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INTRODUCTION

As demonstrated in recent work [1, 2], in some radiative
shock profiles the presence of an optically thin cooling layer
behind the density jump can lead to radiation and material tem-
perature profiles that are qualitatively inaccurate when modeled
using a diffusion treatment. This previous work, and other pub-
lished solutions [3, 4], only considered diffusion models based
on Fick’s law with a constant Eddington factor. The remain-
ing open question is whether flux-limited diffusion treatments
could perhaps ameliorate the deficiencies of simple diffusion
treatments. An initial simulation study using the Larsen flux
limiter [5], shown in Fig. 1, seemed to indicate no such fix was
in the offing using standard flux-limiters. Nevertheless, study-
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Fig. 1: Energy density solutions using various integer n
values when applied to a temperature profile with
a thin cooling layer.

ing Fig. 1 suggests that the Larsen flux limiter with n < 1 could
give the correct qualitative behavior (in the figure as n increases
the flux-limited diffusion solution looks less like the transport
solution). Having n < 1 makes the flux limiter “turn-on” more
readily. Below we develop a new flux limiter that turns on
specifically in the cooling layer of a radiative shock. Our calcu-
lations in this work were for radiation-only problems where the
temperature profile is chosen to match that of a shock profile.
Future work will explore the impact of these flux-limiters on
radiation-hydrodynamics problems.

For simplicity, the gray transport approximation is used
and we neglect scattering. The plasma is modeled by one
temperature (i.e., assuming electrons and ions are in thermal
equilibrium). Under these conditions, the steady radiative trans-
fer equation is,

Ω · ∇ψ = σa

( ac
4π

T 4 − ψ
)
, (1)

where T is the material temperature, Ω is the angular or di-
rectional variable, σa (length−1) is the macroscopic absorp-
tion cross section, c (distance/time) is the speed of light,
and a (energy/temperature4-volume) is the radiation constant.
ψ = ψ (Ω, x) and is the radiation intensity (energy/area-time-
steradian). A common simplification of Eq. (1) is the diffusion
model given by [6]

−
d
dx

D
d
dx

E + σE =
a

4π
T 4, (2)

where D is a diffusion-coefficient and E = 1
c

∫
4π ψ dΩ. For the

flux-limited diffusion (FLD) method, the Larsen flux-limiter,

D =

[
(3σ)n +

(
|∇E|

E

)n]−1/n

, (3)

was used. The salient feature of this flux-limiter is that when
the energy density is relatively constant, as is the case further
away from the shock front, the diffusion coefficient returns to
the Fick’s law prescription: D = 1

3σ .
In this work we solve the general problem where the mate-

rial has a temperature profile given by

acT 4(τ) =


α τ < 0
1 τ ∈ [0, τ0]
β τ > τ0

,

where we have written our spatial variable in terms of mean-
free paths: τ = σx. This problem setup is a simplified version
of a steady radiative shock profile; the region beyond τ0 is the
precursor region when β < α, and the region between 0 and τ0
is the cooling layer, and the region of negative τ is the cooling
layer with a < 1. In Figs. 1- 3 we have α = 0.275, β = 0.1, and
τ0 = 0.1, so that the cooling layer is a tenth of a mean-free path.
Figure 4 has a thicker cooling layer and less of a difference in
emission source between the regions: α = .8537, β = .7807,
and τ0 = 0.5.

NEW METHOD

Flux-limited diffusion codes commonly use n = 2, but this
will not correctly reproduce the spike in energy density directly
downstream of the shock front. This is commonly referred to a
a Zel’dovich spike and is present in many physically realizable
systems. After noting that larger values of n did not produce a
spike it was realized (through the clarity of hindsight) that in a
diffusive model the flux must become negative (radiation mov-
ing from right to left) in a region for the spike to be produced.
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(a) Energy Density
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(b) Radiation Flux

Fig. 2: Energy density and radiation flux for various
fractional n values applied to a problem with a
thin cooling layer.

Only the transport solution and fractional values of n yield a
spike. Although using a fractional value of n throughout all
regions will yield an inaccurate shock profile according to nu-
merical experiments, diffusion solutions with fractional values
of n do capture the transport behavior within the cooling layer
adequately. To resolve these inconsistencies, a fractional value
of n was used only if T ≥ Tmax. Anywhere this relationship
was not satisfied, the common n value of 2 was used. This
method produces shock profiles that approximate the transport
solutions of these problems accurately throughout each region.

Looking at different values of n for the cooling layer in
Fig. 2 suggests that n = 1/3 is the best value of those tried. Also
in this figure we see that the radiation flux becomes negative
in the cooling layer. However, in the transport solution it is
positive throughout the problem. In some sense we have traded
accuracy in the radiation flux to have a more accurate energy
density through the shock profile: for a diffusion model it is
not possible to have a positive radiation flux throughout the
profile and have a spike in the energy density. The value of
1/3 for n seems to be an acceptable value for the flux-limiter
over a range of problems, and future theoretical work will have

to be performed to understand the optimal way to pick this
value as well as possible means to automatically vary it as the
simulation progresses.

A crucial factor in the accuracy of flux-limited diffusion
is the thickness of the cooling layer. If the cooling layer is
relatively thick, in terms of mean-free paths, then the diffusion
model can react to the spike in the emission source and accu-
rately reproduce a “bump". This can be seen in Fig. 4. Although
the diffusion solution does not exactly reproduce the transport
solution’s “bump", it is qualitatively showing the correct form.
Meanwhile, as shown in Fig. 3, a thin cooling layer leads to the
diffusion solution being qualitatively incorrect. Within the cool-
ing layer the transport solution shows an abrupt spike whereas
the diffusion solution is monotonically decreasing.
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Fig. 3: Transport and diffusion solutions for a thin
cooling layer.

The selection of Tmax is not arbitrary and can be readily
selected for a radiative shock simulation: from the maximum
principle [7] we know that for a pure radiative transfer problem
in the absence of sources the temperature must remain less than
or equal to the maximum temperature of the initial and bound-
ary conditions. Therefore, in a radiative shock simulation, Tmax
would be the maximum temperature of the initial and boundary
conditions because any temperatures in the solution higher than
this value would necessarily be due to shock heating (exactly
the type of heating phenomenon we are trying to accurately
capture).

CONCLUSION

Our new prescription for flux-limited diffusion has been
shown to more accurately approximate transport solutions for
problems with either a thin or thick cooling layer, as shown
in Figs. 3 and 4. When shocks have a spike in energy density
directly downstream from the shock front, it is advantageous
to use the fractional value n = 1/3 inside the cooling layer.
This value yields a spike of approximately the same magnitude,
and matches the transport solution outside of the adaptation
zones that are immediately adjacent to the cooling layer. It
overestimates the energy density immediately after the cooling
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Fig. 4: Transport and diffusion solutions for a thick
cooling layer.

layer, and underestimates the energy density right before the
shock front. For n = 2 it is shown that this properly matches the
diffusion solutions for problems with either thick or thin cooling
layers. The “turn-on" feature can be implemented into shock
simulation codes to accurately solve for energy density and
flux profiles, using n = 1/3 if T ≥ Tmax and n = 2 elsewhere.
For future work we plan on implementing this method into
radiation hydrodynamics simulations to evaluate the impact of
the flux-limiter on radiative shock simulations.
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