
GPU ACCELERATION OF THE ISO–7 NUCLEAR

REACTION NETWORK USING OPENCL

A Senior Scholar Thesis

by

DANIEL ALPHIN HOLLADAY

Submitted to Honors and Undergraduate Research
Texas A&M University

in partial fulfillment of the requirements for the designation as

UNDERGRADUATE RESEARCH SCHOLAR

May 2012

Majors: Nuclear Engineering
Physics

GPU ACCELERATION OF THE ISO–7 NUCLEAR

REACTION NETWORK USING OPENCL

A Senior Scholar Thesis

by

DANIEL ALPHIN HOLLADAY

Submitted to Honors and Undergraduate Research
Texas A&M University

in partial fulfillment of the requirements for the designation as

UNDERGRADUATE RESEARCH SCHOLAR

Approved by:

Research Advisor: Ryan McClarren
Associate Director, Honors and Undergraduate Research: Duncan MacKenzie

May 2012

Majors: Nuclear Engineering
Physics

iii

ABSTRACT

GPU Acceleration of the iso–7 Nuclear Reaction Network using OpenCL.
(May 2012)

Daniel Alphin Holladay
Department of Nuclear Engineering

Department of Physics
Texas A&M University

Research Advisor: Dr. Ryan McClarren
Department of Nuclear Engineering

We looked at the potential performance increases available through OpenCL and its

parallel computing capabilities, including GPU computing as it applies to time inte-

gration of nuclear reaction networks. The particular method chosen in this work was

the trapezoidal BDF-2 method using Picard iteration, which is a non-linear second

order method. Nuclear reaction network integration by itself is a sequential process

and not easily accelerated via parallel computation. However, in tackling a problem

like modeling supernova dynamics, a spatial discretization of the volume of the star

is necessary, and in many cases is combined with the computational technique of

operator splitting. Every spatial cell would have its own reaction network indepen-

dent of the others, which is where the parallel computation would prove useful. The

particular reaction network analyzed is called the iso–7 reaction network that looks

at the dynamics of 7 of the more dominant nuclides in supernovae. The compu-

tational performance was compared between the CPU and the GPU, in which the

GPU showed performance increases of up to 8 times. This increase was realized on

the small–scale because the computations were limited to running on a single device

at any given time. However, these performance gains would only increase as the

problem size was scaled up to the large–scale.

iv

DEDICATION

This project is dedicated to my grandfather, former Master Chief Petty Officer

Jerry Dan Alphin, who was recently diagnosed with AlzheimerÕs disease. Without

him, I would not be where I am today.

v

ACKNOWLEDGMENTS

I would like to acknowledge Dr. Ryan McClarren for his assistance in learning the

tremendous intricacies of OpenCL as well as graduate student Joshua Hansel for his

LATEX assistance.

vi

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . iv

ACKNOWLEDGMENTS . v

TABLE OF CONTENTS . vi

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

I INTRODUCTION . 1

Previous work . 2
Background . 3

II METHODOLOGY . 9

Solution techniques . 9
Expectations . 14

III RESULTS . 16

Test problem . 16
Scaling results . 18
Quantitative performance increases 24

IV CONCLUSION . 26

REFERENCES . 27

CONTACT INFORMATION . 28

vii

LIST OF TABLES

TABLE Page

1 Quantitative GPU speedup results . 24

viii

LIST OF FIGURES

FIGURE Page

1 GPU–CPU comparison with 104 steps. 18

2 GPU–CPU comparison with 102 steps. 20

3 GPU–CPU comparison with 103 steps. 21

4 GPU–CPU comparison with 2 steps. 23

1

CHAPTER I

INTRODUCTION

It has been known for some time now that stars are limited in the size elements

they can produce through nuclear fusion reactions. Not all processes that gener-

ate elements greater in size and proton number of iron 56 (56
26Fe) are known. A

known generator of such nuclides is via a supernova. Such an event is very com-

plicated with hundreds of different large ions, charged particles, neutrons, and pho-

tons of all different energies interacting and reacting in a highly coupled manner

[1]. These reactions are modeled through a system of coupled nonlinear ordinary

differential equations (ODE) called nuclear reaction networks. The reaction net-

works can describe the gain and loss rates of all species from neutrons to heavy

elements like uranium. These reaction networks are applicable to fuel burn–up in

nuclear reactors as well. In many cases, it is not feasible or necessary to analyze

networks that take into account all or even most of the different species. In fact,

much of the relevant physics can be extracted by looking at a few of the dominant

species and processes. This work will analyze these systems using such models that

take into account a few dominant processes using a reaction network known as the

iso–7 nuclear reaction network [2]. This network analyzes the coupling between 7

of the more dominant nuclides associated with supernovae dynamics, those being:
4
2He, 12

6 C, 16
8 O, 20

10Ne, 24
12Mg, 28

14Si, and 56
28Ni. Reaction networks are currently solved

with numerical time integration techniques and equation linearization. Much work

This thesis follows the style of Journal of Computational Physics.

2

has been performed using first order linearization models and time integration of the

ODE using standard computing architectures[3]. This research will look at the full

non-linear system of ODE using similar time integration techniques, but with the

addition of new and more efficient computing architectures.

Current high performance computers and supercomputers obtain their compu-

tational capabilities not from tremendously high clock speeds, but from using several

processing units in parallel. It is not a trivial task to generate computer codes to

optimize the use of multiple processors. For this reason, a group of corporations

and organizations lead by Apple Inc. have created an open standard for massively

parallel computing across many computational processing unit (CPU) and graph-

ics processing unit (GPU) architectures called OpenCL. OpenCL stands for open

computing language and is the culmination of tremendous efforts to bring parallel

computing to non-computer scientists, and will be discussed in further detail later.

The iso–7 reaction network will be integrated using OpenCL. The simplicity of this

statement is deceptive, as doing so is not straightforward due to the fact that time

integration of a system of differential equations is a sequential process, and therefore

not parallelizable. Therefore the acceleration will be obtained in an indirect fashion.

To numerically analyze supernova dynamics, one must not only discretize time, but

also space since the star takes up non–zero volume. Acceleration will come from the

fact that to accurately model a three dimensional star, there will be a unique iso–7

reaction network for each of the spatially discretized cells that make up the star,

which could easily be in the millions and possibly in the billions.

Previous work

The dynamics of supernovae have been explored and analyzed thoroughly and much

of these dynamics are understood, but improvement in these methods is always

3

desired. The purpose of this work is not to break new ground with regard to reac-

tion networks, but to show the performance increases achievable through the use of

GPUs. This increase in performance will allow for cost effective computation of high

fidelity, high spatial resolution, large–scale supernovae simulations, as well as similar

allowable increases on smaller scale simulations.

Background

The iso–7 Reaction Network

As stated above, the iso–7 reaction network assumes 7 different groups of reactant

types. In general, there are hundreds of different types of nuclides that are pro-

duced during supernovae, and the iso–7 approximates this large network with a

much smaller one.

The Equations

Traditionally, this analysis begins by defining the mass of the ith nuclide per unit

volume to be ρi, such that:

7∑
i=1

ρi = ρ (1.1)

Where ρ is the total density of the volume under analysis. The mass fraction of

nuclide i is the ratio of its density to the total density and is given by Xi. From this

and equation (1.1), conservation of mass dictates that:

7∑
i=1

ρi

ρ
=

7∑
i=1

Xi = 1 (1.2)

The mass fractions, Xi, are the desired quantities as they describe how much any

given nuclide exists. However, reaction rates are based upon the number of particles

4

and not by mass. The number density is the most useful quantity in terms of per-

forming the analysis, while the mass fraction tends to be the desired quantity at the

end of the analysis. The number density of the ith nuclide is ni = ρiNA/Ai where

NA is Avogadro’s number and Ai is the atomic number of the ith nuclide. Now, we

define the dimensionless molar abundance for the ith nuclide to be:

Yi ≡
ni

ρNA

= Xi

Ai

(1.3)

The continuity equation for the dimensionless molar abundances is given by [2]:

∂Yi

∂t
+ ∂

∂~x
(Yi~vi) + ∂

∂~v
(Yi~ai) = Ṙi (1.4)

where ~vi is the velocity of the ith nuclide dimensionless molar abundance, ~ai is the

acceleration of the ith nuclide dimensionless molar abundance, and Ṙi is given by [2]:

Ṙi =
∑
j,k

Y`Ykλkj(`, ρ, T)− YiYjλjk(i, ρ, T) (1.5)

where λkj is the gain rate of type i nuclides and λjk is the loss rate of type i nuclides.

The partial derivative terms in equation (1.4) represent loss of mass from a given

control volume due to advection via bulk flow. The other gain and loss rates are

combined into Ṙi which is a function the λ. These coefficients are a function of

the thermodynamic state of the region under analysis. The temperature and density

specify this, and empirical formulas were used to compute these rates as a function of
~Y , ρ, and T [3]. Equation (1.4) represents a system of partial differential equations

(PDE), which are in principle much more difficult to solve than a system of ODE.

In order to simplify the governing equations, this work will assume that operator

splitting is employed. Operator splitting is the process of breaking down a problem

into different components, such as spatial and temporal components, and allows

5

for computer codes to solve each component separately. This decoupling results in

a lower fidelity model, but is computationally much cheaper. The iso–7 reaction

network seeks to solve only the temporal component of this problem, leaving out the

spatial components. This means that all spatial and therefore velocity related terms

won’t be considered, and instead of needing to solve equation (1.4), the following

equation will be considered:

dYi

dt = Ṙi (1.6)

This is the final form of the equation that will be considered in the analysis. This

equation is of the form:

d~y
dt = ~f (~y) (1.7)

This equation is therefore a first order, nonlinear, system of ODE. There are many

ways to solve a system of this form. These will be discussed in the methods section.

OpenCL

OpenCL stands for open computing language and lives up to its name, in that it is

very open. The standard is managed by the Khronos group and has several partners

that assist in improving OpenCL. Its main purpose is to make parallel computing

using CPUs and GPUs easy to do for non-computer scientists as well as to create a

universal standard so that any program written in OpenCL can be run in parallel

on any machine capable of parallel computing [4].

6

Devices

One of the many benefits to OpenCL is its portability, or its ability to run on a

number of different machines. This is achieved through the language’s ability to

query the machine as to the available computing devices [5]. These devices are

typically either standard CPUs (processors) or GPUs (graphics cards). In any given

machine, there could be several processors and graphics cards, all of which can be

used simultaneously for computation. In addition, each device could have several

cores, with each core capable of handling multiple threads. A thread is the most

basic unit of computation capable of being sent to a processing unit, and it is merely

a set of instructions for the processor. In executing a thread, the processor obeys

the set of instructions delivered to to it. OpenCL is thus able to take advantage

(hardware permitting) of multiple thread execution in a given core, for multiple

cores in a given device, and multiple devices in a given machine.

Kernels

With the multithreading capabilities of OpenCL defined, the question of implemen-

tation must be answered. Once the available devices have been defined, a context for

the devices to operate must be created, as well as a way to send and receive informa-

tion from the devices [6]. Perhaps the most important component of implementation

is the OpenCL kernel. A kernel is very similar to a function or a subroutine in that

the kernel requires inputs and returns outputs. There can be several kernels in a

given program, and each kernel can be executed an arbitrary number of times, each

instance with its own set of inputs. The only limit to the number of simultaneous

executions is set by the hardware. Each instance of the kernel and its associated

input is known as a work item. A collection of work items is called a work group,

7

and these structures can be very useful in breaking down a large problem into smaller

constituents to be solved in an efficient manner [6]. Almost any problem, with the

exception of purely sequential tasks can realize tremendous benefits from this multi-

threading capability if run on conventional multicore CPUs. This is not necessarily

true for GPUs.

GPU acceleration

Almost any program can be converted to OpenCL and run on a GPU, but not

every program should be converted [4]. A GPU is designed to tackle very few types

of problems with tremendous efficiency. These problems, as the name implies, are

typically graphics intensive tasks. Graphics intensive tasks tend to involve a lot of

computation on a very small set of memory. Because of the nature of these tasks,

GPUs are designed with lots of low power processor cores in a small space, and with

very little memory allotted to each core. Tasks that are highly parallelizable can be

performed with significantly less power than that which is necessary in conventional

CPUs. It turns out that power consumption plays a significant role in limiting

supercomputer performance.

The power problem

Power is a requirement to perform computations, not only to push electrons through

the circuits in the processors, random access memory (RAM), and other components,

but also to keep these systems cool. As electrons flow through the circuits, they col-

lide with the material, thus depositing some of their kinetic energy into the material

in the form of heat. These complex systems have very specific nominal operating

conditions, and therefore significant cooling is needed, which consumes even more

power. To illustrate this, the Terascale Simulation Facility (TSF) at the Lawrence

8

Livermore National Laboratory (LLNL) will be studied. TSF houses several different

supercomputing systems, including Purple and BlueGene/L, capable of 460 trillion

operations per second, and consumes 25 Megawatts of power [7]. Assuming a linear

relationship, it would require over 50 GW of power to break the exascale barrier, or

to reach 1 quintillion operations per second. This is called the exascale barrier for

this very reason, it simply requires too much power and is not feasible to perform

computations on the exascale using supercomputing systems similar to this one.

Conversely, the Nuclear Engineering department has recently purchased a graph-

ics cluster capable of 8 trillion operations per second, yet consumes ∼ 2 kW of power.

It would require around 200 MW of to break the exascale barrier with this level of

performance scaling, which is a significant improvement and the main reason why

low power consumption is so important when discussing large-scale computation.

9

CHAPTER II

METHODOLOGY

Solution techniques

The iso–7 reaction network takes the form of equation (1.7). This is a non-linear

system of ODE. Every worthwhile method to solve these systems of ODE is going

to have its advantages, as well as its shortcomings; no method is significantly better

than any other. In previous work, a linearization technique was used, which will be

outlined below.

Previous work

In general, for a function f : Rn → Rn, a first order Taylor expansion of this function

at ~yi+1 about ~yi is given by:

~f (~yi+1) ≈ ~f (~yi) + J · (~yi+1 − ~yi) (2.1)

Where J is the Jacobian matrix, in which the element occupying the ith row and jth

column is given by:

Jij = ∂fi

∂yj

(2.2)

Where i and j are specifying the element of the vectors ~f and ~y. Using the standard

first order finite difference with time step size h, equation (1.7) can be approximated

by:

10

(
δij

h
− Jij

)
∆j = fi (~y) (2.3)

~∆ ≡ ~yi+1 − ~yi (2.4)

Where h is the time step size and δij is the Kronecker delta. This equation is

a simple linear system which can be solved by standard means, such as Gaussian

elimination or LU decomposition. This is the linearized backward Euler method,

also known as the BDF-1 method, which will be discussed in more detail later.

Other previous methods have used this same linearization technique but a different

method to approximate the time derivative, such as implicit Runge-Kutta. Despite

the high accuracy with respect to time that these methods can attain, they all

linearize the function ~f , which is not a good approximation if ~f is highly non-linear.

Additionally, the Jacobian matrix, J must be stored and evaluated at every time

step, which requires much more memory than just storing vectors. As previously

discussed, for GPU acceleration, methods requiring the least amount of memory are

preferred. The method chosen is discussed below and does not require storing the

Jacobian matrix. For the iso–7 network, this saves 42 variables that do not have to

be stored for every network. As already stated, each spatially discretized cell would

have its own network to solve. This means that a method that does not require the

Jacobian matrix saves 42 times the number of spatial cells, which could easily be in

millions or billions. The IEEE standard 754 for Binary Floating-Point Arithmetic

states that all compliant single precision numbers consume 4 bytes of memory, which

could potentially free hundreds of gigabytes of memory that could be used for other

things.

11

Backward difference methods

Backward difference formula (BDF) methods are methods that solve a system of

ODEs by evaluating the function of ~f (~y) at the i+ 1 time–step, as follows:

d~y i+1

dt = ~f
(
~y i+1

)
(2.5)

The nomenclature associated with BDF methods is based upon the order accuracy to

which the time derivative is approximated. The BDF-1 method is first order accurate

with respect to the discretized time–step size, ∆t, via the first order finite difference

approximating the time derivative. The order of accuracy of a finite difference refers

to the size of the error as a function of the discretized step size. If a method is said

to be nth order accurate, the error associated with the approximation will vary as

∆tn. This means that if the step size is cut in half, the error in the approximation

will drop by approximately a factor of 2n. The BDF-1 method is given below:

~y i+1 − ~y i

∆t = ~f
(
~y i+1

)
(2.6)

As previously stated, this method is more commonly known as the backward Euler

method. A higher order method is known as the BDF-2 method, which is second

order accurate with respect to the time–step size. This method approximates the

time derivative evaluated at the i+ 1 time–step in the following manner:

d~y i+1

dt = 1
2

(
d~y i+3/2

dt + d~y i+1/2

dt

)
(2.7)

Similar averaging for the i+ 1/2 time–step yields [8]:

d~y i+3/2

dt = 2d~y i+1/2

dt − d~y i−1/2

dt (2.8)

12

Using these two equations, and first order differencing of the derivatives, one arrives

at the final form of the BDF-2 method:

d~y i+1

dt = 3
2

(
~y i+1 − ~y i

∆t

)
− 1

2

(
~y i − ~y i−1

∆t

)
= ~f

(
~y i+1

)
(2.9)

First order terms with respect to the time–step sum to zero, and the method is second

order, as the name implies. However, this method requires that ~f (~y i+1) is a known

quantity, and unfortunately it is not. In addition, the BDF-2 method requires that

both ~y i and ~y i−1 are known, which is undesirable from a computational perspective.

The BDF-2 method can be modified by taking a half time step, and this is called the

trapezoidal BDF-2, or T/BDF-2 method, in which the successive value of ~y relies

only on the previous iterate [8]. The trapezoidal aspect comes from the way in which

~y at the i+ 1/2 is approximated:

d~y i+1/2

dt = 1
2
(
~f
(
~y i+1/2

)
+ ~f

(
~y i
))

(2.10)

Using the standard first order finite difference for the time derivative, and solving

for ~y i+1/2:

~y i+1/2 = ~y i + ∆t
4
(
~f
(
~y i+1/2

)
+ ~f

(
~y i
))

(2.11)

The standard BDF-2 method is then applied using the half time step by replacing

~y i with ~y i+1/2, ~y i−1 with ~y i, and ∆t with ∆t/2 in equation (2.9).

~y i+1 = 1
3
(
4~y i+1/2 − ~y i + ∆t ~f

(
~y i+1

))
(2.12)

Note that equations (2.11) and (2.12) are correct, but are not in closed form, and in

general are transcendental. By very definition, they cannot in general be put into

closed form.

13

Nonlinear solution methods

Methods for solving nonlinear equations include Newton’s method, fixed point iter-

ation, and bisection, among others. Newton’s method would require the computing,

storing, and inverting of the Jacobian matrix which, as already stated, is not suitable

for GPU implementation. Bisection does not require the Jacobian matrix, but does

require knowledge of the solution domain. A variant of fixed point iteration, called

Picard iteration, was the method chosen for use in this implementation. This method

simply guesses a value for ~y i+1 and ~y i+1/2, and then improves upon the guess by

iteration [8]. This method is described by two indices, an iteration index `, and a

timing index i. Equations (2.11) and (2.12) are modified to achieve a closed form as

follows:

~y i+1/2,` = ~y i + h

4
(
~f
(
~y i+1/2,`−1

)
+ ~f

(
~y i
))

(2.13)

~y i+1,` = 1
3
(
4~y i+1/2,` − ~y i + h~f

(
~y i+1,`−1

))
(2.14)

This procedure is seeded by letting ~y i+1/2,0 = ~y i and ~y i+1,0 = ~y i+1/2,1 This iteration

process will continue until either the maximum number of allowed iteration steps has

been reached or the relative difference between successive iterates is less than some

tolerance, ε [8]. The maximum number of steps used was 1000, and in every case, the

tolerance was met before the maximum number of iteration steps. The convergence

criterion is given by:

∣∣∣∣∣∣~y i+1,` − ~y i+1,`−1
∣∣∣∣∣∣

2
||~y i+1,`||2

< ε (2.15)

This was implemented for ε = 5× 10−15. The double bar in this case represents the

L–2 norm, which is equivalent to the root mean square.

14

||~v||2 =
√√√√ n∑

i=1
v2

i (2.16)

Expectations

One is not able to simply state that either device, either the CPU or GPU, will

in general outperform the other. There are several parameters that one must look

at. If only one spatial cell exists in the problem to be solved, both devices will

perform extremely well as only a small portion of the available resources would be

used in the calculation. In fact, the GPU would probably perform worse in that case

due to high memory on and off loading time. At this point, additional spatial cells

will negligibly effect the computation time, so the CPU will continue to outperform

the GPU for small number of spatial cells. However, eventually all of the CPU

resources will be used and computations will have to wait on previous computations

before they can proceed. At this point, the computation time will start to increase

approximately linearly with the number of cells, as in, if I double the number of cells,

I will double the computation time. Most of the time, this will occur much earlier

in the CPU than in the GPU because the GPU typically has at least a hundred

or more processor cores available than does the CPU. Even so, the CPU will have

to increase in compute time significantly before the GPU will surpass the CPU in

performance. However, due to more resources, the GPU should win out in a big

way in the limit of very large numbers of spatial cells. This crossing point depends

not only on the number of spatial cells and the particular devices being used to

execute the computation, but also on the amount of computation that occurs in

each spatial cell. Evolving the abundances of the nuclides by 104 time–steps requires

significantly more computation per spatial cell than does two time steps. Memory

on and off loading will be a significant portion of overall compute time if there are

15

few time steps to compute, and therefore, the number of spatial cells required for

the GPU to surpass the CPU will increase. These are the expected results, but only

the actual results matter, which will be discussed next.

16

CHAPTER III

RESULTS

This section outlines the results obtained by running OpenCL on two different ma-

chines. The first machine is a macbook pro with an Intel R© CoreTM i7-2820 QM

for the CPU and an AMD ATI Radeon HD 6750M graphics card for the GPU. The

second machine is a mac pro running an Intel R© XeonTM X5650 for the CPU and an

AMD ATI Radeon HD 5770 graphics card for the GPU.

Test problem

In order to solve any given system of ODE, the initial conditions must be known. This

not only includes the initial dimensionless molar abundances of all of the nuclides,

but also the initial thermodynamic state of the system. In this case, the system is

one of the spatial cells in the star. In previous analyses, there were two different ways

of treating the thermodynamic quantities, T and ρ. The first case is the adiabatic, or

“explosive” regime, in which the temperature and density have reached a maximum

value, and adiabatically relax into a lower temperature and lower density state.

The second regime is called the hydrostatic burning regime and assumes constant

temperature and density [3]. This is the particular problem that was solved in this

case. More specifically, an initially pure silicon volume at constant temperature

T = 6 × 109 K and constant density ρ was allowed to evolve with time–step size

1 × 10−11 seconds. To semi–verify that the code was working properly, a density

of 1 × 107 g
cm3 was chosen to be compared with previous results [3]. The code was

executed for 104 time–steps and compared with previous results. Unfortunately, the

comparison was riddled with inaccuracies because the results were not tabulated, but

17

graphed on a log-log scale. Additionally, the problems were solved in different ways as

the test problem was solved in previous work by linearizing the equations. Despite

these differences, the results of the two methods were almost identical. Another

hydrostatic problem was looked at and the code results were correct for early times,

but there was an issue with the production of 56
28Ni. Future work should focus on a

more rigorous verification study of this code, as well as the issue associated with 56
28Ni

production. Despite these issues, due to low time, the parallel study was conducted

with the code as it was.

Parallel issues

Unfortunately, there were some unforeseen issues executing the code on the graphics

cards. The issue was traced to a single line of code that computed a portion of the

reaction rate of 24
12Mg. The reason this particular line of code is causing problems

is still unclear. To get around this issue for the parallel study, that line of code

was commented out. This meant that the results obtained in these studies are

incorrect. However, the amount of computation performed by this modified code is

almost identical to the previous problem, but with slightly different results. Since

the results are not the key aspect of the parallel study, this should not effect the

results. Once the problem is resolved, it is very reasonable to assume that both

codes will exhibit similar, if not identical scaling with respect to increased number

of spatial cells. In execution of the scaling, each spatial cell was given a different

density ranging between 1× 107 g
cm3 and 1× 109 g

cm3 to show that parameters could

be easily varied between the spatial cells.

18

Scaling results

Fig. 1. GPU–CPU comparison with 104 steps. GPU compute time drops below CPU
compute time just after 1000 spatial cells given 104 time–steps

Results for both machines using different numbers time–steps are given. The mac-

book pro results with 104 time–steps only go up to 2048 spatial cells because beyond

this number, the GPU would crash. The mac pro would also crash given enough

spatial cells, but it was able to handle many more spatial cells. The particular code

used was only able to be executed on a single device at a time. However, OpenCL is

capable of executing kernels on several devices simultaneously.

19

Macbook pro

Below are scaling results showing compute time vs. number of spatial cells for two

different problems. In the first problem, at each cell, the code computed 104 time–

steps, which was the highest number of time–steps analyzed in the scaling analysis.

In the second problem, the code computed 102 time–steps per cell.

104 time–steps

With 104 time steps, we expect that the GPU will perform better with the fewest

number of spatial cells of all of the comparisons because it has the most time–steps

per cell.

In Fig. 1, notice that the CPU computation time remained approximately

constant when the number of spatial cells was . 10. This is the region in which

not all of the available resources are being taken advantage of, and will from now on

be referred to as the flat region. After this point, the computation time increases

swiftly with the number of spatial cells, which is the region in which all available

computational resources are saturated, and from now on will be called the saturated

region. These two regions are very important in describing the conditions for which

a GPU will outperform a CPU. In the case displayed in Fig. 1, the GPU had just

reached the saturated region when it surpassed the CPU, and even though there is

only one data point, it appears that the computation time will not increase as swiftly

with respect to the number of spatial cells, which means that it will perform even

better when compared to a CPU when the number of spatial cells is large. From now

on, the number of spatial cells in which the GPU surpasses the CPU in performance

will be called the GPU crossover point.

20

Fig. 2. GPU–CPU comparison with 102 steps. GPU compute time drops below CPU
compute time just after 50000 spatial cells.

21

Fig. 3. GPU–CPU comparison with 103 steps. GPU compute time drops below CPU
compute time just after 5000 spatial cells given 103 time–steps

102 time–steps

With 102 time steps, we expect that the GPU crossover point will occur at a higher

number of spatial cells than in the previous comparison.

With less computation occurring per spatial cell, the flat region of both the

CPU and the GPU were larger and thus the GPU crossover was shifted to the right.

This shift is clearly seen in Fig. 2 as the crossover occurred after 50000 spatial cells,

especially compared to the 2000 cells needed for crossover in the previous of 10000

time–steps per spatial cell.

22

Mac pro

Below are scaling results showing compute time vs. number of spatial cells for two dif-

ferent problems. In the first problem, at each cell, the code computed 103 time–steps.

In the second problem, the code computed 2 time–steps at each cell. Additionally,

since this machine has higher performance devices, we expect that the flat regions

will be larger for both devices, which will shift the GPU crossover point further to

the right (i.e. higher spatial cell number).

103 time–steps

With 1000 time–steps, the GPU crossover will occur relatively early and this should

show how a GPU can not only outperform a CPU, but do so by a significant factor.

It it especially important to note that all figures are plotted on a log-log scale,

but it is especially important in the case of Fig. 3. At around 105 spatial cells, the

GPU is performing almost an order of magnitude faster than the CPU, and trending

to even better performance with more spatial cells. This set of data was able to show

the saturated region of the GPU more fully than Fig. 1. Additionally, the mac pro

used was equipped with 2 6–core processors and 2 graphics cards, but only one at a

time was used. If both were used, the flat regions would be even larger (by a factor

of 2 or so) for both the CPU and the GPU, which would probably mean even better

performance gains by the GPU.

23

Fig. 4. GPU–CPU comparison with 2 steps. GPU compute time drops below CPU
compute time just after 500000 spatial cells given 2 time–steps

24

2 time–steps

Fig. 4 shows that with 2 time–steps, the GPU crossover did not occur as early as

in the case with 1000 time–steps per cell, but is still quite convincing.

The flat regions are quite visible in Fig. 4 and because the CPU flat region

is so large, the GPU crossover point is shifted far to the right. However, even with

only 2 time–steps per cell, the GPU is outperforming the CPU by almost an order

of magnitude at just under 10 million spatial cells. This analysis had the highest

crossover point, yet the GPU would still easily outperform the CPU given the number

of spatial cells necessary in a large–scale supernova simulation.

Quantitative performance increases

Table 1. Quantitative GPU speedup results

Machine Number of time–steps Number of cells Factor speedup

Macbook pro 104 2048 1.52

Macbook pro 102 524288 3.26

Mac pro 103 262144 6.92

Mac pro 2 8388608 8.68

25

Again, code execution could only take place on a single device, which greatly

limits the performance increases. Even so, nearly order of magnitude speedups were

obtained, as seen in Table 1.

26

CHAPTER IV

CONCLUSION

The iso–7 nuclear reaction network was able to highlight the benefits of OpenCL

and its applications to parallel programming on GPUs. There are several unsolved

issues, like the 24
12Mg production rate issue, and the solutions to such problems are

not easy to find due to the fact that GPU programming is still in its infancy. Despite

these setbacks, high levels of performance increases were attained as a result of the

proper choice of reaction network and the time integration strategy used to solve

the system ODE. The T/BDF-2 method not only saved on the amount of memory

required, which is extremely important when working with GPUs, but also allowed

for the realization of the full nonlinear solution. This solution method did not require

linearization of the reaction rates, and is also second order with respect to the time–

step size. The T/BDF-2 method in conjunction with the use of OpenCL highlighted

the significant performance increases attainable through smart usage of GPUs, with

performance increasing by up to a factor of 8 in small–scale problems. However,

this implementation will not only scale to larger systems very efficiently with even

better performance, but said transfer to large–scale systems will be seamless because

of OpenCL. In the future, we will add the ability to execute the iso–7 network and

other such OpenCL codes on multiple devices simultaneously which will allow for

the study of large–scale problems.

27

REFERENCES

[1] S. E. Woosley, R. D. Hoffman, The α–process and the r–process, The Astrophys-
ical Journal 395 (1992) 202–239.

[2] F. X. Timmes, Integration of nuclear reaction networks for stellar hydrodynamics,
The Astrophysical Journal Supplement 124 (1999) 241–263.

[3] F. X. Timmes, R. D. Hoffman, S. E. Woosley, An inexpensive nuclear energy
generation network for stellar hydrodynamics, The Astrophysical Journal Sup-
plement 129 (2000) 377–398.

[4] D. W. Gohara, Opencl: Episode 1 – introduction to opencl,
http://www.macresearch.org/files/opencl/Episode 1.mov (Aug. 2009).

[5] D. W. Gohara, Opencl: Episode 2 – opencl fundamentals,
http://www.macresearch.org/files/opencl/Episode 2.pdf (Aug. 2009).

[6] D. W. Gohara, Opencl: Episode 3 – building an opencl project,
http://www.macresearch.org/files/opencl/Episode 3.pdf (Sep. 2009).

[7] D. Sprouse, Terascale simulation facility: Built for flexibility,
https://www.llnl.gov/str/JanFeb05/Atkinson.html (Jan. 2005).

[8] J. E. Morel, Lecture 8: Time discretization, Texas A&M University Lecture,
nuclear Engineering 430 (2010).

28

CONTACT INFORMATION

Name: Daniel Alphin Holladay

Professional Address: c/o Dr. Ryan McClarren
Department of Nuclear Engineering
Texas A&M University
3133 TAMU
College Station, TX 77843-3133

Email Address: dholladay00@gmail.com

Education: B.S., Nuclear Engineering,
B.S., Physics,
Texas A&M University, May 2012
Undergraduate Research Scholar

