
SEMI-ANALYTIC SOLUTIONS TO THE RADIATIVE TRANSFER

EQUATIONS VIA HETERGENEOUS COMPUTING

A Thesis

by

DANIEL ALPHIN HOLLADAY

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Dr. Ryan McClarren
Committee Members, Dr. Marvin Adams

Dr. Nancy Amato
Head of Department, Dr. Yassin Hassan

December 2014

Major Subject: Nuclear Engineering

Copyright 2014 Daniel Alphin Holladay

ABSTRACT

High energy density radiative transfer benchmark solutions are presented for a

1-D slab geometry using a three-temperature (electron, ion, and radiation) model

and 1-D spherical geometry using a two-temperature (material, radiation) model. A

transport model is used for the radiation, a conduction model is used for the elec-

trons, and ion and/or material motion is assumed negligible. These benchmarks are

useful in the verification and testing of simulation codes for laboratory astrophysics

as well as high energy density physics (HEDP). The solutions require linearization

of the coupled equations and are obtained via specific cubic functional forms (in

temperatures) for the heat capacities and electron-ion coupling factor. These so-

lutions are semi-analytic in that their exact forms can be written down, but 2-D

integrals must be computed numerically for each point in space and time. These

integrals are slowly convergent and so a numerical integration routine was developed

in OpenCL to take advantage of the high throughput that heterogeneous computing

offers. Although capable of running on any OpenCL device, the nature of numerical

integration meant GPUs were an excellent choice. Using a figure of merit analogous

to flops per watt, the OpenCL implementation achieves 25x better performance with

respect to this figure of merit, and an overall speedup of 560x was observed over a

serialized implementation of the same algorithm.

ii

TABLE OF CONTENTS

Page

ABSTRACT . ii

TABLE OF CONTENTS . iii

LIST OF FIGURES . v

LIST OF TABLES . vii

1. INTRODUCTION . 1

2. THE EQUATIONS OF THERMAL RADIATIVE TRANSFER 3

2.1 3-Temperature Model . 4
2.2 2-Temperature Model . 6
2.3 Previous Benchmark Solution Work 6
2.4 Solution Method . 7

2.4.1 Equation Linearization . 7
2.4.2 Non-Dimensionalization . 8
2.4.3 Integral Transforms . 8

3. NUMERICAL INTEGRATION STRATEGIES 13

3.1 Gauss-Legendre Quadrature . 13
3.1.1 Composite Rule . 14
3.1.2 Extension to d-Dimensions . 15
3.1.3 Infinite and Semi-Infinite Domains 17

3.2 Acceleration Techniques . 19
3.2.1 Asymmetric Refinement . 19
3.2.2 Error-Based Derefinement . 20
3.2.3 Sequence Acceleration . 20

4. PARALLEL IMPLEMENTATION OF NUMERICAL INTEGRATION WITH
OPENCL . 25

4.1 Using OpenCL . 25
4.2 OpenCL Middleware and ocl-mla . 27
4.3 The Multi-Stage Reduction . 28

4.3.1 Automatic Domain Decomposition 28
4.4 Host Implementation . 29
4.5 Performance Results . 32

iii

5. SEMI-ANALYTIC SOLUTION RESULTS 36

5.1 1-D Slab Radiation Source . 36
5.1.1 2 Temperature Problem . 36
5.1.2 3 Temperature Problem . 36

5.2 1-D Spherical Radiation Source . 37

6. CONCLUSIONS . 50

REFERENCES . 52

iv

LIST OF FIGURES

FIGURE Page

2.1 Bromwich contour must enclose all of the poles of the function, if all
of the poles are to the left of the imaginary axis, the straight part of
the contour lies on the imaginary axis. 12

3.1 Integrating over infinite domains via iteration: After the initial rectan-
gle, an integration over 3 (= 2!+1) additional rectangular domains are
computed in addition, producing a new, larger rectangle. The num-
ber of cells along each dimension is equal to the number of refinements
that occurred along that dimension. 24

4.1 For the 3D case, first two regions of integration are shown, and notice
that the upper limits of integration for the smaller region are the lower
limits of integration for the larger region. 35

4.2 Integration of the remaining 6 hyper rectangular regions to fill the
space missed by integration over the first 2 regions. 35

5.1 The non-dimensional radiation, electron, and ion energy densities are
plotted above for 3 different times. Results show that all energy den-
sities are monotonically increasing when t ≤ 10, which is when the
source drops down to 0. Energy is deposited into the radiation field
from the source, which then is transferred to the electron field, and
finally transferred to the ion field. This result is clearly seen as the
ion energy density is less than the electron energy density which is
less than the radiation energy density. Values actually computed are
circled and linearly interpolated in between. 42

5.2 The radiation energy density is plotted as a function of position for
at times coincident with those presented in [5]. The radiation energy
density is monotonically increasing while the source is on (t ≤ 10).
After the source is turned off, the energy spreads throughout the do-
main, decreasing near x = 0 and increasing at larger x. Values actually
computed are circled and linearly interpolated in between. 43

v

5.3 The electron energy density is plotted as a function of position for at
times coincident with those presented in [5]. The electron energy den-
sity is monotonically increasing while the source is on (t ≤ 10). After
the source is turned off, the energy spreads throughout the domain,
decreasing near x = 0 and increasing at larger x. Values actually
computed are circled and linearly interpolated in between. 44

5.4 The ion energy density is plotted as a function of position for at times
coincident with those presented in [5]. The ion energy density is mono-
tonically increasing while the source is on (t ≤ 10). After the source
is turned off, the energy spreads throughout the domain, decreasing
near x = 0 and increasing at larger x. Values actually computed are
circled and linearly interpolated in between. 45

5.5 The non-dimensional radiation and material energy densities are plot-
ted above for 3 different times. Results show that the energy densities
are monotonically increasing when t ≤ 10, which is when the source
drops down to 0. Energy is deposited into the radiation field from
the source, which then is transferred to the material field. This result
is clearly seen as the material energy density is less than the radia-
tion energy density. Values actually computed are circled and linearly
interpolated in between. 47

5.6 The radiation energy density is plotted as a function of position for
at times coincident with those presented in [5]. The radiation energy
density is monotonically increasing while the source is on (t ≤ 10).
After the source is turned off, the energy spreads throughout the do-
main, decreasing near x = 0 and increasing at larger x. Values actually
computed are circled and linearly interpolated in between. 48

5.7 The material energy density is plotted as a function of position for at
times coincident with those presented in [5]. The material energy den-
sity is monotonically increasing while the source is on (t ≤ 10). After
the source is turned off, the energy spreads throughout the domain,
decreasing near x = 0 and increasing at larger x. Values actually
computed are circled and linearly interpolated in between. 49

vi

LIST OF TABLES

TABLE Page

5.1 Radiation energy density with γ̂ = κe = 0 39

5.2 Material energy density with γ̂ = κe = 0 39

5.3 3 Temperature radiation energy density results with γ̂ = 1/2 and
κe = 1/6 . 40

5.4 3 Temperature electron energy density results with γ̂ = 1/2 and κe = 1/6 40

5.5 3 Temperature ion energy density results with γ̂ = 1/2 and κe = 1/6 . 41

5.6 Radiation Energy Density for 2-T spherical radiation source with A =
0.75. 41

5.7 Material Energy Density for 2-T spherical radiation source with A =
0.75. 46

vii

1. INTRODUCTION

If fusion energy is to be harnessed on earth, a thorough understanding of the

regime called high energy density physics must be very well understood. Due to

Planck’s law, when temperatures in the high energy density range are attained in a

physical system, energy in the form of thermal photons will make up a significant

amount of the total system energy in addition to the normal internal energy and ki-

netic energy. The equations governing this exchange of energy between the radiation

“field” and the material energy are called the radiative transfer equations. These

equations are important when it comes to modeling plasmas to compute reaction

rates for many different thermonuclear processes such as inertial confinement fusion.

There are several large scale computer codes such as xRage developed at Los

Alamos National Laboratory (LANL), KULL developed at Lawrence Livermore Na-

tional Laboratory (LLNL), and Hydra also developed at LLNL; these codes numer-

ically solve the radiative transfer equations by discretizing time and space. These

codes are constantly under modification and development. Unit testing is imple-

mented to verify that the codes work properly after changes are made. Analytic

solutions are an excellent tool for code verification because the true error obtained

by the code is calculable. Tests will verify that the codes still get the right an-

swer and approach the right answer at the correct rate. As computer architectures

continue to improve in both speed and efficiency, these software packages are able

to include higher fidelity physical models allowing for much more physically correct

simulations. These constant changes and improvements require not only unit testing

of individual functions, but integrated testing to test the package in a much more

inclusive way, making sure that the independent components that make up the soft-

1

ware package are working together correctly. The two models analyzed were the 2

temperature (2-T) and 3 temperature (3-T) models for thermal radiative transfer.

The 3-T model allows for the electron and ion energy fields to be out of equilibrium

with each other, while the 2-T model assumes the electron and ion species are in

thermal equilibrium. The 3-T can be useful useful when attempting to model phys-

ical phenomena such as the input of energy from a laser, which preferentially heats

electrons, and hydrodynamic shock waves, which preferentially heat ions. To ensure

that these models are being solved correctly, analytic solutions were are sought.

Analytic solutions for both the 2-T and 3-T models are presented, where the 3-T

model uses a 1-D slab radiation source and the 2-T model using a 1-D spherical

radiation source. The spherical source is especially useful because it can be used

to test the 3-D functionality of codes such as xRage and KULL. To compute the

solutions, the material property dependences were chosen to be certain cubic poly-

nomials with respect to the material temperature(s) such that the equations could

become linear partial differential equations (PDEs). The solution method involved

using spatial Fourier and temporal Laplace transforms. The inverse transforms were

written in the form of double integrals over either infinite or semi-infinite domains in

wavenumber frequency (k−ω) space. These integrals were computed numerically at

specific points and space and time. For every point in space-time, a double integral

was computed numerically. A composite Gauss-Legendre quadrature rule was used

to compute the integrals. This rule was implemented via OpenCL and computed on

4 Nvidia Tesla graphics processing units (GPUs).

2

2. THE EQUATIONS OF THERMAL RADIATIVE TRANSFER

The radiative transfer equations describe the transport of radiative energy in a

physical system and the exchange of radiative energy with its environment. The

radiation transport equation in it’s most general form is given by:

1

c

∂I (r, ν,Ω, t)

∂t
+∇ · (ΩI (r, ν,Ω, t)) + σt (r, ν, t) I (r, ν,Ω, t) = ε (r, ν,Ω, t) +

∞̂

0

dν ′
ˆ

4π

dΩ′ [σs (r, ν ′ → ν,Ω′ ·Ω, t) I (r, ν ′,Ω′, t)] +Q (r, ν,Ω, t) , (2.1)

where c is the speed of light, I (r, ν,Ω, t) is the radiative intensity, r is a position

vector, ν is the photon frequency, Ω is a vector on the surface of the unit sphere, t is

the time variable, σt (r, ν, t) is the macroscopic total photon interaction cross section,

ε (r, ν,Ω, t) is the total emissivity, σs (r, ν ′ → ν,Ω′ ·Ω, t) is the macroscopic double

differential scattering cross section, and Q (r, ν,Ω, t) is an extraneous source. Every

term in equation (2.4) has units of photon energy path length per unit volume per

unit frequency per unit solid angle per unit time.

In many cases the system is in a state called local thermodynamic equilibrium

(LTE). Under this assumption, the emission term is given by:

ε (r, ν,Ω, t) = σa (r, ν, t)B (ν, Te (r, t)) , (2.2)

where σa (r, ν, t) is the macroscopic photon absorption cross section andB (ν, Te (r, t))

is the Planck distribution. It is given by:

3

B (ν, T) =
2hν3

c2
1

exp
(

hν
kBT

)
− 1

, (2.3)

where h is Planck’s constant and kB is the Boltzmann constant. Many such analyses

integrate the radiation transport equation over all photon frequencies to simplify

the analysis. This is called the 1-group, or gray, approximation and under this ap-

proximation, the emission term simplifies greatly due to the fact that the Planck

distribution integrated over all frequencies is analytic. The 1-group radiation trans-

port equation under LTE is given by:

1

c

∂I (r,Ω, t)

∂t
+∇ · (ΩI (r,Ω, t)) + σt (r, t) I (r,Ω, t) = σa (r, t)

acT 4
e (r, t)

4π
+ˆ

4π

dΩ′ [σs (r,Ω′ ·Ω, t) I (r,Ω′, t))] +Qr (r,Ω, t) , (2.4)

where a ≡ 8π5k4B
15h3c3

is the radiation constant. Additional equations are needed to

describe the material energy field.

2.1 3-Temperature Model

In the high energy density regime, the material is very likely ionized (i.e. a

plasma) and it is likely that the cross section for photo-ion interactions is different

than the cross section for free electron interactions which means that their mean

energies could differ. In the 3-T model, it is assumed that the radiation, free electron,

and ion energy distributions can be described via a temperature. This difference in

mean energies would imply that the free electron and ion temperatures can differ.

If a heat conduction model is used for electrons and ions, then the electron and ion

4

energy equations are given by:

cv,e (r, t)
∂Te (r, t)

∂t
−∇ · (κe (r, t)∇Te (r, t)) = cσa

(
φ (r, t)− aT 4

e (r, t)
)

+

γei (r, t) (Ti (r, t)− Te (r, t)) +Qe (r, t) (2.5a)

cv,i (r, t)
∂Ti (r, t)

∂t
−∇ · (κi (r, t)∇Ti (r, t)) = γei (r, t) (Te (r, t)− Ti (r, t)) +Qi (r, t)

(2.5b)

Equations (2.4), (2.5a), and (2.5b) fully describe the exchange of energy between

radiation, ion, and electron energy fields given that the system is in local thermo-

dynamic equilibrium and in a regime such that electron and ion conduction models

are accurate, meaning that electron diffusion term is physically accurate. Ion motion

occurs on such a slow time scale that it can be neglected in many cases. The bench-

mark problem being considered does not have electron or ion extraneous sources, and

photon scattering is assumed to be negligible. In addition, the benchmark problem

is a one dimensional problem in a Cartesian geometry. This yields the following

equations:

1

c

∂I (x, µ, t)

∂t
+ µ

∂

∂x
(I (x, µ, t)) + σa (x, t) I (x, µ, t) =

σa (x, t)
acT 4

e (x, t)

2
+Qr (x, µ, t) (2.6)

5

cv,e (x, t)
∂Te (x, t)

∂t
− ∂

∂x

(
κe (x, t)

∂

∂x
(Te (x, t))

)
= cσa (x, t)

(
φ (x, t)− aT 4

e (x, t)
)

+

γei (x, t) (Ti (x, t)− Te (x, t)) (2.7a)

cv,i (x, t)
∂Ti (x, t)

∂t
= γei (x, t) (Te (x, t)− Ti (x, t)) (2.7b)

2.2 2-Temperature Model

In a 2 temperature model, ions and electrons are assumed to be in thermal equilib-

rium with each other and thus treated as a single material energy field. The material

energy conduction is assumed to be negligible. The correct material energy equation

is equivalent to the electron energy equation with γei = κe = 0 and Ti = Te = T .

The radiation transport equation remains the same and is still given by equation

(2.6). For the 2-T model, the material energy equation is

cv (x, t)
∂T (x, t)

∂t
= cσa (x, t)

(
φ (x, t)− aT 4 (x, t)

)
(2.8)

Solutions to the above equations, given certain functional forms for the radiation,

ion, and electron energy source terms are sought.

2.3 Previous Benchmark Solution Work

The radiative transfer equations are highly studied and as such, previous work has

been accomplished in the realm of benchmark solutions. Most notably, Su and Olson

published benchmark solutions for radiation transport under a two temperature (2-

T) model, in which ions and electrons are assumed to be in equilibrium with each

other and the material energy field can be treated as a single unit [5]. Other work

6

has focused on radiative diffusion with a 3-T model [4].

In these papers, high accuracy tables were presented that were a result of numer-

ically computing an integral for each value in the table. In these cases, integral con-

vergence was obtained via math libraries or programs such as Mathematica. These

methods were initially attempted to compute the integrals presented in this work,

but integral error estimates were high and the computing the integrals to tighter

error bounds required unacceptable amounts of time. Many runs were killed after

more than 1.5 weeks of running. Thus, it was highly time prohibitive to use these

methods and so a new approach was taken. Much of this work has been to develop

a numerical integrator specifically optimized for these types of problems, even with

this optimization, highly parallel and advanced architectures were still needed. The

solution method is outlined in the next section.

2.4 Solution Method

2.4.1 Equation Linearization

By making certain assumptions about the physical properties of the material,

the equations can be linearized. If the specific heat capacities and the electron-ion

coupling constant are proportional to cubic polynomials in both temperatures, the

equations can be linearly recast with respect to T 4
α where α = e, i. A set of linear

partial differential equations can become a set of linear equations via Fourier and

Laplace transforms. One can then solve for the transformed variables and invert

the transforms. The inverse transforms of these equations can be written down but

not computed analytically. They involve computing difficult integrals numerically,

and thus the solutions are known as “semi-analytic” solutions as the solution can be

written down but not computed analytically 1. The forms for these properties are

1This is analogous to the function exp (x) being the “semi-analytic” solution to the differential
equation dy

dx = y.

7

shown in the non-dimensionalization section.

2.4.2 Non-Dimensionalization

By introducing the following parameters, the equations of thermal radiative trans-

fer can be written in a non-dimensional form using the following:

τ = cσat, z = σax, T̂α =
Tα
TH

, cv,α = 4aT 3
α, γei = σaacT

3
H

T̂ 4
i − T̂ 4

e

T̂i − T̂e
γ̂,

κα = 4aT 3
αDα, κ̂α =

σaDα

c
, w =

φ

acT 4
H

, u =
I

acT 4
H

, vα = T̂ 4
α,

where α can be either e for the electronic species material properties or i for the

ionic species material properties. The non-dimensional and linearized 3-T equations

of thermal radiative transfer in a scatter free medium are given by:

∂u

∂τ
+ µ

∂u

∂z
+ u =

ve
2

+ S̃r, (2.9a)

∂ve
∂τ

+ ve = κ̂e
∂2ve
∂z2

+ w + γ̂ (vi − ve) , (2.9b)

∂vi
∂τ

= γ̂ (ve − vi) . (2.9c)

2.4.3 Integral Transforms

Using Fourier transforms in space and Laplace transforms in time, the above

system of coupled linear PDEs is transformed into a linear system of 3 equations.

(s+ µik + 1)U =
Ve
2

+ Sr, (2.10a)

(s+ 1)Ve = −k2κ̂eVe +W + γ̂ (Vi − Ve) , (2.10b)

sVi = γ̂ (Ve − Vi) , (2.10c)

8

where calligraphed characters represent the doubly transformed quantities:

F (k, s) =

∞̂

0

dτ

∞̂

−∞

dzf (z, τ) exp (− (ikz + sτ)) . (2.11)

The radiation transport equation can be integrated over angle to obtain the angle

integrated photon intensity in terms of other quantities:

W =

(
Ve
2

+ Sr
)
b (k, s) , (2.12)

where b (k, s) is defined by:

b (k, s) ≡
1ˆ

−1

1

s+ µik + 1
dµ. (2.13)

This essentially eliminates equation (2.10a), thus the system becomes a 2 vari-

able system of equations (2.10b) and (2.10c). Solving for the doubly transformed

quantities is simple and the solution is given below:

W =

(
Ve
2

+ Sr
)
b, (2.14a)

Ve =
bSr (s+ γ̂)(

1− b
2

+ s+ γ̂ + k2κe
)

(s+ γ̂)− γ̂2
, (2.14b)

Vi =
bSrγ̂(

1− b
2

+ s+ γ̂ + k2κe
)

(s+ γ̂)− γ̂2
. (2.14c)

Equations (2.14a) - (2.14c) are the exact solutions to this problem in wavenumber

9

– frequency (k−s) space. By allowing γ̂ → 0 and κe → 0, the two temperature solu-

tions can be recovered. They need to be transformed back into the non-dimensional

space – time (z − τ) space. To do this, the inverse Fourier and Mellin integral

transforms are applied:

f (z, τ) = − i

(2π)2

˛

Bromwich

ds

+∞ˆ

−∞

F (k, s) exp (sτ + ikz) dk (2.15)

Here, the Bromwich contour is a semicircular contour in the complex plane that

encloses all of the poles of F and can be seen illustrated in Figure 2.1.

It can be shown that all of the poles are to the left of the imaginary axis [3]

which allows for the straight portion of the contour to lie on the imaginary axis.

This contour integral can be broken up into 2 pieces, one over the imaginary axis

and one over the semi-circular arc. It can be shown that the integral over the semi-

circular arc is 0. The Mellin integral transform can be rewritten as an integral over

the imaginary axis.

− i

2π

˛

Bromwich

ds = − i

2π

 γ+i∞ˆ

γ−i∞

ds+
�

�
��

ˆ
arc

ds

 (2.16)

In this case, γ = 0 and thus the substitution s→ iω can be made which will flip

the integration to along the real axis instead of the imaginary axis:

− i

2π

˛

Bromwich

ds→ 1

2π

∞̂

−∞

dω (2.17)

10

This leads to a form of equation (2.15) that is more amenable to numerical inte-

gration.

f (z, τ) =
1

(2π)2

∞̂

−∞

dω

+∞ˆ

−∞

F (k, ω) exp (i (ωτ + kz)) dk (2.18)

In order to evaluate these solutions at different spatial and temporal locations,

the integrals must be computed numerically, which is discussed in detail in the next

section.

11

γ

poles

Re(s)

Im(s)

Figure 2.1: Bromwich contour must enclose all of the poles of the function, if all of
the poles are to the left of the imaginary axis, the straight part of the contour lies
on the imaginary axis.

12

3. NUMERICAL INTEGRATION STRATEGIES

In order to compute the semi-analytic solutions to the radiative transfer equations

numerical integrals must be computed. There are several methods for estimating a

definite integral, and the method of composite Gauss-Legendre quadrature was the

method of choice.

3.1 Gauss-Legendre Quadrature

Composite Gauss-Legendre quadrature is a composition of Gauss-Legendre quadra-

tures. The composition will be described later in this section. First, Gauss-Legendre

quadrature will be discussed. In general, a quadrature is a method of approximating

an integral in the following way:

bˆ

a

f (x) dx ≈
n∑
i=1

wif (xi) , (3.1)

where f (x) is the integrand, wi is the set of quadrature weights, xi is the set of abscis-

sae, and n is the approximation order. Together, {wi, xi} make up the quadrature

set. The abscissae for a Gauss-Legendre are the zeros of the nth order Legendre

polynomial, {xi|Pn (zi) = 0, xi ∈ [−1, 1]}. This quadrature is chosen to utilize

every degree of freedom to integrate polynomials of maximum degree, in this case

2n − 1. This quadrature set exactly integrates the Lagrange interpolation of f (x)

interpolated at the quadrature points:

13

f (x) ≈
n∑
i=1

f (xi)
n∏
j=1
j 6=i

x− xj
xi − xj

. (3.2)

The definition of the weights arrises from integrating the above interpolant

1ˆ

−1

f (x) dx ≈
n∑
i=1

f (xi)

1ˆ

−1

n∏
j=1
j 6=i

x− xj
xi − xj

dx

︸ ︷︷ ︸
wi

. (3.3)

The Gauss-Legendre weights given by the following formula:

wi =
2 (1− x2i)

(n+ 1)2 [Pn+1 (xi)]
2 , (3.4)

which comes from known properties of the Legendre polynomials. The code devel-

oped in this work, named numintCL , recomputes quadrature sets every it is executed.

Sets are computed for 2, 4, 8, 16, 32, and 40 point Gauss-Legendre quadratures.

3.1.1 Composite Rule

Gauss-Legendre quadrature has excellent convergence properties as a function of

the quadrature order, but the overall integration is also related to the domain size.

Additionally, high quadrature order can cause arithmetic precision issues. Increasing

the quadrature order reduces the integration error (p-refinement), but one can also

split up the domain into subdomains and perform the integration on each subdomain.

Splitting the integral into n equally spaced subdomains each of width h over [a, b]

yields:

14

bˆ

a

f (x) dx =
n−1∑
i=0

a+(i+1)hˆ

a+ih

f (x) dx. (3.5)

This is called a composite rule and is analogous to h-refinement. Algorithmically,

when a refinement occurs, the number of sub-domains is increased by an integer

factor, typically 2 in this work. The quadrature rule needs to be remapped for every

subdomain with the following substitution

a+(i+1)hˆ

a+ih

f (x) dx =
h

2

1ˆ

−1

f

(
h

2
(x′ + 1) + a+ ih

)
dx′. (3.6)

The above substitution is equivalent to mapping to the reference element, thus

allowing for the same quadrature set to be used to compute any integral. numintCL

starts with 2 subdomains and simultaneously increases the quadrature order and

refines the composite rule until convergence or until the maximum quadrature order

has been reached, in which case it will only refine the composite rule.

3.1.2 Extension to d-Dimensions

The extension to d dimensional integrals implemented in this work is not appli-

cable to integrals with variable limits of integration, thus restricting integration to

hyper rectangular domains. Extending a Gauss-Legendre quadrature rule to d di-

mensions in theory is not complicated. The integral of a function f (x1, x2, ..., xd) can

be approximated via nth order quadrature in much the same way as a 1 dimensional

function, except now there is a sum and a weight for every dimension

15

1ˆ

−1

· · ·
1ˆ

−1

f (x1, ..., xd) dx1 · · · dxd ≈
n∑

i1=1

· · ·
n∑

id=1

f (x1,i1 , ..., xd,id)
d∏
j=1

wij . (3.7)

An equivalent way to look at the above expression is a sum of the function

evaluated at nd quadrature points in a d dimensional volume. To specify a given

quadrature point, d numbers (or coordinates) are needed, and each point will have

an associated weight. In this modified set, there are nd points, xi each vector of

length d and nd weights, which is merely a product of weights from the original

quadrature set. The above approximation can be converted to a sum that is much

less daunting in terms of implementation:

1ˆ

−1

f (x) dx ≈
nd∑
i=1

wif (xi) . (3.8)

The sum is now fairly simple from an implementation perspective. The previ-

ous expression was difficult from an implementation perspective due to the variable

number of sums. In a computer code, a sum is typically implemented via a loop,

but creating a function that allows for a variable level of loop depth is not trivial,

which is why equation (3.8) is a preferable form. Unfortunately, in order to com-

pute the new quadrature set, a similar loop structure is still required. A recursive

function was used to achieve this. From a performance perspective, recursive func-

tions are not optimal, but since the quadrature set only needs to be computed once

per code execution, this turns out to be a very small portion of the overall integral

computation.

Applying a composite rule in d dimensions can be implemented on a per dimension

16

basis. Refinements can be made in any number of dimensions independently, and

the same substitutions can be made to map from [ai, bi] to [−1, 1].

3.1.3 Infinite and Semi-Infinite Domains

The integrals derived in the previous chapter are 2-D integrals over semi-infinite

integration domains. The quadrature formulas presented in the previous section

are only applicable to finite domains. Two different solutions to this problem were

implemented. The two solutions are a variable substitution and iteration. The

variable substitution will be outlined, followed by the iterative method.

3.1.3.1 Variable Substitution

Instead of computing an integral over an infinite or semi-infinite domain, one can

compute an integral over a finite domain with a modified integrand that yields the

same result. Two such methods will be presented, one for infinite domains and one

for semi-infinite domains. For infinite domains, allow x → t (1− t2)−1, the integral

becomes

∞̂

−∞

f (x) dx =

1ˆ

−1

f

(
t

1− t2

)
1 + t2

(1− t2)2
dt. (3.9)

Initially, this integral looks very nice especially because it is on the interval [−1, 1],

which is the same as for Gauss-Legendre quadrature. However, this nicety does not

apply when using a composite rule. If one of the limits of integration is finite (a semi-

infinite integration domain), the above substitution does not work. Semi-infinite

integration domains can occur when the integrand in equation (2.18) is even with

respect to 1 or more integration variables due to symmetry. An integral over such the

domain [0,∞] can be transformed into an integral on [0, 1] by letting x→ t (1− t)−1

17

∞̂

0

f (x) dx =

1ˆ

0

f

(
t

1− t

)
1

(1− t)2
dt. (3.10)

The benefit of these integrals is that the equivalence is exact, no approxima-

tions are made. However, the integrands are highly oscillatory and vary greatly in

magnitude. A spatially adaptive rule would be highly beneficial for these types of

integrands. The method used is not adaptive and thus refines the entire integration

domain uniformly, which is potentially highly inefficient.

3.1.3.2 Iteration

The iterative method iterates on what finite upper bounds of integration approx-

imate ∞ with respect to the integral estimate. There is no substitution involved,

but it is an approximation. The method works for integrals of the form:

∞̂

0

f (x) dx, (3.11)

and in d dimensions. The method could be extended to handle an arbitrary finite

lower limit of integration, but that is not currently implemented. The method works

by integrating over some prescribed domain, increasing the limits of integration, and

integrating over the newly introduced domain. Not including the initial domain,

there will be 1 + d! subdomains to integrate for the integration over the new, larger

subdomain is introduced. This is illustrated in 2-D in figure 3.1 in which after

integrating over the initial domain, 3 more integrations occur to produce a larger

rectangular region. The same treatment can be applied again to create an even

18

larger rectangle, this procedure can be repeated until successive contributions to the

overall integral are smaller than the tolerance. Due to the fact that these solutions

exist, there is an expectation of convergence for these integrals and the fact that the

integrands will approach 0 as k, ω →∞. If one of the 3 integral estimates is less than

the tolerance consecutively, then when the domain is increased, its corresponding

integral will not be computed.

3.2 Acceleration Techniques

Due to the relatively crude implementation of Gauss-Legendre quadrature on

uniformly refined hyper rectangular domains, alternative methods of acceleration

were sought after. Two acceleration methods were eventually implemented, those

being asymmetric refinement and sequence acceleration. Both of these methods

reduce the time to obtain a converged integral and are discussed below.

3.2.1 Asymmetric Refinement

The key to this method of acceleration is to not refine along every dimension

uniformly or simultaneously. Refinements occur based on sensitivity of the integral

with respect to refinements along a given dimension. Before the refinement begins, a

sensitivity analysis is completed to see which dimension causes the greatest change in

the integral upon refinement. The dimensions are ordered based upon this sensitivity

analysis, x1, ..., xd. The composite rule is refined along x1 until the estimate has

converged. Once the integral estimate has converged with respect to x1, all of the

other dimensions (i.e. x2, ..., xd) are refined. One could potentially generalize the

prescribed method to refine only in one dimension at a given time and go in order

from most to least sensitive. This was not implemented in this work as 2 dimensional

integrals were the focus. In this case, there are only 2 levels, an “outer” and an

“inner” loop. When the “outer” integral estimate has converged, the integral is

19

considered to be converged.

3.2.2 Error-Based Derefinement

When spending all computational resources to converge the integral estimate

with respect to a single dimension, the grid can become more refined than what is

needed for a given tolerance. A symptom of this problem is the error estimate for

the “inner” refinement loop is many orders of magnitude smaller than the overall

integration tolerance. If this occurs, the other dimension will be refined, but the

most sensitive dimension will be de-refined by a prescribed number of levels.

3.2.3 Sequence Acceleration

Four different methods of sequence acceleration were also used to accelerate the

convergence of integral estimates. As refinements are made, the error in the integral

estimates should be reduced. This could be viewed as a convergent sequence of

numbers, and there are methods of accelerating convergent sequences. The four

methods used in this work are called iterated Aitken δ2, Wynn ε acceleration, Wynn

ρ acceleration, and iterated Brezinski θ acceleration.

3.2.3.1 Iterated Aitken δ2 Acceleration

Before introducing the iterated Aitken δ2, a brief introduction of the (non-iterated)

Aitken δ2 process will be given. Given three numbers in a converging sequence xi,

xi+1, and xi+2, with xi+2 being the newest iterate, and thus the one that is closest

to convergence. A better estimate for the converged value, x′, is given by

x′ = xi+2 −
(xi+2 − xi+1)

2

xi+2 − 2xi+1 + xi
. (3.12)

Suppose now a list of 5 values in a convergent sequence. One could perform 3 different

20

Aitken δ2 calculations and obtain 3 accelerated values. These 3 values also belong to

a convergent sequence and thus the acceleration method can be performed on these

values as well. This technique is called the iterated Aitken δ2 acceleration method

[6]. For the nth iteration, the Aitken accelerated values are given by

xni = xn−1i+2 −
(
xn−1i+2 − xn−1i+1

)2
xn−1i+2 − 2xn−1i+1 + xn−1i

. (3.13)

This turns out to be the most reliable method for a number of different cases [6, 2]

including the integrals computed in this work.

3.2.3.2 Wynn ε Acceleration

The Wynn ε algorithm is another method of sequence acceleration. The algorithm

is based on Padè approximates and its underlying theory is beyond the scope of this

work, but can be found in [8]. A convergence table is the output of this algorithm in

much the same way as for iterated Aitken δ2, but every other column of this table

is divergent. The large divergences of the even columns of the table means that a

high level of precision is required to compute these tables without too significant a

loss in numerical accuracy. To compute the ith value of the nth column, the following

formula is used

xn+1
i = xn−1i+1 +

1

xni+1 − xni
, x−1i = 0. (3.14)

This method was also found to be highly reliable for converging these integrals.

The above algorithm produces a table of values, but not a square table. Notice to

compute a new column with I rows, I + 1 rows are needed in its left neighboring

21

column. Additionally, while even columns are filled with convergent numbers, the

odd columns are filled with divergent numbers. A new table can be constructed of

only the even columns, but as the columns move to the right, every one will have

two less rows than its left neighboring column and two more rows than its right

neighboring column. This fact is true for every one of the methods explored with

the exception of the Brezinski θ algorithm.

3.2.3.3 Wynn ρ Acceleration

The Wynn ρ algorithm is almost identical to the ε algorithm, but does not appear

to work as well. In general, the ρ algorithm is given by

xn+1
i = xn−1i+1 +

ρi+n+1 − ρi
xni+1 − xni

, x−1i = 0. (3.15)

Using difference choices for ρ leads to different convergence properties. The choice

made for this work was that ρα = α + 1, leading to

xn+1
i = xn−1i+1 +

i+ 1

xni+1 − xni
, x−1i = 0. (3.16)

Although not very reliable or as accurate in speeding up the convergence of these

integrals, the derivation of this algorithm serves as the basis for Brezinski θ algorithm

[7].

3.2.3.4 Iterated Brezinski θ Acceleration

The iterated Brezinski θ algorithm is said to be one of the better and more robust

acceleration techniques [7, 6]. However, such positive results have not been seen in

22

this work. To compute the ith value of the nth column, the following formula is used

xn+1
i = xni+1 −

(
xni+1 − xni

) (
xni+2 − xni+1

) (
xni+3 − 2xni+2 + xni+1

)(
xni+3 − xni+2

) (
xni+2 − 2xni+1 + xni

)
−
(
xni+1 − xni

) (
xni+3 − 2xni+2 + xni+1

) .
(3.17)

Since this method requires 4 values of the sequence, the amount of useful numbers

is reduced by 3 when moving from left to right in the columns, instead of 2.

3.2.3.5 Convergence Criteria

Each of these methods produces a table whose values are approaching the true

value as one moves to the right and down in the table. This means that the values

along the lower diagonal are going to be best possible estimates. To test convergence,

all values on the diagonal are compared to every other value on the diagonal, in

addition to the row 1 above the diagonal in every column (this row number will be

different in every column). If the relative and/or absolute difference between any of

those two numbers is less than the relative and absolute tolerances, respectively, the

value is said to have converged for a given method to within the tolerances provided.

If the method that converged was either Wynn ε or Aitken δ2, then the sequence

acceleration method is considered to be converged. In addition, if any 2 or more

methods have converged, then the sequence is said to be converged, and the 2 values

with the lowest relative difference is the value that is chosen.

23

Figure 3.1: Integrating over infinite domains via iteration: After the initial rectangle,
an integration over 3 (= 2! + 1) additional rectangular domains are computed in ad-
dition, producing a new, larger rectangle. The number of cells along each dimension
is equal to the number of refinements that occurred along that dimension.

24

4. PARALLEL IMPLEMENTATION OF NUMERICAL INTEGRATION WITH

OPENCL

As computer interfaces became more complex, the demand for graphics specific

capabilities increased and led to the specialized hardware designed specifically for

processing graphics. This was called the graphics processing unit and it is made up

of hundreds or thousands of low power processing units. These units run at lower

clock speeds when compared to central processing units (CPUs) and have access to

much less cache per core. Numerical integration of an analytic integrand is perfect

for use on GPUs as evaluating the integrand at a point in space requires no inter-

processor communication and very little memory. Almost all of the work is in raw

computation and not as much in memory motion. To take advantage of the GPUs,

the Open Computing Language (OpenCL) was used. OpenCL is an open standard

in which hardware vendors can choose to conform to and provide an implementa-

tion for their hardware. This allows for specialized hardware and accelerators to be

used without the need to use domain specific languages, preprocessor pragmas, or li-

braries. Software developers can write functions called “kernels” in compliance with

the C99 standard, and those kernels can be executed on any OpenCL compatible

device. Currently, there are many different types of devices with an OpenCL soft-

ware development kit (SDK) including multi-core central processing units (CPUs),

grahpics processing units (GPUs), and field programmable gate arrays (FPGAs).

4.1 Using OpenCL

The OpenCL is a standard in which hardware vendors can choose to write an

SDK to comply with this standard. In the canonical case, there are two pieces of

hardware, the host and the device. The host is a standard CPU that can execute

25

the “host” code. This host code controls kernel executions on the device. The host

code includes several calls to the OpenCL application programming interface (API)

before actually executing a kernel. First, the OpenCL device(s) must be identified

and a context and command queue must be created for the device(s). Once a context

and command queue have been created, the kernel(s) must be compiled. OpenCL

features runtime compilation of the kernel(s), meaning that they are compiled when

the code is executed. Although this could potentially be a hit in overall code perfor-

mance, it allows for a semblance of metaprogramming due to the fact that runtime

parameters in the host code can become compile time parameters for the kernels

which can allow optimizations including loop unrolling and the fixing of array sizes.

Once the kernel has been compiled, the memory required for the computation needs

to be allocated on the device and the data transferred to the device. The data is

transferred via peripheral component interconnect express (PCIe); this data transfer

is typically the performance bottleneck observed in most heterogenous computation

profiling, especially for bandwidth limited computations. Fortunately, numerical in-

tegration via Gauss-Legendre quadrature on a uniform grid, if programmed correctly,

is compute bound and requires relatively small amounts of memory. Even so, at the

beginning of code execution, the GPU and CPU implementation of the integration

schemes are profiled to determine the number of subdomains required for the GPU

to to have a significant performance improvement over the CPU. If the number of

subdomains for a given integration is less than this number, the integral is computed

on the CPU, if it is greater, the integral is computed on the GPU. Once the memory

has been allocated and the data transferred, the kernel arguments must be set then

the kernel can be executed. This execution is controlled by the command queue

and can potentially invoke multiple kernels and send and receive data from the host

simultaneously. In this case, such concurrency is not necessary.

26

Kernel execution has its own nomenclature that is specific for OpenCL. When

executing a kernel, generally the total problem size is called the global size. The

global size can be 1, 2, and 3 dimensional, but since the integrals are in general d

dimensional, a one dimensional global size was chosen. The code implementation had

that the total problem size, which is the number of subdomains in the composite rule,

be at least twice the global size. This is due to the fact that every thread computes

the integral over multiple subdomains and is strided by the global size. The total

number of subdomains is always chosen to be a power of 2 as the hardware is generally

optimized for such sizes. The global size parameter is the product of two parameters

called the local size and the number of work groups. In general, the global problem is

broken up into a number of work groups, each composed of work items. The number

of work items in a work group is called the local size. A work item is the smallest

unit of work in the hierarchy. The global size and local size are needed to enqueue a

kernel.

4.2 OpenCL Middleware and ocl-mla

The steps and API calls required by most codes utilizing OpenCL are very similar

and thus much of the device, context, and command queue declaration has been

termed “boilerplate” code. There are now several different versions of middleware

available that handles much of the boilerplate code under the hood. One such version

is called the OpenCL Middle LAyer, or ocl-mla. This library was developed by

Ben Bergen at Los Alamos National Laboratory and is available on github. The

code developed in this work uses ocl-mla to handle much of OpenCL API calls

under the hood. Additionally, ocl-mla is able to handle the use of multiple devices

simultaneously. The use of ocl-mla greatly reduced development time and enabled

the easy use of multiple simultaneous OpenCL devices.

27

4.3 The Multi-Stage Reduction

In order to reduce the amount of information transferred from the device back

to the host at the end of the calculation, a device side reduction is used. The

type of reduction is the two stage reduction described in [1]. This reduction method

parallelizes only enough to match the devices capacity, and within one of these groups

the reduction is done in serial. This minimizes the amount of barriers and waiting

that occurs across work groups. The maximum value for the local size is hardware

dependent but can be queried at run time. In order to ensure that every compute

unit had a sufficient amount of work, the following inequality was enforced:

of subdomains ≥ 2× local size×# of work groups (4.1)

Additionally, the local size needed to be both as large as possible and a power

of 2. The number of workgroups was a free parameter. By varying the number of

work groups and comparing the wall clock time for total integration execution, it was

determined that for the GPUs used (Nvidia Tesla with the Fermi architecture), 215

work groups yielded the best results. This meant that for every device, 215 numbers

had to be transferred back to the host and added up. If a significant number of these

values was not a number (NaN), infinity, or denormalized, that would be reflected in

the output and left up to the user whether or not he/she wanted to reject the results.

4.3.1 Automatic Domain Decomposition

Since multiple devices were used simultaneously, a method for equally dividing

of the work was devised. For a d dimensional domain, there is a list of integration

variables x1, ..., xd. If there were n devices, then the domain of integration for xd

28

would be split into n subregions and each of the devices would receive a different

portion of the xd subdomain, with the integration domains in all of the other variables

remaining the same. This requires that the number of subdomains for xd be evenly

divisible by the number of devices. The number of devices used was 4 and the number

of subdomains was always a power of 2, so this requirement was always satisfied.

4.4 Host Implementation

In addition to the OpenCL and ocl-mla portions of numintCL , a significant

amount of development time was spent on the host side. Coding the iterative method

for computing integrals over semi-infinite domains required significant, error estima-

tion, and convergence acceleration was not a small part of this work. The flow of the

code will now be outlined.

numintCL first defines the absolute and relative integration tolerances, number

of integration dimensions, and the spatial and temporal points at which the analytic

solutions will be evaluated. When the number of integration dimensions is defined,

Gauss-Legendre quadrature sets of 2nd, 4th, 8th, 16th, 32nd, and 40th order are

computed, but any other list of orders could also be computed up to 40th. Above 40

has not been verified and numerical errors associated with the root finding algorithm

could lead to significant numerical integration error. When the quadrature sets have

been computed and stored, the serial CPU and OpenCL GPU integration functions

are profiled to see at which number of subdomains does the GPU implementation

significantly outperform the CPU implementation. Since the number of subdomains

in which this performance crossover occurs is dependent upon the complexity of the

integrand, so the profiling takes place at runtime. This profiling allows for the GPUs

to be used when their computational power is needed and the CPU to be used when

the cost of computing the integral estimate is small. The profiling is followed by the

29

computation of the analytic solution at the specified spatial and temporal points.

In order to compute the solution at a single point, a double integral over the entire

plane must be computed. However, it turns out that for all of the cases presented,

some level of symmetry could be taken advantage of. The integrals were always

symmetric with respect to the frequency variable, ω. This meant that the integral

over all ω was replaced by an integral over half of the space and a factor of 2. For

the cases in which the radiation source was a 1-D slab, there was symmetry in the

wavenumber variable, k, as well. This was not the case for the spherical radiation

source geometry. The iterative method computes integrals on (0,∞)d. This works

perfectly for the cases in which there is symmetry in both k and ω, but not as

well spherical source case. Due to the significant lower time to completion with the

iterative method vs the integral transform method, the following manipulation can

be made:

∞̂

0

dω

∞̂

−∞

f (k, ω) dk =

∞̂

0

dω

0ˆ

−∞

f (k, ω) dk +

∞̂

0

dω

∞̂

0

f (k, ω) dk (4.2)

The second integral is now in a form that the iterative method can handle, and by

making the substitution of k → −k, the first term goes to an integral on (0,∞)2 as

well. Thus, to obtain the solution at one point, essentially twice the work needs to be

accomplished and more error is introduced, but the values can be calculated with the

much faster iterative method. The iterative method works by starting with a hyper

rectangular integration domain of the form
∏

i (0, bi) followed by the integral over

the domain
∏

i (bi, ci). This does not form a hyper rectangular region with the only

exception being d = 1. The goal is to compute the integral over the region
∏

i (0, ci),

and so the integral is broken up into d! hyper rectangular domains computing the

30

equivalent integral of

cˆ

0

f (x) dx =

bˆ

0

f (x) dx +

cˆ

b

f (x) dx +
d!∑
i=1

xu,iˆ

xl,i

f (x) dx

=⇒
d!∑
i=1

xu,iˆ

xl,i

f (x) dx =

cˆ

0

f (x) dx−
bˆ

0

f (x) dx−
cˆ

b

f (x) dx. (4.3)

For illustrative purposes, this is shown graphically for the 3-D case below. First

are the 2 initial regions shown in figure 4.1. The following 6 (3!) regions are shown

in figure 4.2. As was previously said, the goal was to compute the integral over∏
i (0, ci). The process can start again, this time with larger limits of integration, and

be repeated until successive integral estimates are less than the tolerance. In addition,

the estimate of the integral is changing less and less as the approximation of the true

semi-infinite domain becomes better, and thus can be thought of as a convergent

sequence and sequence acceleration can be used. This machinery requires the ability

converge an integral estimate in a given domain with fixed upper and lower limits

of integration. For a given integral, the composite rule starts out with 4 subregions

per dimension and a 2nd order Gauss-Legendre quadrature order. Two refinements

are made in each dimension with a 2nd order rule while no other refinements are

made to the other dimensions so that a sensitivity coefficient can be computed for

every dimension. The dimension with the largest sensitivity coefficient will be the

first dimension to be refined, however, if two sensitivity coefficients are close to

each other, more refinements and a higher order quadrature rule is made create a

better approximation for the sensitivity coefficient. At each stage of the sensitivity

coefficient analysis, the integral estimates are checked for convergence. If convergence

31

has not yet been established, the refinements will continue. The dimension in which

the integral estimate is the most sensitive is refined until convergence according to

the sequence acceleration convergence criteria. Upon convergence of this dimension,

every other dimension is refined by one level and based upon the error estimate for the

most recent inner integral estimate, the sensitive dimension is refined or de-refined

and the process of refining the sensitive dimension starts again. When the outer

sequence acceleration convergence criteria is met, the integral in the given region is

believed to be converged. To compute these composite quadrature rules with a set

number of subdomains, the the integration functions are called (either the CPU or

the GPU based upon the number of subdomains). The GPU implementation has

to recompute the correct global and local sizes, transfer data, set kernel arguments,

invoke the kernel, and retrieve and process the data, and the CPU implementation

is a fairly straightforward function call.

The above summarizes the flow of numintCL concisely yet with enough detail to

understand some of the challenges associated with developing numintCL with the

level of generality and speed optimization that was built in.

4.5 Performance Results

There were two methods of measuring performance, the first was overall wall clock

time to completion. For the second metric, the number of floating point operations

per second (FLOPS) per watt initially sounded like an excellent candidate as it takes

into account the fact that the GPUs consumed much more power than the CPU could

at any given time. However, when it came to actually computing these numbers, it

was quickly discovered that they are not easily obtained. The issue with the number

of FLOPS is that these integrands contain a number of special functions and the

number of flops and memory accesses to compute a special function like a sine or

32

a cosine changes based upon its argument. Additionally, modern compilers perform

a number of optimizations to these integrands and it can be difficult to know what

actually gets compiled, especially on the OpenCL side of things because the device

code that is compiled all occurs on the device. Instead, one might think to look at

a polynomial with only multiplication, addition, and subtraction, and to deactivate

any compiler optimizations that might occur. Although this could yield FLOPS for

polynomial evaluation, there many other steps in computing the integral. Instead,

an analogous metric was used, and that was the number of integrand evaluations

per second. Additionally, in order to obtain the average power consumed during a

calculation, the power consumption of the devices and only the devices as a function

of time would need to be known. Instead of actual power, the maximum thermal

design power (TDP) was used for this comparison. Thus, the figure of merit (FOM)

used in this performance comparison is given by

≡ # of integrand evaluations

t ×PTDP
, (4.4)

where t is the total wall clock time of the calculation and PTDP is the thermal

design power of the device(s). For the CPU, the implementation was not parallel

and so only 1 core was able to used for the computations; the CPU type was an

Intelr Xeonr E5503 dual core processor with a maximum TDP of 80 W. Given that

this is a dual core processor and only one core is being used for the computation, it

was assumed that the TDP for a single core was half the listed amount, so a value of

40 W was used for these comparisons. For the GPUs, 3 Nvidia Tesla C2075’s and 1

Nvidia Tesla C2050 used the OpenCL integration implementation and these GPUs

have a combined maximum thermal design power of 913 W. The GPUs showed a

33

factor of speedup of 561 over the single core CPU and a factor 25 better in terms of

.

Even though there was much more power being supplied to the GPUs, the com-

parison their shows that the GPU implementation is better by about a factor

of 25 for doing these computations versus the CPU.

34

0 2π

20π

200π

0
2π

20π

200π

0
2π

20π

200π

0 2π

20π

200π

0
2π

20π

200π

0
2π

20π

200π

Figure 4.1: For the 3D case, first two regions of integration are shown, and notice
that the upper limits of integration for the smaller region are the lower limits of
integration for the larger region.

0 2π

20π

200π

0
2π

20π

200π

0
2π

20π

200π

0 2π

20π

200π

0
2π

20π

200π

0
2π

20π

200π

0 2π

20π

200π

0
2π

20π

200π

0
2π

20π

200π

0 2π

20π

200π

0
2π

20π

200π

0
2π

20π

200π

0 2π

20π

200π

0
2π

20π

200π

0
2π

20π

200π

0 2π

20π

200π

0
2π

20π

200π

0
2π

20π

200π

Figure 4.2: Integration of the remaining 6 hyper rectangular regions to fill the space
missed by integration over the first 2 regions.

35

5. SEMI-ANALYTIC SOLUTION RESULTS

Semi-analytic solutions results are presented for 2 different problems. The first

problem is a 3 temperature problem with a 1-D slab radiation source and the second

problem is a 2 temperature problem with a 1-D spherical radiation source.

5.1 1-D Slab Radiation Source

5.1.1 2 Temperature Problem

As a method of verification, a comparison to the analytic solutions obtained in

[5] was completed. All this required was run the problems with material property

coefficients of 0, or γ̂ = κe = 0. The results of these calculations are shown in

tables 5.1.1 - 5.1.1 and are converged to 5 decimal places, 1 decimal place better

than claimed by [5].

5.1.2 3 Temperature Problem

For this problem, the material property coefficients were chosen to match [4],

thus γ̂ = 1/2 and κe = 1/6. The initial and boundary conditions are

u =

[
Er
aT 4

H

,
T 4
e

T 4
H

,
T 4
i

T 4
H

]
, (5.1)

lim
x→±∞

u (x, t) = 0, (5.2)

u (x, 0) = 0. (5.3)

In addition to these conditions, the radiation source must be defined. The radi-

ation source was defined to be

36

Sr (z, τ) =


1
2

[
1

2z0
(Θ (z + z0)−Θ (z − z0))

]
, 0 ≤ τ ≤ τ0

0 , otherwise

(5.4)

where Θ (z) is the Heaviside step function Θ (z) =
´ z
−∞ δ (s) ds where δ is the Dirac

delta function. The solutions are shown in tables 5.1.2 - 5.1.2 and selected output in

figure 5.1

5.2 1-D Spherical Radiation Source

For this problem, the material property strength factors were γ̂ = κe = 0 to

recover the 2 temperature physics. The initial and boundary conditions are

u =

[
Er
aT 4

H

,
T 4

T 4
H

]
, (5.5)

lim
x→±∞

u (x, t) = 0, (5.6)

u (x, 0) = 0. (5.7)

In addition to these conditions, the radiation source must be defined. For this

problem, the Green’s functions for these equations were used. This means that the

radiation source was assumed to be a plane source that was pulsed at τ = 0. Given

that the equations are linear, the solution to a point source can be convolved with

a spatial and temporal shape function on a spherical domain to obtain the solution

for a spherical radiation source. The radiation source initially considered is

37

Sr (z, τ) = δ (z) δ (τ) . (5.8)

In 1-D, this source is more analogous to a planar source rather than a point source,

but the solution for a point source is sought, so the plane-to-point transform is used.

The solution for the above radiation source will be called uplanar. The progression

form planar to point to spherical shell to spherical solution can be seen in [4]. The

result of this math is that the solution for a spherical source can be written in terms

of the planar solution as follows

uspherical (r, τ) =

Â

0

a

r
(uplanar (|r − a|, τ)− uplanar (|r + a|, τ)) da, (5.9)

where A is the radius of the spherical source. Due to the greater amount of accumu-

lated error, tables 5.2 - 5.2 are truncated after the fourth number to the right of the

decimal point, to be conservative. Solutions can also be seen in figures 5.6 - 5.7

38

Table 5.1: Radiation energy density with γ̂ = κe = 0

x\t 0.10000 0.31623 1.00000 3.16228 10.00000 31.62280 100.00000

0.01000 0.09532 0.27529 0.64315 1.20069 2.23582 0.69019 0.35720
0.10000 0.09532 0.27529 0.63594 1.18872 2.21955 0.68974 0.35714
0.17783 0.09532 0.27529 0.61963 1.16204 2.18356 0.68877 0.35701
0.31623 0.09532 0.26272 0.56190 1.07186 2.06453 0.68572 0.35661
0.45000 0.08824 0.20313 0.44711 0.90953 1.86076 0.68117 0.35602
0.50000 0.04766 0.13765 0.35808 0.79903 1.73182 0.67907 0.35574
0.56234 0.00376 0.06278 0.25372 0.66680 1.57496 0.67616 0.35536
0.75000 0.00279 0.11432 0.44675 1.27399 0.66546 0.35393
1.00000 0.03647 0.27540 0.98782 0.64692 0.35141
1.33352 0.00289 0.14531 0.70822 0.61538 0.34697
1.77828 0.05967 0.45016 0.56351 0.33922
3.16228 0.00116 0.09645 0.36966 0.30347
5.62341 0.00363 0.10831 0.21382

10.00000 0.00391 0.07206
17.78279 2.00000 0.00272

Table 5.2: Material energy density with γ̂ = κe = 0

x\t 0.10000 0.31623 1.00000 3.16228 10.00000 31.62280 100.00000

0.01000 0.00468 0.04093 0.27131 0.94687 2.11192 0.70499 0.35914
0.10000 0.00468 0.04093 0.26869 0.93715 2.09597 0.70452 0.35908
0.17783 0.00468 0.04093 0.26264 0.91540 2.06065 0.70348 0.35895
0.31623 0.00468 0.04034 0.23982 0.84093 1.94371 0.70020 0.35855
0.45000 0.00455 0.03314 0.18826 0.70288 1.74297 0.69532 0.35794
0.50000 0.00234 0.02046 0.14192 0.60493 1.61539 0.69307 0.35766
0.56234 0.00005 0.00635 0.08838 0.48846 1.46039 0.68996 0.35727
0.75000 0.00006 0.03014 0.30656 1.16591 0.67850 0.35582
1.00000 0.00625 0.17519 0.88991 0.65869 0.35326
1.33352 0.00016 0.08352 0.62521 0.62507 0.34875
1.77828 0.02935 0.38688 0.57003 0.34087
3.16228 0.00018 0.07615 0.36727 0.30456
5.62341 0.00241 0.10311 0.21377

10.00000 0.00343 0.07123
17.78279 0.00261

39

Table 5.3: 3 Temperature radiation energy density results with γ̂ = 1/2 and κe = 1/6

x\t 0.10000 0.31623 1.00000 3.16228 10.00000 31.62280 100.00000

0.01000 0.09532 0.27510 0.62610 1.00736 1.60279 0.44486 0.23613
0.10000 0.09532 0.27507 0.61893 0.99839 1.59234 0.44458 0.23609
0.17783 0.09532 0.27499 0.60279 0.97837 1.56914 0.44399 0.23601
0.31623 0.09531 0.26207 0.54647 0.91043 1.49127 0.44213 0.23575
0.45000 0.08820 0.20247 0.43814 0.78491 1.35132 0.43936 0.23536
0.50000 0.04766 0.13757 0.35363 0.69295 1.25285 0.43809 0.23518
0.56234 0.00379 0.06335 0.25458 0.58359 1.13460 0.43631 0.23493
0.75000 0.00309 0.11844 0.41177 0.93143 0.42979 0.23399
1.00000 0.00002 0.03910 0.27276 0.74264 0.41849 0.23235
1.33352 0.00353 0.15664 0.55282 0.39922 0.22945
1.77828 0.00004 0.07030 0.36859 0.36750 0.22439
3.16228 0.00158 0.09088 0.24736 0.20103
5.62341 0.00431 0.07836 0.14236

10.00000 0.00346 0.04894
17.78279 0.00200

Table 5.4: 3 Temperature electron energy density results with γ̂ = 1/2 and κe = 1/6

x\t 0.10000 0.31623 1.00000 3.16228 10.00000 31.62280 100.00000

0.01000 0.00461 0.03823 0.20339 0.55874 1.18916 0.45403 0.23740
0.10000 0.00460 0.03788 0.20010 0.55304 1.18154 0.45374 0.23736
0.17783 0.00459 0.03697 0.19292 0.54065 1.16500 0.45310 0.23728
0.31623 0.00440 0.03284 0.17030 0.50207 1.11352 0.45111 0.23701
0.45000 0.00328 0.02401 0.13743 0.44666 1.03958 0.44814 0.23662
0.50000 0.00230 0.01949 0.12310 0.42243 1.00706 0.44677 0.23644
0.56234 0.00113 0.01395 0.10514 0.39122 0.96459 0.44487 0.23618
0.75000 0.00007 0.00363 0.05951 0.30159 0.83593 0.43789 0.23523
1.00000 0.00038 0.02289 0.20391 0.67825 0.42581 0.23356
1.33352 0.00001 0.00426 0.11399 0.50327 0.40529 0.23062
1.77828 0.00026 0.04747 0.32971 0.37165 0.22547
3.16228 0.00085 0.07585 0.24610 0.20175
5.62341 0.00315 0.07511 0.14233

10.00000 0.00309 0.04840
17.78279 0.00192

40

Table 5.5: 3 Temperature ion energy density results with γ̂ = 1/2 and κe = 1/6

x\t 0.10000 0.31623 1.00000 3.16228 10.00000 31.62280 100.00000

0.01000 0.00008 0.00208 0.03773 0.29675 1.02242 0.47428 0.24001
0.10000 0.00008 0.00206 0.03713 0.29325 1.01526 0.47394 0.23997
0.17783 0.00008 0.00203 0.03578 0.28563 0.99970 0.47320 0.23988
0.31623 0.00008 0.00185 0.03135 0.26178 0.95131 0.47087 0.23961
0.45000 0.00006 0.00135 0.02444 0.22728 0.88177 0.46742 0.23920
0.50000 0.00004 0.00105 0.02130 0.21217 0.85122 0.46582 0.23901
0.56234 0.00002 0.00069 0.01741 0.19287 0.81143 0.46362 0.23875
0.75000 0.00014 0.00840 0.13948 0.69199 0.45553 0.23777
1.00000 0.00001 0.00255 0.08573 0.54839 0.44160 0.23604
1.33352 0.00036 0.04169 0.39364 0.41811 0.23299
1.77828 0.00002 0.01410 0.24634 0.38001 0.22768
3.16228 0.00012 0.04885 0.24267 0.20321
5.62341 0.00150 0.06834 0.14225

10.00000 0.00242 0.04729
17.78279 0.00177

Table 5.6: Radiation Energy Density for 2-T spherical radiation source with A =
0.75.

x\t 0.10000 0.31623 1.00000 3.16228 10.00000 31.62280 100.00000

0.01000 0.1907 0.5507 1.2162 1.7439 2.2122 0.0502 0.0066
0.10000 0.1906 0.5506 1.2090 1.7316 2.1955 0.0501 0.0066
0.17783 0.1906 0.5506 1.1935 1.7060 2.1639 0.0501 0.0066
0.31623 0.1906 0.5506 1.1402 1.6225 2.0617 0.0498 0.0065
0.45000 0.1906 0.5501 1.0461 1.4893 1.9014 0.0494 0.0065
0.50000 0.1906 0.5420 0.9986 1.4234 1.8235 0.0493 0.0065
0.56234 0.1906 0.5175 0.9271 1.3262 1.7098 0.0490 0.0065
0.75000 0.0921 0.2479 0.5190 0.8217 1.1497 0.0481 0.0065
1.00000 0.0041 0.1261 0.3158 0.5712 0.0466 0.0064
1.33352 0.0216 0.1249 0.3039 0.0441 0.0064
1.77828 0.0411 0.1497 0.0399 0.0062

41

1 2 3 4 5 6

x [arb. units]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
ne

rg
y

D
en

si
ti

es
[a

rb
.u

ni
ts

]

t = 10

t = 1

t = 0.1

Energy Density vs. position at 3 times

Radiation
Electron
Ion

Figure 5.1: The non-dimensional radiation, electron, and ion energy densities are
plotted above for 3 different times. Results show that all energy densities are mono-
tonically increasing when t ≤ 10, which is when the source drops down to 0. Energy
is deposited into the radiation field from the source, which then is transferred to the
electron field, and finally transferred to the ion field. This result is clearly seen as the
ion energy density is less than the electron energy density which is less than the radi-
ation energy density. Values actually computed are circled and linearly interpolated
in between.

42

Figure 5.2: The radiation energy density is plotted as a function of position for at
times coincident with those presented in [5]. The radiation energy density is mono-
tonically increasing while the source is on (t ≤ 10). After the source is turned off,
the energy spreads throughout the domain, decreasing near x = 0 and increasing at
larger x. Values actually computed are circled and linearly interpolated in between.

43

Figure 5.3: The electron energy density is plotted as a function of position for at times
coincident with those presented in [5]. The electron energy density is monotonically
increasing while the source is on (t ≤ 10). After the source is turned off, the energy
spreads throughout the domain, decreasing near x = 0 and increasing at larger x.
Values actually computed are circled and linearly interpolated in between.

44

Figure 5.4: The ion energy density is plotted as a function of position for at times
coincident with those presented in [5]. The ion energy density is monotonically
increasing while the source is on (t ≤ 10). After the source is turned off, the energy
spreads throughout the domain, decreasing near x = 0 and increasing at larger x.
Values actually computed are circled and linearly interpolated in between.

45

Table 5.7: Material Energy Density for 2-T spherical radiation source with A = 0.75.

x\t 0.10000 0.31623 1.00000 3.16228 10.00000 31.62280 100.00000

0.01000 0.0094 0.0819 0.5421 1.4762 2.1759 0.0538 0.0067
0.10000 0.0094 0.0819 0.5395 1.4667 2.1616 0.0538 0.0067
0.17783 0.0094 0.0819 0.5335 1.4457 2.1303 0.0537 0.0067
0.31623 0.0094 0.0819 0.5131 1.3767 2.0289 0.0534 0.0067
0.45000 0.0094 0.0819 0.4777 1.2652 1.8699 0.0530 0.0066
0.50000 0.0094 0.0817 0.4588 1.2095 1.7926 0.0528 0.0066
0.56234 0.0094 0.0804 0.4290 1.1265 1.6797 0.0525 0.0066
0.75000 0.0046 0.0381 0.2263 0.6797 1.1221 0.0515 0.0066
1.00000 0.0360 0.2366 0.5473 0.0498 0.0066
1.33352 0.0032 0.0848 0.2850 0.0469 0.0065
1.77828 0.0245 0.1363 0.0422 0.0063
3.16228 0.0003 0.0173 0.0258 0.0056
5.62341 0.0004 0.0065 0.0039

10.00000 0.0002 0.0013

46

1 2 3 4 5 6

x [arb. units]

0.0

0.5

1.0

1.5

2.0

E
ne

rg
y

D
en

si
ti

es
[a

rb
.u

ni
ts

]

t = 10

t = 1

t = 0.1

Energy Density vs. position at 3 times

Radiation
Material

Figure 5.5: The non-dimensional radiation and material energy densities are plotted
above for 3 different times. Results show that the energy densities are monotoni-
cally increasing when t ≤ 10, which is when the source drops down to 0. Energy
is deposited into the radiation field from the source, which then is transferred to
the material field. This result is clearly seen as the material energy density is less
than the radiation energy density. Values actually computed are circled and linearly
interpolated in between.

47

Figure 5.6: The radiation energy density is plotted as a function of position for at
times coincident with those presented in [5]. The radiation energy density is mono-
tonically increasing while the source is on (t ≤ 10). After the source is turned off,
the energy spreads throughout the domain, decreasing near x = 0 and increasing at
larger x. Values actually computed are circled and linearly interpolated in between.

48

Figure 5.7: The material energy density is plotted as a function of position for at
times coincident with those presented in [5]. The material energy density is mono-
tonically increasing while the source is on (t ≤ 10). After the source is turned off,
the energy spreads throughout the domain, decreasing near x = 0 and increasing at
larger x. Values actually computed are circled and linearly interpolated in between.

49

6. CONCLUSIONS

The analytic solutions presented can be used for verification of codes that sim-

ulate physical systems that involve thermal radiative transfer. More specifically,

benchmark solutions were obtained for two different material models, one involving

a single material species, and the other in which the electrons and ions within a

material are treated separately do not have to be in thermal equilibrium with each

other. These models are the 2-T and 3-T models, respectively, and while the ma-

terial models were different, the radiation energy was modeled using full transport

for all of the problems considered. This is in contrast to a radiative diffusion model,

which is less physically accurate. The problems solved used only external radiation

energy sources that were constant over a finite spatial and temporal extent. The 2-T

model assumed a spherical radiation source which could in principle test 1-D radial

(r), 2-D radial-inclination angle (r, θ), or 3-D (any coordinate system) codes. The

3-T model assumed a 1-D slab radiation source that is useful for testing out codes

capable of solving the equations on 1-D Cartesian meshes.

The problems were solved via non-dimensionalization and linearization of the

coupled equations in terms of the nondimentional scalar intensity and material tem-

perature(s) raised to the 4th power. Spatial Fourier and temporal Laplace transforms

were applied and the linear system of equations was solved, followed by the inverse

transforms. The composite Gauss-Legendre numerical integration scheme was used

to compute the inverse transforms. Multiple techniques were used to decrease the

time to solution. First, numintCL was written to run on multiple GPUs simultane-

ously through OpenCL, which allowed for a factor of speedup of ∼ 561 over a single

core CPU implementation of the same algorithm. A power normalized figure of merit,

50

, was introduced to correct for the power consumption differences and the GPU

implementation outperformed the CPU implementation by a factor of ∼ 25. In ad-

dition to hardware acceleration, multiple algorithmic acceleration techniques were

applied including sequence acceleration, asymmetric refinement, and error based de-

refinement. When the devices are operating at peak capacity, a refinement of the

composite rule exponentially increases the compute time, and thus the importance

of the algorithmic acceleration techniques cannot be overstated. The combination of

advanced hardware and application of accelerated algorithms were both required in

order for this work to be completed in reasonably timed manner.

Throughout the course of this work, other important information was gleaned as

well as lessons learned. One such lesson is the importance of proper software design

in terms of writing general code. Although highly important to keep in mind writing

software in the most general and extensible way, the ultimate goals of a given piece

of code need to be clearly outlined, so that valuable development time is not used

generalizing the code in ways that in will likely never be used. In addition, it is

very clear that much less effort will be spent in the software development process

when incremental and well tested changes are implemented as opposed to large and

sweeping changes. Although sometimes change is unavoidable, tasks should almost

always be broken up into their smallest constituents and tested both individually

and as a whole before a given functionality is added. This is not only a good model

for software development, but for most forms of scientific development as well.

51

REFERENCES

[1] Bryan Catanzaro. Opencl™ optimization case study: Simple reductions, August

2010.

[2] Allan J. Macleod. Acceleration of vector sequences by multi-dimensional δ2 meth-

ods. Communications in Applied Numerical Methods, 2:385–392, 1986.

[3] Ryan G. McClarren and Daniel A. Holladay. Electron-ion-radiation coupling

benchmarks for verification of hedp/ife codes. Fusion Science and Technology,

60(2):600–604, 2011.

[4] Ryan G. McClarren and John G. Wöhlbier. Solutions for ion-electron-radiation

coupling with radiation and electron diffusion. Journal of Quantitative Spec-

troscopy and Radiative Transfer, 112(1):119–130, January 2011.

[5] Bingjing Su and Gordon L. Olson. An analytical benchmark for non-equilibrium

radiative transfer in an isotropically scattering medium. Annals of Nuclear En-

ergy, 24(13):1035–1055, 1997.

[6] Ernst Joachim Weniger. Prediction properties of aitken’s iterated δ2 process, of

wynn’s epsilon algorithm, and of brezinski’s iterated theta algorithm. Journal of

Computational and Applied Mathematics, 122:329–356, 2000.

[7] Jet Wimp. Sequence Transformations and Their Applications, volume 154 of

Mathematics in Science and Engineering. Academic Press, Inc., 1981.

[8] Peter Wynn. On a device for computing the em(sn) transformation. Mathematical

Tables and Other Aids to Computation, 10(54):91–96, April 1956.

52

