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ABSTRACT

Self-Similar Radiation-Hydrodynamics
Solutions in the Equilibrium Diffusion Limit. (May 2013)

Taylor Kinsey Lane
Department of Nuclear Engineering

Texas A&M University

Research Advisor: Dr. Ryan G. McClarren
Department of Nuclear Engineering

This work presents semi-analytical solutions to a radiation-hydrodynamics problems of a

radiation source driving an initially cold medium. Our solutions are in the equilibrium dif-

fusion limit, include material motion and allow for radiation-dominated situations where the

radiation energy is comparable to (or greater than) the material internal energy density. As

such, this work is a generalization of the classical Marshak wave problem that assumes no

material motion and that the radiation energy is negligible. Including radiation energy den-

sity in the model serves to slow down the wave propagation. The solutions provide insight

into the impact of radiation energy and material motion, as well as present a novel verifica-

tion test for radiation transport packages. As a verification test, the solution exercises the

radiation-matter coupling terms and their v/c treatment without needing a hydrodynamics

solve. An example comparison between the self-similar solution and a numerical code is

given. Tables of the self-similar solutions are also provided.
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NOMENCLATURE

ODE Ordinary Differential Equation

RHD Radiation Hydrodynamics

HEDP High-Energy Density Physics

PDE Partial Differential Equation

LTE Local Thermodynamics Equilibrium
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CHAPTER I

INTRODUCTION

In today’s scientific community, computer simulation has become an essential part of the

scientific process. Simulation is involved in all aspects of research: theoretical, analytical,

and experimental. Codes are now expected to produce accurate results for highly complex

problems. The most interesting and relevant problems cannot have an analytical solution

due to their inherent complexity in geometry, boundary conditions, or materials. To have

confidence in a code used to solve these complicated problems, the codes need to be able to

produce answers that can be verified for easier, known problems [1]. The downfall of this

procedure is that errors can occur only in the more complex code, while performing flaw-

lessly in the easier benchmark. This engenders a false sense of confidence, and subsequently

accuracy, in simulation codes, due to no other solutions being available, no one can refute

the accuracy of the simulation codes. To keep computer simulation involved in the scientific

process, their reliability and accuracy must continue to improve. Because of this predica-

ment, benchmark solutions are continually expected to model more complex problems as the

state of the science advances. As the benchmark problems evolve and become more complex,

the best one can hope to achieve are semi-analytic solutions. The solutions provided in this

work are semi-analytic in nature. This term means the results are purely analytic, but the

integration and ordinary differential equation (ODE) solver both use numerical methods.

Therefore, the results are inherently analytic, but to obtain values, numerical methods are

used.

Equations of Radiation Hydrodynamics

Radiation Hydrodynamics (RHD), at its most basic, can be described as a set of techniques

used to understand a moving, radiating fluid. The field of RHD is often associated with High-
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Energy Density Physics (HEDP). HEDP is a regime of computational physics loosely defined

as the study of matter with energy densities that are orders of magnitudes greater than the

energy density found at room temperature. Many of the phenomena studied in these fields

involve any combination of plasmas, ions, radiation, and shock waves. These phenomena

can be found in supernovae explosions, or in inertial confinement fusion applications.

Hydrodynamics Model

To begin to understand the complex flows involved with RHD, it is important to first consider

hydrodynamics without any radiation. The Euler equations govern this flow and are given

by,
∂ρ

∂t
+∇ · (ρ~v) = 0 , (I.1a)

∂

∂t
(ρv) +∇ · (ρ~v ⊗ ~v) +∇p = −PSF , (I.1b)

∂

∂t
(ρE) +∇ · [(ρE + p)~v] = −CPSE , (I.1c)

where ρ is the material density, ~v is the relative velocity, and p is the pressure. E, the total

specific energy is given by

E = e+
1

2
v2 (I.2)

where v = |~v| and e is the internal specific energy. C and P are non dimensional constants and

SE and SF are source terms that are defined in detail in the next section, Radiative Transfer.

An equation of state is also needed to close the system and will be defined later in this work.

In particular, Equations (I.1a), (I.1b), (I.1c) represent the conservation of mass, momentum,

and energy of the fluid, respectively. The Euler equations govern inviscid flows only. These

are flows in which viscous effects are negligible and therefore not taken into consideration.

Conversely, there are flows in High-Energy Density Physics in which this approximation fails.

They typically occur in situations where the Euler equations present discontinuous solutions.

Discontinuities can occur in shock waves and certain astrophysical situations, and should be
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modeled with viscous effects included. However, this approximation is perfectly valid in the

flows described in depth within this work.

Radiative Transfer

Radiation is a mechanism of energy and momentum transfer that is governed by highly

non-linear partial differential equations (PDEs). The non-dimensional transfer equation for

photons is given by (
1

C
∂

∂t
+ n · ∇

)
I(ν,n) = S(ν,n) , (I.3)

where I (ν,n) is the spectrally-dependent photon intensity, S (ν,n) is the spectrally-dependent

source term, and C is the ratio of the speed of light to the speed of sound in the medium.

Mathematically, C = c/a∞. C is a measure of how quickly the fluid responds to radiation

effects in comparison to material effects and can be thought of as a relativistic parameter.

S(ν,n), the source term, results from material interaction. This term has cross-sections

embedded within it and can become rather burdensome depending on the frame used. This

particular equation utilizes the Eulerian frame exclusively, with each variable’s dependence

on space and time suppressed [2]. Deriving both the Eulerian or comoving frame equations

have been covered extensively in literature [3, 4], and therefore will not be explained in this

study. For simplicity, spectrally averaged cross-sections are utilized (gray approximation),

local thermodynamic equilibrium (LTE) is assumed, and scattering is neglected. These ap-

proximations maintain solution accuracy to O(v/C) in the nonrelativistic HEDP regime [2].

P1 Equations

The first three angular moments of I(ν,n) are defined as:

Er =
1

C

∫ ∞
0

dν

∮
n

dn I(ν,n), (I.4a)
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Fr =

∫ ∞
0

dν

∮
n

dnnI(ν,n), (I.4b)

Pr =
1

C

∫ ∞
0

dν

∮
n

dnn⊗ nI(ν,n). (I.4c)

Where Er is the energy density, Fr is the radiation flux, Pr is the radiation pressure and n

is the direction [5]. Assuming a one-dimensional Cartestian geometry gives n = µ where

µ = cos (θ). θ is the angle between the photon flight and the positive x-axis. The source

terms are given by:

SE =

∫ ∞
0

dν

∮
n

dnS(ν,n), (I.5a)

SF =
1

C

∫ ∞
0

dν

∮
n

dnnS(ν,n). (I.5b)

Taking the {1,n}-angular moments of Equation (I.3), as shown above, and substituting the

source term relationships gives:

∂Er

∂t
+ C∇ · Fr = CSE, (I.6a)

∂Fr

∂t
+

1

3
C∇Er = CSF, (I.6b)

∂ρe

∂t
= −PCSE. (I.6c)

where

SE = σ(T 4 − Er) + σ
v

C
· Fr0, (I.7a)

SF = −σFr0 + σ
v

C
(T 4 − Er), (I.7b)

Fr0 = Fr − (vEr +
v

3
Er)/C. (I.7c)

These are the P1 equations generalized for one-dimensional radiation transport. Their name

comes from the approximation used to close the system, Pr = 1
3
Er. This approximation is

obtained when a first-order (hence the name) Legendre expansion is assumed for I(n). For
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a more detailed explanation of their derivation, please refer to [5]. It is beneficial to work

with non dimensional variables so the following nondimensionalization scheme is proposed:

t̂ =
t`

a∞
û = a∞u x̂ = x` e =

ê

cvT∞
=

cvT̂

cvT∞
T =

T̂

T∞
.

where hatted variables (̂·) denote a dimensional quantity and the subscript infinity describes

a flow scale or a characteristic/reference quantity. Secondly, the non dimensional constants,

P =
arT

4
∞

ρ∞cvT∞
, C =

c

a∞
,

represent the ratio of material energy to radiation energy in the problem and the ratio of

the speed of light to the speed of sound in the material, respectively.

Asymptotic Analysis

Typically, the RHD model (i.e. the coupled Euler and radiation transport equations) are

solved in an operator split fashion. In this method, the transport model equations are solved

while coupled with a material internal energy equation that only contains the radiation-

matter coupling terms:
∂ρe

∂t
= −PCSE. (I.8)

The other terms in the material energy equation are then updated during the hydrodynam-

ics solve, along with a momentum exchange correction. As part of this operator splitting

procedure, the radiation solve is undertaken with density and velocity terms that were eval-

uated at a particular time level. It is these radiation equations with the quasi-static material

velocity and density that we will perform an asymptotic analysis on.
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The P1 equations, above, coupled with Eq. (I.8), are to be scaled under the conditions that

the absorption cross-section is very large,

σ → σ

ε
,

and where the ratio of the speed of light to the speed of sound is also very large,

C→ C
ε
,

where ε is a “small”, positive scaling parameter to be further defined below. These substi-

tutions indicate that we are considering only asymptotic solutions to the transport equation

for a system where the absorption mean free path is very small and the material reacts much

quicker to changes in radiation than any material effects such as sound waves. Substituting

these relationships into Equations (I.6) and (I.7) gives,

ε
∂Er

∂t
+ C∇ · Fr = CSE (I.9a)

ε
∂Fr

∂t
+

1

3
C∇Er = CSF (I.9b)

ε
∂ρe

∂t
= −PCSE (I.9c)

where the sources are now given by:

SE =
σ

ε

(
T 4 − Er

)
+ σ

v

C
· Fr0 , (I.10a)

SF = −σ
ε
Fr0 + σ

v

C
(
T 4 − Er

)
, (I.10b)

Fr0 = Fr −
ε

C

(
vEr +

v

3
Er

)
. (I.10c)
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These scalings hold true for many nonrelativistic HEDP flows and all flows described in this

work. All unknown variables in Eq. (I.9) and Eq. (I.10) are now expanded with a formal

power series of the scaling constant ε. For example:

Er =
∞∑
n=0

εnE(n)
r , T 4 =

∞∑
n=0

εnT 4
(n).

We will now look at the coefficients for each power of ε. The three orders of SE are:

S
(−1)
E = σ

(
T 4
(0) − E(0)

r

)
, (I.11a)

S
(0)
E = σ

(
T 4
(1) − E(1)

r

)
+ σ

v

C
· F (0)

r0 , (I.11b)

S
(1)
E = σ

(
T 4
(2) − E(2)

r

)
+ σ

v

C
· F (1)

r0 . (I.11c)

Similarly for SF:

S
(−1)
F = −σF (0)

r0 , (I.12a)

S
(0)
F = −σF (1)

r0 + σ
v

C
(
T 4
(0) − E(0)

r

)
, (I.12b)

S
(1)
F = −σF (2)

r0 + σ
v

C
(
T 4
(1) − E(1)

r

)
. (I.12c)

After inspecting Eqs. (I.9), it can be seen that no terms involve ε−1. This shows that the

O(ε−1) equations are equal to zero, therefore S
(−1)
E = S

(−1)
F = 0. Because of this, Eq. (I.11a)

gives

T 4
(0) = E(0)

r , (I.13)

and Eq. (I.12a) gives

F
(0)
r0 = 0. (I.14)

Gathering only the terms involving no power of ε in the P1 equations, also known as O(1)

equations, is as follows:

C∇ · F (0)
r = CS(0)

E (I.15a)
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1

3
C∇E(0)

r = CS(0)
F (I.15b)

F
(0)
r0 = F (0)

r = 0 (I.15c)

Equation (I.15a) reduces to S
(0)
E = 0 due to Eq. (I.15c). Furthermore, this simplifies

Eq. (I.11b) to

T 4
(1) = E(1)

r . (I.16)

The first-order equation for Fr0 is

F
(1)
r0 = F (1)

r −
1

C

[
vE(0)

r +
v

3
E(0)

r

]
(I.17)

Substituting this relationship and Eq. (I.12b) into Eq. (I.15b) gives,

1

3
∇E(0)

r = −σF (1)
r +

4

3

v

C
σE(0)

r , (I.18)

after some algebra. Solving for F
(1)
r yields Fick’s Law with an additional advection term:

F (1)
r =

4

3

v

C
E(0)

r −
1

3σ
∇E(0)

r . (I.19)

Next, we look at the O(ε) equations arising from Eqs. (I.9):

∂E
(0)
r

∂t
+ C∇ · F (1)

r = CS(1)
E , (I.20a)

− 1

P
∂ρe(0)

∂t
= CS(1)

E . (I.20b)

Substituting Eq. (I.19) into Eq. (I.20a) gives

∂E
(0)
r

∂t
+

1

3
∇ ·
[
4vE(0)

r −
C
σ
∇E(0)

r

]
= CS(1)

E . (I.21)
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Manipulating Eq. (I.21) with Eq. (I.15c) and rearranging gives

1

P
∂ρe(0)

∂t
+
∂E

(0)
r

∂t
+

4

3
∇vE(0)

r = ∇ · C
3σ
∇E(0)

r . (I.22)

Finally, this can be given in terms of material temperature due to Eq. (I.13):

1

P
∂ρe(0)

∂t
+
∂T 4

(0)

∂t
+

4

3
∇vT 4

(0) = ∇ · C
3σ
∇T 4

(0). (I.23)

This is a conservation equations for material and radiative energy. The third term accounts

for material motion through v, and is known as the drift term. This term would be absent

without material motion. The term on the right hand side of the equation accounts for

the diffusion of radiation energy. Therefore for a known density and material velocity (as

outlined previously through an operator split scheme) the only dependent variable in this

equation is the material temperature. This is the equilibrium drift-diffusion equation.
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CHAPTER II

PROBLEM FORMULATION

The Marshak Wave

A long-standing example of non-linear radiative transfer is the Marshak wave, first described

by Marshak in 1958 [6]. This wave is characterized by a self-similar profile that has typically

been treated with a thermal diffusion approximation. This approximation is adequate in

many situations. The material density and specific heat are constant while the opacity -

or absorption cross-section - follows a power law dependent on material temperature. The

problem geometry is a slab of material from x ≥ 0 that is initially cold (close to zero

temperature), and at t = 0 radiation is applied at the x = 0 surface and remains constant

thereafter. This drives a thermal wave through the cold material. The wave propagating

through the material is fundamentally different than other waves, such as an acoustic wave.

It is a wave in the sense that a sharp temperature front moves through the material as a

function of time. Its propagation law is distance ∝ time1/2, which is typical of diffusive

energy transport. In terms of similarity variables, the solution has a constant shape. It is

this profile that we will compute.

Historically, when treating such problems, hydrodynamic motion has been ignored [6–9].

However, this work aims to include motion in the treatment of Marshak waves. Material

motion adds significant complexity to the problem due to the fact that momentum conserva-

tion, and consequently energy transfer, depend on the relative velocity between the photons

and the material. Adding material motion to Marshak wave problem is the next logical step

in the advancement of verification codes.
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Radiation Wave Front Approximation

In slab geometry, the equilibrium drift-diffusion equation, with subscripts removed is

d

dt

(
ρe+ PT 4

)
+

d

dx

(
4PT 4

3
u

)
=

d

dx

CP
3σ

d

dx
T 4. (II.1)

A fundamental characteristic of the Marshak wave is its self-similar nature. Self-similarity

is defined as a profile that is has a similar or exact shape as one or more parts of itself. In

other words, the whole object has the same shape as one or more of its parts. If you zoom

into a small section of the wave, and then transpose its shape over the entire wave profile,

they will have the same shape. A similarity transform will be performed using,

ξ =
Ax√
t
, u =

θU√
t
,

where A and θ are constants to be defined later, ξ is the scaled independent variable and

u is the scaled material velocity. These transforms are suggested by understanding that

distance ∝ time1/2. We have prescribed a unique velocity profile, yet have not asserted how

this would be formed. We simply state that if velocity follows a 1/
√
t dependence then

self-similar solutions are possible. Although this may not seem physical or even beneficial, it

is important to note that this velocity dependence can easily be prescribed in a simulation

code. Simulation code verification is the premise of our study, therefore we feel this velocity

prescription is valuable.

Implementing these transforms results in,

−ξ d
dξ

(
ρe+ PT 4

)
+

8

3
AUθP

d

dξ
T 4 =

2A2CP
3

d

dξ

1

σ

d

dξ
T 4. (II.2)

Formally introducing the temperature-dependent cross section,

σ = κ0T
−n, (II.3)
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and substituting into Eq. (II.1) gives

−ξ d
dξ

(
ρe+ PT 4

)
+

8

3
AUθP

d

dξ
T 4 =

8A2CP
3(n+ 4)κ0

d2

dξ2
T (n+4). (II.4)

The exponent n for the cross-section can be set to n = 0 to model electron scattering or to

n = 3 to model bound-free and free-free absorption reactions. It should also be noted that

Eq. (II.3), with n > 0, reveals that as the temperature increases the material becomes more

transparent. From the nondimensionalization scheme, it can be seen that

ρe =
ρcvT̂

cvT∞
= ρT. (II.5)

Therefore, by inserting this expression, Eq. (II.4) becomes,

−ξ d
dξ

(
ρT + PT 4

)
+

8

3
AUθP

d

dξ
T 4 =

8A2CP
3(n+ 4)κ0

d2

dξ2
T (n+4), (II.6)

At this point the following constants will be defined to simplify the arithmetic:

U =
3

8A
, (II.7a)

A2 =
3(n+ 4)κ0

8CP
. (II.7b)

Then, substituting Eq. (II.7b) into Eq. (II.7a) gives

U =

[
3CP

8(n+ 4)κ0

]1/2
. (II.8)

Using these relationships, Eq. (II.4) simplifies to

−ξ d
dξ

(
T + PT 4

)
+ Pθ

d

dξ
T 4 =

d2

dξ2
T (n+4). (II.9)

In the limit P → 0, i.e. assuming radiation energy is negligible, this differential equation

becomes equivalent to Eq. (12.7) on page 296 in [9] and Eq. (1) in [8]. A salient feature of
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this equation is that although P is also a part of the right hand side of the expression, C

limits this term from tending towards zero as P → 0. This equation is to be solved with

the boundary condition that T = T0 at ξ = 0, and another condition that maintains the

temperature ahead of the wave front is sufficiently cold. Solutions of Eq. (II.9) go to zero

at a finite value of ξ. This value of ξ will be referred to as ξmax. For a particular value of

ξmax, there are an infinite number of solutions that tend to zero. However, only one of these

solutions maintains a zero flux in the limit ξ → ξmax. Castor outlines an iterative numerical

procedure beginning with an initial guess for ξmax to determine the wave temperature profile.

This value for ξmax must be adjusted until an integration from ξmax back to 0 gives T (0) = T0.

We now detail how to approximate the wave front location, ξmax.

Integrating both sides, over ξ < ξ′ < ξmax, gives

−ξ
(
T (ξ′) + PT 4(ξ′)

) ∣∣∣∣ξmax

ξ

+

∫ ξmax

ξ

(
T (ξ′) + PT 4(ξ′)

)
dξ′+PθT 4(ξ′)

∣∣∣∣ξmax

ξ

=
d

dξ
T (n+4)(ξ′)

∣∣∣∣ξmax

ξ

.

(II.10)

Simplifying using T (ξmax) = 0 yields

ξ
(
T (ξ) + PT 4(ξ)

)
+

∫ ξmax

ξ

(
T (ξ′) + PT 4(ξ′)

)
dξ′ − PθT 4(ξ) = − d

dξ
T (n+4)(ξ). (II.11)

For conciseness, the function g(ξ) = T (ξ) + PT 4(ξ) is defined and from this, the mean value

of g(ξ) from ξ to ξmax can also be defined as

ḡ(ξ) =
1

ξmax − ξ

∫ ξmax

ξ

g(ξ′) dξ′. (II.12)

Using this relationship allows one to write the first two terms of Eq. (II.11) as

ξg(ξ) +

∫ ξmax

ξ

g(ξ′) dξ′ = ξmaxg(ξ)− (ξmax − ξ) (g(ξ) + ḡ(ξ)) . (II.13)
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Then, due to the fact that (ξmax − ξ)� ξmax near the shock front, the second term can be

neglected. Therefore, Eq. (II.13) reduces to,

ξg(ξ) +

∫ ξmax

ξ

g(ξ′) dξ′ ≈ ξmaxg(ξ). (II.14)

Nelson and Reynolds illustrate the previous approximation in Eqs. 6 & 7 of [8] and state

that the relative error is of order (ξmax − ξ)/ξmax. Modulo this error, Eq. (II.11) reduces to

ξmax
[
T (ξ) + PT 4(ξ)

]
− PθT 4(ξ) = − d

dξ
T (n+4)(ξ). (II.15)

Notice that through the chain rule,

(n+ 4)T (n+3)(ξ)
d

dξ
T (ξ) =

d

dξ
T (n+4)(ξ). (II.16)

Because of this, Eq. (II.15) can be rewritten as

ξmax
[
T (ξ) + PT 4(ξ)

]
− PθT 4(ξ) = −(n+ 4)T (n+3)(ξ)

d

dξ
T (ξ). (II.17)

Dividing both sides by T (ξ) gives

ξmax
[
1 + PT 3(ξ)

]
− PθT 3(ξ) = −(n+ 4)T (n+2)(ξ)

d

dξ
T (ξ). (II.18)

Now, applying a reverse application of the chain rule gives

ξmax
[
1 + PT 3(ξ)

]
− PθT 3(ξ) = −(n+ 4)

(n+ 3)

d

dξ
T (n+3)(ξ). (II.19)

This reduces to

ξmax + [ξmax − θ]PT 3(ξ) = −(n+ 4)

(n+ 3)

d

dξ
T (n+3)(ξ). (II.20)
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A final integration over ξ and again taking advantage of the fact that T (ξmax) = 0 gives

ξmax(ξmax − ξ) + P [ξmax − θ]
∫ ξmax

ξ

T 3(ξ′) dξ′ =
(n+ 4)

(n+ 3)
T (n+3)(ξ). (II.21)

Furthermore, evaluating the remaining integral using right-hand Riemann sums yields

∫ ξmax

ξ

T 3(ξ′)dξ′ = (ξmax − ξ)T 3(ξmax) = 0, (II.22)

due to T 3(ξmax) = 0. This method maintains accuracy to order (ξmax − ξ)/ξmax. Eq. (II.21)

now reduces to,

ξmax (ξmax − ξ) =
(n+ 4)

(n+ 3)
T (n+3)(ξ). (II.23)

Solving this equation for T (ξ) provides an initial temperature approximation which is defined

as T1(ξ):

T1(ξ) =

[
(n+ 3)

(n+ 4)
ξmax (ξmax − ξ)

]1/(n+3)

. (II.24)

With this temperature approximation we can evaluate the integral in Eq. (II.21) instead of

using right-hand Riemann sums. This will generate a more accurate expression in which we

will explicitly solve for T (ξ) below. Substituting T1(ξ) into the integral term gives

ξmax (ξmax − ξ) + P [ξmax − θ]
∫ ξmax

ξ

[
n+ 3

n+ 4
ξmax (ξmax − ξ)

]3/(n+3)

dξ′ =
n+ 4

n+ 3
T (n+3)(ξ).

(II.25)

Evaluating the integral and simplifying yields

ξmax (ξmax − ξ) + P [ξmax − θ]
n+ 3

n+ 6
(ξmax − ξ)

[
n+ 3

n+ 4
ξmax (ξmax − ξ)

] 3
n+3

=
n+ 4

n+ 3
T (n+3)(ξ).

(II.26)

Solving explicitly for T (ξ) gives a more accurate approximation, defined as T2(ξ):

T2(ξ) =

[
n+ 3

n+ 4
(ξmax − ξ)

(
ξmax + P

n+ 3

n+ 6
(ξmax − θ)

(
n+ 3

n+ 4
ξmax (ξmax − ξ)

)3/(n+3)
)]1/(n+3)

.

(II.27)

19



This expression allows for a more accurate approximation of the radiation wave front moving

through the cold medium. In the next section, ξmax will be determined and tabulated for

various values of P and θ under both n = 0 and n = 3. It is pertinent to expand on the

definition of θ. By reflecting on its definition, one can see that it simply scales U to u. There-

fore, θ can be seen as the ratio of the material velocity to the wave velocity. This constant is

not merely an arbitrary quantity, it has physical relevance. To check validity of the previous

expression, it is practical to compare to previous literature. Because no previous literature

has included material motion in their solutions, we must make our solution comparable to

the published results. Therefore, when P→ 0, i.e. radiation energy is negligible, Eq. (II.27)

becomes

T2(ξ) =

[
n+ 3

n+ 4
ξmax (ξmax − ξ)

]1/(n+3)

, (II.28)

which is identical to T1(ξ). In comparison, Nelson and Reynolds [8] claim,

g2(ξ) =

(
(n+ 3)

(n+ 4)

(
ξmax −

1

(n+ 4)

(ξmax − ξ)
2

)
(ξmax − ξ)

)1/(n+3)

, (II.29)

which agrees with Eq. (II.28) when one notes that (ξmax − ξ) � ξmax. This is important

to illustrate because although our transport equations were different, due to the addition

of material motion, when one makes the same assumptions as Nelson and Reynolds, these

solutions will yield similar results. However, the added utility with our solution is that one

is not forced to make those assumptions.
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CHAPTER III

RESULTS

To solve for ξmax, as well as the T (ξ) profiles, the software Wolfram Mathematica 9 was

utilized. The solution procedure is as follows. We begin with an initial guess for ξmax

and then solve Eq. (II.9) using the boundary conditions T (ξmax − δ) = T2(ξmax − δ) and

T ′(ξmax− δ) = T ′2(ξmax− δ). Then, based on whether T (0) is greater than or less than 1, we

adjust our guess for ξmax. In our case δ = 10−10, while the functions NDSolve and FindRoot

were used to integrate the ODE numerically and find the converged ξmax. These calculations

were performed at better-than-machine precision arithmetic by setting WorkingPrecision

to 32. Before analyzing our new results, the author wanted to confirm the validity of pre-

viously known results. For this comparison, one must look at results that use the T1(ξ)

approximation (shown in Eq. (II.24)). The T1(ξ) approximation inherently has no material

motion therefore P and θ must be zero to provide comparable studies. In Castor’s book, he

claims ξmax = 1.232 for n = 0 and ξmax = 1.121 for n = 3 [9]. At the same precision, Nelson

and Reynolds would claim 1.231 and 1.120, respectively [8]. Our results show ξmax = 1.231

for n = 0 and ξmax = 1.119 for n = 3. Therefore, the results calculated do align with

previous literature and provide a reasonable sense of confidence in the other results of this

study. The profiles for the benchmark problem are shown below in Fig. III.1.
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Fig. III.1. Benchmark Case Comparison for n = 0 and n = 3

From this figure it is easy to see that electron scattering problems have a flatter, less sharp

wave front than do bound-bound and free-free problems. It can be said that the n = 0 case

is more penetrating than n = 3. To look at the novel results now, various values for both

n = 0 and n = 3 cases are presented in a tabulated format below in Table III.1. This figure

shows nondimensional ξ on the abcissa and nondimensional temperature on the ordinate.

These profiles are for a problem with no material motion. Progressiong to novel results,

Table III.1 shows ξmax values for a variety of material properties and speeds.

Table III.1
ξmax for Motion Problems

θ
ξmax

P = 0.04573 P = 0.5 P = 1
n = 0 n = 3 n = 0 n = 3 n = 0 n = 3

10 1.36449 1.28213 3.57574 3.52816 5.19830 5.16451
5 1.28845 1.18959 2.07107 2.01057 2.83272 2.76374
2 1.24712 1.13852 1.40900 1.31516 1.57627 1.47967
1 1.23399 1.12220 1.25937 1.14168 1.28225 1.15790

0.1 1.22243 1.10780 1.14910 1.00925 1.08784 0.93103
0 1.22116 1.10621 1.13806 0.99582 1.06966 0.90931
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This table sheds light on a few interesting features. It shows that as either θ or P increases,

the wave grows. This is due to the fact that the advection term in Eq. (II.6) is scaled by P.

In the P = 0.04573 case increasing θ from 10 to 0 has about a 15% effect in ξmax for n = 3.

The same change at P = 1 leads to a 450% effect in ξmax. Table III.1 also shows that as

P becomes larger, or when the problem is in a radiation-dominated regime, the difference

between wave front positions converges for both problems. Based on numerical results from

P ranging from 0 to 2, we find that, for θ = 0, ξmax behaves as

ξmax ≈ 0.032P2 − 0.19P + 1.2 n = 0, (III.1)

ξmax ≈ 0.046P2 − 0.25P + 1.1 n = 3. (III.2)

Furthermore, Fig. III.2, below, show profiles of thermal waves with varying shock speeds

which highlight these phenomena. The thermal wave profiles generated in Fig. III.2 are

calculated for a sample problem where ar = 0.01372 GJ
keV4-cm3 , T∞ = 1 keV, ρ∞cv = 0.3 GJ

keV-cm3 ,

and κ0 = 300 cm−1. These values correspond to P = 0.04573. This sample problem is a

typical Marshak Wave solution and has appeared in the literature several times [10–12]. This

value is used when calculating the profiles shown. To allows others to use these solutions

for code verification we have included T (ξ) for various values of θ at P = 0.04573 in the

appendix.
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Fig. III.2. Self-similar thermal wave profiles for P = 0.04573 with n = 0 and n = 3.
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The differences between the two figures show that n = 3 profiles are more steep, which means

the radiation is more penetrating, than the n = 0 problem. However, they both show that

the difference between θ = 10 and no material motion is certainly non-negligible.

To verify the validity of these results, we compared our results to an in-house numerical

transport code [10, 13]. The results of the comparison can be found below in Fig. III.3.

The numerical code results are shown as the red circles. It is illustrated that there’s an

appreciable difference between the two profiles which grows larger as time increases and the

wave evolves. This figure is dimensionalized so that one can show the error grow as the wave

and time increase. It shows profiles at 10, 20, and 50 nanoseconds. It is easy to see that the

red circles follow the black line well. The black line shows our solutions including material

motion while the blue line neglects it. Due to the two independent validations performed,

the authors are reasonably confident in the novel solutions presented herein. However, the

salient feature of this figure is the difference between including material motion in solutions

and neglecting it. At 50 nanoseconds the wave has traveled approximately 0.38 cm. This is

equivalent to a wave speed of 76 kilometers per second. The large wave speed is one reason

that these wave profiles are difficult to study experimentally. This in turn puts more reliance

on simulation codes and is the impetus of this study.
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Fig. III.3. Comparison of a numerical solution to analytical self-similar solu-
tions at various times to a Marshak wave problem with non-negligible radia-
tion energy. The numerical and analytical solutions include material motion
but the θ = 0 curve does not.
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CHAPTER IV

CONCLUSIONS

We have generalized the classic Marshak wave problem to include both radiation energy

density terms and material motion. The material motion in our solutions is uniform in space

and proportional to t−1/2. In problems without any material motion, we observe that the

greater the radiation energy density, as measured by the parameter P, the slower the wave

moves into the material. We phenomenologically quantified this effect with a quadratic in P

model. We then showed that neglecting material motion accounts for an appreciable error

in the position of the wave front that increases with time. To reduce this error we presented

novel solutions to include material motion. Besides providing insight into the effects of

radiation energy and material motion on Marshak waves, our solution can also be used to

verify the radiation-material coupling treatment in a simulation code. Furthermore, this

model could be implemented into codes to reduce the error due to this treatment. At the

very least a study should be performed to determine for what values of θ are relevant to the

problems currently being solved by these codes.

Future Work

The authors are currently studying the temporal evolution of these waves and how this

evolution changes with material speed. Work is also currently being performed to analyze

the effect of different materials on the wave profiles by varying the ρ∞, T∞, cv, and κ0 terms

and relating them to physical experiments. This will test the model’s fidelity by analyzing

which parameters it is most sensitive to.
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APPENDIX A

VERIFICATION TABLES

These tables are provided for others to use in the verification of simulation codes with the

velocity dependence described within this work for P = 0.04573, which corresponds to a

typical sample problem, and values of n = 0 and n = 3.
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Table A.1
Solutions T (ξ) for a problem with P = 0.04573 and n = 0.

ξ θ = 10 θ = 5 θ = 2 θ = 1 θ = 0.1 θ = 0
1 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 0.02843 0.99534 0.99427 0.99359 0.99336 0.99316 0.99313
3 0.05685 0.99054 0.98840 0.98705 0.98659 0.98617 0.98612
4 0.08528 0.98562 0.98239 0.98035 0.97966 0.97903 0.97896
5 0.11371 0.98056 0.97623 0.97351 0.97258 0.97174 0.97165
6 0.14213 0.97535 0.96991 0.96650 0.96534 0.96429 0.96417
7 0.17056 0.97000 0.96344 0.95933 0.95793 0.95667 0.95652
8 0.19899 0.96450 0.95680 0.95199 0.95035 0.94887 0.94870
9 0.22742 0.95883 0.94999 0.94446 0.94259 0.94089 0.94070

10 0.25584 0.95300 0.94300 0.93675 0.93464 0.93272 0.93251
11 0.28427 0.94700 0.93582 0.92885 0.92649 0.92435 0.92412
12 0.31270 0.94082 0.92844 0.92074 0.91813 0.91578 0.91551
13 0.34112 0.93445 0.92086 0.91241 0.90956 0.90698 0.90669
14 0.36955 0.92788 0.91306 0.90387 0.90076 0.89795 0.89764
15 0.39798 0.92111 0.90503 0.89508 0.89172 0.88868 0.88834
16 0.42640 0.91412 0.89677 0.88604 0.88242 0.87915 0.87878
17 0.45483 0.90691 0.88826 0.87674 0.87286 0.86935 0.86896
18 0.48326 0.89946 0.87949 0.86716 0.86301 0.85926 0.85884
19 0.51168 0.89176 0.87043 0.85729 0.85287 0.84887 0.84842
20 0.54011 0.88379 0.86109 0.84710 0.84240 0.83815 0.83767
21 0.56854 0.87556 0.85143 0.83658 0.83159 0.82708 0.82658
22 0.59697 0.86702 0.84143 0.82571 0.82042 0.81564 0.81511
23 0.62539 0.85818 0.83109 0.81445 0.80885 0.80380 0.80324
24 0.65382 0.84901 0.82036 0.80278 0.79687 0.79153 0.79094
25 0.68225 0.83948 0.80923 0.79067 0.78443 0.77880 0.77817
26 0.71067 0.82958 0.79766 0.77808 0.77150 0.76556 0.76490
27 0.73910 0.81928 0.78561 0.76497 0.75803 0.75176 0.75107
28 0.76753 0.80855 0.77306 0.75129 0.74397 0.73736 0.73663
29 0.79595 0.79735 0.75994 0.73699 0.72927 0.72229 0.72151
30 0.82438 0.78565 0.74622 0.72200 0.71384 0.70647 0.70565
31 0.85281 0.77341 0.73182 0.70624 0.69762 0.68983 0.68896
32 0.88123 0.76057 0.71668 0.68962 0.68050 0.67223 0.67131
33 0.90966 0.74708 0.70071 0.67204 0.66235 0.65357 0.65259
34 0.93809 0.73287 0.68380 0.65335 0.64303 0.63367 0.63262
35 0.96652 0.71786 0.66583 0.63338 0.62234 0.61231 0.61119
36 0.99494 0.70196 0.64664 0.61190 0.60004 0.58923 0.58802
37 1.02337 0.68506 0.62603 0.58864 0.57580 0.56405 0.56274
38 1.05180 0.66701 0.60374 0.56320 0.54916 0.53625 0.53480
39 1.08022 0.64764 0.57943 0.53502 0.51946 0.50506 0.50343
40 1.10865 0.62672 0.55262 0.50329 0.48570 0.46925 0.46738
41 1.13708 0.60398 0.52262 0.46669 0.44621 0.42672 0.42448
42 1.16550 0.57901 0.48837 0.42290 0.39782 0.37313 0.37023
43 1.19393 0.55127 0.44808 0.36705 0.33301 0.29652 0.29196
44 1.22236 0.51995 0.39832 0.28479 0.22073 0.04126 -
45 1.25078 0.48378 0.33076 - - - -
46 1.27921 0.44055 0.20740 - - - -
47 1.30764 0.38573 - - - - -
48 1.33607 0.30686 - - - - -
49 1.36449 - - - - - -
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Table A.2
Solutions T (ξ) for a problem with P = 0.04573 and n = 3.

ξ θ = 10 θ = 5 θ = 2 θ = 1 θ = 0.1 θ = 0
1 0.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 0.02671 0.99729 0.99677 0.99643 0.99632 0.99622 0.99620
3 0.05342 0.99452 0.99346 0.99279 0.99255 0.99234 0.99232
4 0.08013 0.99168 0.99007 0.98905 0.98870 0.98838 0.98834
5 0.10684 0.98877 0.98660 0.98522 0.98475 0.98432 0.98427
6 0.13356 0.98579 0.98305 0.98130 0.98070 0.98016 0.98010
7 0.16027 0.98273 0.97940 0.97728 0.97655 0.97589 0.97582
8 0.18698 0.97960 0.97567 0.97316 0.97229 0.97151 0.97142
9 0.21369 0.97638 0.97183 0.96892 0.96792 0.96701 0.96691

10 0.24040 0.97308 0.96789 0.96457 0.96343 0.96239 0.96228
11 0.26711 0.96968 0.96384 0.96010 0.95881 0.95764 0.95751
12 0.29382 0.96619 0.95967 0.95549 0.95406 0.95275 0.95260
13 0.32053 0.96261 0.95538 0.95075 0.94916 0.94771 0.94755
14 0.34724 0.95891 0.95097 0.94587 0.94412 0.94252 0.94234
15 0.37396 0.95511 0.94642 0.94083 0.93891 0.93716 0.93696
16 0.40067 0.95119 0.94172 0.93563 0.93354 0.93162 0.93141
17 0.42738 0.94715 0.93687 0.93026 0.92798 0.92589 0.92566
18 0.45409 0.94298 0.93186 0.92470 0.92222 0.91996 0.91971
19 0.48080 0.93867 0.92668 0.91893 0.91626 0.91381 0.91354
20 0.50751 0.93421 0.92131 0.91296 0.91007 0.90743 0.90713
21 0.53422 0.92960 0.91574 0.90675 0.90364 0.90079 0.90047
22 0.56093 0.92483 0.90996 0.90029 0.89694 0.89387 0.89353
23 0.58764 0.91987 0.90394 0.89356 0.88996 0.88665 0.88628
24 0.61435 0.91473 0.89767 0.88653 0.88266 0.87910 0.87870
25 0.64107 0.90938 0.89114 0.87918 0.87501 0.87119 0.87076
26 0.66778 0.90381 0.88430 0.87147 0.86699 0.86287 0.86240
27 0.69449 0.89800 0.87714 0.86336 0.85854 0.85410 0.85360
28 0.72120 0.89193 0.86962 0.85481 0.84962 0.84482 0.84429
29 0.74791 0.88558 0.86170 0.84577 0.84016 0.83498 0.83440
30 0.77462 0.87893 0.85335 0.83617 0.83011 0.82449 0.82386
31 0.80133 0.87193 0.84449 0.82594 0.81936 0.81325 0.81257
32 0.82804 0.86456 0.83508 0.81498 0.80782 0.80115 0.80039
33 0.85475 0.85678 0.82503 0.80318 0.79534 0.78801 0.78718
34 0.88147 0.84852 0.81424 0.79037 0.78174 0.77364 0.77272
35 0.90818 0.83975 0.80260 0.77637 0.76679 0.75775 0.75672
36 0.93489 0.83038 0.78995 0.76089 0.75015 0.73994 0.73877
37 0.96160 0.82032 0.77608 0.74358 0.73137 0.71965 0.71830
38 0.98831 0.80948 0.76072 0.72388 0.70973 0.69595 0.69435
39 1.01502 0.79770 0.74348 0.70094 0.68408 0.66729 0.66531
40 1.04173 0.78481 0.72379 0.67335 0.65235 0.63063 0.62801
41 1.06844 0.77058 0.70078 0.63837 0.61010 0.57849 0.57445
42 1.09515 0.75467 0.67293 0.58960 0.54424 0.47872 0.46807
43 1.12187 0.73661 0.63734 0.50300 0.26230 - -
44 1.14858 0.71569 0.58696 - - - -
45 1.17529 0.69073 0.49328 - - - -
46 1.20200 0.65964 - - - - -
47 1.22871 0.61787 - - - - -
48 1.25542 0.55197 - - - - -
49 1.28213 0.01824 - - - - -
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