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The Classic Marshak Wave

▶ The Marshak wave is a special, soluble problem in

radiation hydrodynamics and can arise in

high-energy-density experiments.

▶ The problem has radiation striking a cold material. As the

material heats a wave of thermal energy propagates into

the material.

▶ An example of this type of wave could be radiation

emitted from a hohlraum striking a fusion target.

▶ The classical version of this problem is valid in the

regime where the radiation energy flux is high, but the

radiation energy density is negligible in regard to the

material internal energy.

▶ Also, the material is considered to be stationary:

▶ Radiation energy impinges on a quiescent material
▶ Drives a radiation wave that travels faster than the speed

of sound in the material.
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Marshak Wave
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Previous Work

▶ The eponymous, original solution of R.E. Marshak comes

from 1958 (in the volume 1, number 1 of Physics of

Fluids)

▶ Petschek et al., gave a very nice description of how to

obtain the solutions, including allowing temperature

dependent opacities and densities in a 1960 report

(LAMS-2421).

▶ Every monograph on HEDP or related fields includes a

discussion of the Marshak wave (Drake, Castor, Z&R).

▶ In a 2009 LANL technical report, Nelson and Reynolds

delve into gory details of how to obtain Marshak wave

solutions using Mathematica.

▶ It is also worth pointing out that the theory of admissible

self-similar solutions in covered in some detail by

Coggeshall and Axford.
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Code Verification

▶ Recently, there have been several new studies of
rad-hydro phenomenon

▶ Lowrie and co-authors, and more recently Ferguson and

Morel, have published several studies of radiating shock

waves using different radiation models.
▶ There has also been developments in the theory of such

shocks in different regimes.

▶ Part of the motivation for these recent papers on

radiation hydrodynamics behavior has been the

necessity of verifying numerical simulation codes for

radiation hydrodynamics.

▶ Verification in this sense means demonstrating that the

code is solving the intended equations and that

numerical errors behave as expected (e.g., going to zero

at the correct rate as the mesh is refined).
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New Solutions Mean Better Code Verification

▶ The classic Marshak wave, typically only tests the

”radiation” part of a radiation hydrodynamics code.

▶ It cannot test that radiation coupling terms (e.g.,
momentum deposition) are properly accounted for

▶ Except that when the velocity is zero, the solution

behaves as expected.

▶ To that end our new solutions introduce material motion

to the Marshak wave problem.

▶ Our solutions can be used in code verification,
regardless of the radiation transport model employed in
the code (e.g., flux-limited diffusion, discrete ordinates,
Monte Carlo, etc.)

▶ Because the solution is given in the equilibrium diffusion

limit.
▶ A limit that all reasonable implementations of a radiation

package posses.
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Hydrodynamics Model
The Euler equations, in non-dimensional form are

∂ρ

∂t
+∇ · (ρv⃗) = 0 ,

∂

∂t
(ρv) +∇ · (ρv⃗⊗ v⃗) +∇p = −PSF ,

∂

∂t
(ρE) +∇ · [(ρE+ p) v⃗] = −PCSE .

E, the total specific energy is given by

E = e+
1

2
v2, (1)

where v = |⃗v| and e is the internal specific energy with a

simple equation of state e = cvT.

The reference sound speed, a∞, is given using the specific

heat cv as

a∞ =
√
cvT∞.
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Non-Dimensional Parameters

▶ In our model we have included the non-dimensional

parameters

C =
c

a∞
=

c√
cvT∞

, P =
arT

4
∞

ρ∞a2∞
=

arT
3
∞

ρ∞cv
, (2)

where c is the speed of light and ar = 4σSB/c is the

radiation constant with σSB the Stefan-Boltzmann

constant.
▶ The interpretation of these parameters is as follows:

▶ C is a measure of how relativistic the flow is, and
▶ P is a measure of how much energy is in the radiation

field compared with the material internal energy.

▶ When P is small but PC is order 1, this is the

flux-dominated regime: There is no momentum coupling,

but the flux of radiative energy affects the total energy

equation.
▶ When P is non-negligible this is the radiation

energy-dominated regime where momentum coupling is

important.



. . . . . .

Radiation Model
For the radiation transport we will employ a P1 model

∂Er
∂t

+ C∇ · Fr = CSE,
∂Fr
∂t

+
1

3
C∇Er = CSF,

where

SE = σ(T4 − Er) + σ
v⃗

C
· Fr0, SF = −σFr0 + σ

v⃗

C
(T4 − Er),

Fr0 = Fr − (⃗vEr +
v⃗

3
Er)/C.

▶ Er is known as the radiation energy density and it is

proportional to the zeroth angular moment of the

radiation specific intensity.

▶ Fr is known as the radiation flux and it is proportional to

the first angular moment of the radiation specific

intensity.

▶ The material absorption opacity (with units of inverse

length) is given by σ.
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Operator Splitting

▶ In typical applications the RHD model (i.e., the coupled
Euler and radiation equations) are solved in an operator
split fashion,

▶ where the P1 equations (or some other transport model)

is solved
▶ coupled with a material internal energy equation that

contains the radiation-matter coupling terms only:

∂ρe

∂t
= −PCSE.

▶ The other terms in the total energy equation are updated

during the hydrodynamics solve, along with a correction

to take into account momentum exchange.

▶ As part of the operating splitting procedure, the radiation

solve is undertaken with the density and velocity terms

evaluated at a particular time level.
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The equilibrium diffusion limit

▶ If we take the radiation solve part of the model (i.e.,

radiation model plus part of the internal energy

equation), and make the following scaling:

▶ The absorption cross-section is very large,

σ → σ

ϵ
,

▶ The ratio of the speed of light to the speed of sound is

also very large,

C → C
ϵ
.

▶ We get, to leading order, a nonlinear advection-diffusion

equation that is solved during the radiation step:

∂

∂t

(
ρcvT+ PT4

)
+ P

4

3
∇ · v⃗ T4 = ∇ · CP

3σ
∇T4.
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Relationship to Classical Marshak Wave Problem

▶ The full-blown equation, in slab geometry is

∂

∂t

(
ρcvT+ PT4

)
+ P

4

3

∂

∂x
v T4 =

∂

∂x

CP
3σ

∂

∂x
T4.

▶ The classical Marshak wave solves this equation in the

limit of P → 0 and PC → 1:

∂

∂t
ρcvT =

∂

∂x

1

3σ

∂

∂x
T4.

▶ Notice how the advection term naturally drops out

(without assuming v → 0) and the time derivative term

simplifies.
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Problem Definition

▶ We want to solve

∂

∂t

(
ρcvT+ PT4

)
+ P

4

3

∂

∂x
v T4 =

∂

∂x

CP
3σ

∂

∂x
T4.

▶ The problem we will solve has an initially cold,

semi-infinite material located at x ≥ 0.

▶ At time t = 0 a radiation source is turned at x = 0,

▶ The radiation source is a blackbody at T = 1.

▶ We also allow a temperature dependent opacity

σ = κ0T
−n.
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Self-Similar Scaling

▶ As is typical for diffusion problems we define a

self-similar variable

ξ =
Ax√
t
.

▶ Without the advection term, this is all you need to do.

▶ To make the advection term amenable to a self-similar

solution profile we prescribe

v(t) =
θU√
t
.

▶ We do not consider how such a form for the velocity
might be formed,

▶ Indeed, in a simulation code such a dependence could be

prescribed.

▶ Also, the velocity is uniform in space.
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Self-Similar Problem Definition

▶ Upon inserting our scaling we get, after some interesting

algebra and setting A and U for convenience,

−ξ
d

dξ

(
T+ PT4

)
+ Pθ

d

dξ
T4 =

d2

dξ2
T(n+4),

▶ The problem definition has also changed.

1. At ξ = 0, T = 1.
2. The temperature in front of the wave is cold (i.e., T = 0).

▶ We refer to the value of ξ beyond which T = 0 as ξmax.

▶ For a particular value of ξmax, there are an infinite number
of solutions that tend to zero.

▶ Only one of these solutions maintains a zero radiation

flux in the limit ξ → ξmax.

▶ Also, only one ξmax will match the boundary condition at

ξ = 0.
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Solution Procedure

▶ Castor outlines a numerical procedure where one

1. Guesses a ξmax,

2. Integrates the ODE backwards to ξ = 0,
3. Adjusts ξmax based on T(0), (e.g. if T(0) > 1 then decrease

ξmax)

4. Repeats 2-3 until convergence.

▶ The difficult part is coming up with an approximate value

of T just behind ξmax to start the integration.

▶ The rest of the procedure can be handled using a

numerical ODE integrator and root finder.

▶ Nelson and Reynolds describe in detail how to

accomplish this for the classical Marshak wave using

Mathematica.
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Approximate T near the wavefront

▶ By integrating the ODE from ξ to ξmax and making a
series of approximations, one gets that near the
wavefront

T(ξ) =

[
n + 3

n + 4
(ξmax − ξ)

(
ξmax + P

n + 3

n + 6
(ξmax − θ)

(
n + 3

n + 4
ξmax (ξmax − ξ)

)3/(n+3)
)]1/(n+3)

.

▶ We use this value to step away from ξmax.

▶ That is, the initial condition for the ODE integration is

T(ξmax − δ) using the formula above.
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Solutions with v = 0

▶ If we set v = 0, in our scaling θ = 0, we can see the

effect of non-negligible P on the solution.

▶ We will look at two common cases for the behavior of

σ = κ0T
−n, n = 0 and n = 3.

▶ The values for ξmax obtained by Nelson and Reynolds are

▶ ξmax = 1.23117 in the n = 0 case.
▶ ξmax = 1.11993 in the n = 3 case.

▶ Based on solutions using several values of P from 0 to 2

we found that including radiation energy in the wave

that the wave slows down.

▶ A least-squares fit of ξmax as a function of P gives:

ξmax ≈ 0.032P2 − 0.19P+ 1.2 n = 0,

ξmax ≈ 0.046P2 − 0.25P+ 1.1 n = 3.
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Solutions with advection

Table: ξmax for Motion Problems

P θ
ξmax

n = 0 n = 3

0.04573

10 1.36449 1.28213

5 1.28845 1.18959

2 1.24712 1.13852

1 1.23399 1.12220

0.1 1.22243 1.10780

0 1.22116 1.10622

0.5

10 3.57574 3.52816

5 2.07107 2.01057

2 1.40900 1.31516

1 1.25937 1.14168

0.1 1.14910 1.00925

0 1.13806 0.99582

1

10 5.19830 5.16451

5 2.83272 2.76374

2 1.57627 1.47967

1 1.28225 1.15790

0.1 1.08784 0.93103

0 1.06966 0.90932
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Solutions with advection, n = 0, P = 0.04573

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

ξ

0.
2

0.
4

0.
6

0.
81

T(ξ)

θ 
= 

10
θ 

= 
5

θ 
= 

2
θ 

= 
1



. . . . . .

Solutions with advection, n = 3, P = 0.04573
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Solutions as code verification

▶ We can use our solutions to test the radiation package

of a radiation-hydrodynamics code.

▶ Run the code where the hydro solver always tells the

radiation package that v(t) = θU/
√
t.

▶ This will test the v/c coupling terms in the radiation

solve with no underlying hydrodynamics error.

▶ In principle there could be an issue with evaluating u(0)
because of the singularity.

▶ In practice most radiation solvers expect to receive the

velocity evaluated at either the end of the time step or

some intermediate time level.
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Verification Test

▶ To demonstrate how this can be done we took a

”typical” Marshak wave problem from the literature:

▶ cv = 0.1GJ/g keV, ρ∞ = 3.0 g/cm3, κ0 = 300, T∞ = 1.0 keV,

l = 1 cm, and n = 3.

▶ Using these parameters, C = 948.027 and P = 0.04573.

▶ We then ran the problem using an existing transport

code with the velocity evaluated at the middle of each

time step.

▶ Below we show the solution for 3 different times: 10,

20, and 50 nanoseconds.

▶ Not a full verification study of the code presented here,

but does show the solutions are obtainable

”out-of-the-box” without much code modification.
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Comparison with Numerical Solutions
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Comparison with Numerical Solutions

0.01 0.1
∆x

0.0001

0.01

R
el

at
iv

e 
Er

ro
r

slope of 1



. . . . . .

Summary and Conclusions

▶ We have presented a new radiation-hydrodynamics

self-similar solution.

▶ Extended the classical Marshak wave to have

non-negligible radiation energy density and material

motion.

▶ We have shown that these solutions can be used in

novel code verification exercises.

Possible future directions:

▶ We could do this in different geometries (e.g. cylindrical

or spherical)

▶ It might be possible to do a problem without a driving

source, rather with an delta-function of energy at x = 0
and t = 0.
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