3-T

- The three temperature (3-T) equations of thermal radiative transfer model the exchange of energy between photons, electrons, and ions in a dense plasma.
- In particular, radiation is modeled with full transport and electrons are modeled with a conduction (diffusion) model.
- In 1-D cartesian coordinates under the gray approximation, the equations are:

$$
\begin{gathered}
\frac{1}{c} \frac{\partial I}{\partial t}+\mu \frac{\partial I}{\partial x}+\sigma_{a} I=\sigma_{a} \frac{a c T_{e}^{4}}{2}+Q_{r} \\
c_{v, e} \frac{\partial T_{e}}{\partial t}-\frac{\partial}{\partial x}\left(\kappa_{e} \frac{\partial T_{e}}{\partial x}\right)=c \sigma_{a}\left(E_{r}-a T_{e}^{4}\right)+\gamma_{e i}\left(T_{i}-T_{e}\right)+Q_{e} \\
c_{v, i} \frac{\partial T_{i}}{\partial t}=\gamma_{e i}\left(T_{e}-T_{i}\right)+Q_{i}
\end{gathered}
$$

Solution Method

- Non-dimensionalize equations
- Linearize equations
$-\kappa_{e} \propto T_{e}^{3}, c_{v, i} \propto T_{i}^{3}, c_{v, e} \propto T_{e}^{3}$, and $\gamma_{e i} \propto T_{i}^{3}+T_{i}^{2} T_{e}+T_{i} T_{e}^{2}+T_{e}^{3}$
- All equations are now in terms of T_{i}^{4}, T_{e}^{4}, I, and it's angular integral, E_{r}.
- Perform Fourier transform in spatial variable and Laplace transform in temporal variable.
- Linear system of PDE's becomes a linear system of equations.
- Solve for transformed variables, i.e. $\mathbf{u}=\left\{E_{r}, a T_{e}^{4}, a T_{i}^{4}\right\}$.
- Invert the transforms.

Problems of Interest

- BCs: $\lim _{x \rightarrow \pm \infty} \mathbf{u}(x, t)=0$
- ICs: $\mathbf{u}(x, 0)=0$
- Sources:
- $Q_{i}=Q_{e}=0$.
- Assume $Q_{r}=\delta(x) \delta(t)$, the solution of this equation is $\mathbf{u}_{\text {planar }}$.
- Use plane-to-point transform: $\mathbf{u}_{\text {point }}(r, t)=-\left.\frac{1}{2 \pi r} \frac{\partial \mathbf{u}_{\text {planar }}(x, t)}{\partial z}\right|_{z=r}$
- Due to linearity of equations, superposition of solutions can be used to find solutions of various geometries(e.g. $\left.\mathbf{u}_{\text {sphere }}(r, t)=\int_{V_{\text {sphere }}} \mathbf{u}_{\text {point }}(r, t) \mathrm{d} V\right)$

Inverting the Transforms

- After non-dimensionalizing, linearizing, taking temporal Laplace and spatial Fourier transforms, and solving the system of linear equations, we have forms for the solution variables in terms of transformed spatial and temporal quantities.

$$
\mathbf{u}(x, t)=\frac{-i}{4 \pi^{2}} \oint_{\text {Bromwich }} \int_{-\infty}^{+\infty} \hat{\mathbf{u}}(k, s) \exp (-i k x) \exp (s t) \mathrm{d} \boldsymbol{k} \mathrm{~d} s
$$

- It can be shown that for this case that $\mathcal{L}^{-1}=\mathcal{F}^{-1}$ and also the imaginary portion of the integral is odd and thus its contribution must 0 .

$$
\mathbf{u}(x, t)=\frac{1}{\pi^{2}} \int_{0}^{+\infty} \int_{0}^{+\infty} \hat{\mathbf{U}}_{\text {even }}(k, \omega, x, t) \mathrm{d} k \mathrm{~d} \omega
$$

- Graphically:

- Evaluating this solution does involve computing the double integrals numerically.

Inversion Integrand Properties

Figure : Not only are the integrands highly oscillatory, but their scale varies drastically.

Computing the Integrals

- Choose initial integration bounds based upon zeros of the integrand.
- Multiply upper limit by some constant (in this case 2) and integrate over new region(s).
- Assume "globally convergent" integrands such that convergence is achieved if successive integral estimates differ by less than tol.
- Example:

Figure: Initial integration region \rightarrow all regions after convergence

- For both inner and outer iterations, Wynn- ϵ, Wynn- ρ, iterated Brezinski- θ, and iterated Aitken δ^{2} accelerators are used.
- When 2 methods agree to tol, that sequence (either inner or outer) is considered converged.

Results

Figure : Solution grows with time when the source is on as is expected.

Heterogenous Computing Results

- To determine usefulness of GPUs for computing integrals, the factor speedup over a single core cpu is a good figure to look at.
- At peak performance, the use of 4 NVIDIA Tesla GPUs was $\sim 561 \times$ faster than single core cpu.
- Another way to compare is to look at the number of function evaluations performed per second per Watt.
- Thermal Design Power wattage was used for both the CPU (80 W) and GPUs (913 W) in question.
- CPU FOM: 0.0590
- GPU FOM: $2.903(\sim 50 \times$ CPU FOM $)$

