂

∂x

(
κe
∂Te

∂x

)
= cσa

(
Er − aT 4

e

)
+ γei (Ti − Te) + Qe

cv ,i
∂Ti

∂t
= γei (Te − Ti) + Qi

Solution Method

I Non-dimensionalize equations
I Linearize equations

I κe ∝ T 3
e , cv ,i ∝ T 3
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I All equations are now in terms of T 4
i , T 4

e , I , and it’s angular integral, Er .
I Perform Fourier transform in spatial variable and Laplace transform in

temporal variable.
I Linear system of PDE’s becomes a linear system of equations.

I Solve for transformed variables, i.e. u = {Er , aT 4
e , aT

4
i }.

I Invert the transforms.

Problems of Interest

I BCs: lim
x→±∞

u (x , t) = 0

I ICs: u (x , 0) = 0
I Sources:

I Qi = Qe = 0.
I Assume Qr = δ (x) δ (t), the solution of this equation is uplanar.

I Use plane-to-point transform: upoint (r , t) = − 1
2πr
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∂z

∣∣
z=r

I Due to linearity of equations, superposition of solutions can be used to find
solutions of various geometries(e.g. usphere (r , t) =

∫
Vsphere

upoint (r , t) dV )

Inverting the Transforms

I After non-dimensionalizing, linearizing, taking temporal Laplace and spatial
Fourier transforms, and solving the system of linear equations, we have
forms for the solution variables in terms of transformed spatial and temporal
quantities.
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û (k, s) exp (−ikx) exp (st) dkds

I It can be shown that for this case that L−1 = F−1 and also the imaginary
portion of the integral is odd and thus its contribution must 0.
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I Graphically:
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I Evaluating this solution does involve computing the double integrals
numerically.

Inversion Integrand Properties
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Figure : Not only are the integrands highly oscillatory, but their scale varies drastically.

Computing the Integrals

I Choose initial integration bounds based upon zeros of the integrand.
I Multiply upper limit by some constant (in this case 2) and integrate over

new region(s).
I Assume “globally convergent” integrands such that convergence is achieved

if successive integral estimates differ by less than tol .
I Example:
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Figure : Initial integration region → all regions after convergence

I For both inner and outer iterations, Wynn-ε, Wynn-ρ, iterated Brezinski-θ,
and iterated Aitken δ2 accelerators are used.

I When 2 methods agree to tol , that sequence (either inner or outer) is
considered converged.

Results
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Figure : Solution grows with time when the source is on as is expected.

Heterogenous Computing Results

I To determine usefulness of GPUs for computing integrals, the factor
speedup over a single core cpu is a good figure to look at.

I At peak performance, the use of 4 NVIDIA Tesla GPUs was ∼ 561× faster
than single core cpu.

I Another way to compare is to look at the number of function evaluations
performed per second per Watt.
I Thermal Design Power wattage was used for both the CPU (80 W) and

GPUs (913 W) in question.
I CPU FOM: 0.0590
I GPU FOM: 2.903 (∼ 50× CPU FOM)


