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Motivation

I All deterministic methods to solve the transport equation have flaws
I The PN equations produce a rotationally-invariant solution and therefore is

immune to ray effects (good for diffusive problems)
I BUT they can also create unphysical oscillations and negativity in the

solution
I While it is often crucial to have positivity in numerous applications

(radiative transfer,...)
I Idea: damp the large derivatives in angle

Fully-Implicit PN Equations

I Transport equation:
1

c
∂tψ + Ω ·∇ψ + σtψ = σsφ + Q

I Spherical Harmonics expansion:

ψ(r,Ω) ≈
N∑
l=0

l∑
m=−l

ψm
l (r)Y m

l (Ω)

I Quasi steady-state formulation of the transport equation:

Ax∂xψ
n+1 + Ay∂yψ

n+1 + Az∂zψ
n+1 + σ∗tψ

n+1 = σsφ
n+1 + Qn,∗

I Linear system solved using a Krylov solver (PETSc):

Lψ + Cψ = Q∗

Filtering: McClarren/Hauck approach

I After each time step:

ψm
l ←−

ψm
l

1 + αl 2(l + 1)2

Where:

α =
ω

N2(σtL + N)2

ω: filter strength
L: characteristic length

Filtering: Radice/Abdikamalov approach

I Matrix form:

Lψ + (C + ∆)ψ = Q∗

Where:

∆ ≡ −β log σfilterType(
l

N + 1
)

And:

σfilterType =


σLanczos(η) =

sin η

η

σSSpline(η) =
1

1 + η4

Effects of the filtering

I Pulsed line source after 10∆t (c = 1, σt = σs = 1, ∆t = 0.1, P1)

ω = 0 ω = 0.2 ω = 1.0

Properties of the filters:

I do not change the 0th moment
(particle conservation)

I vanish as N →∞
I preserve the equilibrium diffusion

limit
I preserve the rotational invariance
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Eigenspectrum of L + C

Properties of the filters:

I All the eigenvalues are such that
<λ ≥ 1

I Smallest eigenvalue ≡ λmin = 1
I Largest eigenvalue ≡ λ1

λ1 = 1 + η
1

∆x σ∗t

Impact on the eigenspectrum in void

c∆t

∆x
β λ1 λmin Γ

1 0 8.0868 1.0000 100%

1 20 8.0842 1.0840 91.1%

1 60 8.0788 1.1591 84.2%

1 100 8.0727 1.0981 89.6%

10 0 71.868 1.0000 100%

10 20 71.842 1.8404 53.7%

10 60 71.788 2.5911 37.7%

10 100 71.727 1.9807 49.7%

γ ≡ |λ1 − λmin|
|λmin|

Γ ≡ γ

γunfiltered

Thermal Radiation Transfer

I Add temperature equation:
1

c
∂tI + Ω ·∇I + σtI = σaB(T ) + σs ϕ + Q

Cv ∂tT = σa
(
ϕ− 4πB(T )

)
+ Qe

Crooked Pipe Test Problem

I Scalar flux after 1000∆t (∆t = 4× 10−12 s, P1)

β = 0 β = 50

β = 100 β = 500

I Helps smooth the solution
I The strength of the filter should not be too large

Conclusions

I Filtered PN reduces the negativity and oscillations of the solution
I Filtered PN improves the conditioning of the linear system

I Optimum filter strength in void depending on
c∆t

∆x
I Reduces the speed of the waves
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