Fully Implicit Filtered P_N for High-Energy

Vincent M. Laboure, Ryan G. McClarren, Cory D. Hauck

Department of Nuclear Engineering, Texas A&M University, College Station, TX, USA 77843

Motivation

- ► All deterministic methods to solve the transport equation have flaws
- ► The PN equations produce a rotationally-invariant solution and therefore is **immune to ray effects** (good for diffusive problems)
- ► BUT they can also create **unphysical oscillations** and **negativity** in the solution
- ► While it is often crucial to have positivity in numerous applications (radiative transfer,...)
- ► Idea: **damp** the large derivatives in angle

Fully-Implicit P_N Equations

► Transport equation:

Eigenspectrum of L + C

Properties of the filters:

- ► All the eigenvalues are such that $\Re\lambda\geq 1$
- Smallest eigenvalue $\equiv \lambda_{\min} = 1$
- Largest eigenvalue $\equiv \lambda_1$

Impact on the eigenspectrum in void

 $c\Delta t$ В λ_{\min}

 $\frac{1}{c}\partial_t\psi + \mathbf{\Omega}\cdot\nabla\psi + \sigma_t\psi = \sigma_s\phi + Q$

Spherical Harmonics expansion:

 $\psi(\mathbf{r}, \mathbf{\Omega}) \approx \sum_{l=1}^{N} \sum_{l=1}^{l} \psi_{l}^{m}(\mathbf{r}) Y_{l}^{m}(\mathbf{\Omega})$ l=0 m=-1

- Quasi steady-state formulation of the transport equation: $A_{x}\partial_{x}\psi^{n+1} + A_{y}\partial_{y}\psi^{n+1} + A_{z}\partial_{z}\psi^{n+1} + \sigma_{t}^{*}\psi^{n+1} = \sigma_{s}\phi^{n+1} + Q^{n,*}$
- ► Linear system solved using a Krylov solver (PETSc): $L\psi + C\psi = Q^*$

Filtering: McClarren/Hauck approach

► After each time step:

$$\psi_l^m \longleftarrow \frac{\psi_l^m}{1 + \alpha l^2 (l+1)^2}$$

Where:

$$\alpha = \frac{\omega}{N^2(\sigma_t L + N)^2}$$

ΔX				
1	0	8.0868	1.0000	100%
1	20	8.0842	1.0840	91.1%
1	60	8.0788	1.1591	84.2%
1	100	8.0727	1.0981	89.6%
10	0	71.868	1.0000	100%
10	20	71.842	1.8404	53.7%
10	60	71.788	2.5911	37.7%
10	100	71.727	1.9807	49.7%

$\gamma \equiv \frac{|\lambda_1 - \lambda_{\min}|}{|\lambda_{\min}|}$

 $\Gamma \equiv - \gamma$ γ unfiltered

Phi 1.58e+018 <mark>_</mark>_

-1.58e+015 ⁼0

_8e+17

Thermal Radiation Transfer

► Add temperature equation:

$$\begin{cases} \frac{1}{c} \partial_t I + \mathbf{\Omega} \cdot \nabla I + \sigma_t I = \sigma_a B(T) + \sigma_s \varphi + Q \\ C \partial_t T = \sigma \left((\alpha - A \pi B(T)) + O \right) \end{cases}$$

 ω : filter strength L: characteristic length

Filtering: Radice/Abdikamalov approach

► Matrix form:

 $L\psi + (C + \Delta)\psi = Q^*$

Where:

$$\Delta \equiv -\beta \log \sigma_{\text{filterType}} \left(\frac{1}{N+1}\right)$$

And:

$$\sigma_{\text{filterType}} = \begin{cases} \sigma_{\text{Lanczos}}(\eta) = \frac{\sin \eta}{\eta} \\ \\ \sigma_{\text{SSpline}}(\eta) = \frac{1}{1 + \eta^4} \end{cases}$$

Effects of the filtering

► Pulsed line source after $10\Delta t$ (c = 1, $\sigma_t = \sigma_s = 1$, $\Delta t = 0.1$, P1)

 $(C_v O_t I = O_a (\varphi - 4\pi D(I)) + Q_e$

Crooked Pipe Test Problem

► Scalar flux after	$1000\Delta t~(\Delta t=4 imes 10^{-12}$ s, P	1)
$\beta =$	- 0	

 $\beta = 50$

 $\beta = 100$

 $\beta = 500$

 $\omega = 0.2$

 $\omega = 0$

Properties of the filters:

- ► do not change the 0th moment (particle conservation)
- ▶ vanish as $N \to \infty$
- ► preserve the equilibrium diffusion limit
- ► preserve the rotational invariance

- Helps smooth the solution
- ► The strength of the filter should not be too large

Conclusions

Filtered PN reduces the negativity and oscillations of the solution ► Filtered PN **improves the conditioning** of the linear system $c\Delta t$ • Optimum filter strength in void depending on $\frac{C\Delta t}{\Lambda}$ Δx ► Reduces the speed of the waves

Acknowledgement

Funded by an NSF grant (Award Number:1217170), Optimization-Based Moment Models for Multiscale Kinetic Equations

CENTER FOR LARGE-SCALE SCIENTIFIC SIMULATIONS

