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ABSTRACT

The thermal neutron scattering cross sections of ZrHx are heavily affected by the

solid frequency distributions, also called “phonon spectra”, of Zr and H in ZrHx. The

phonon spectra are different for ZrHxwith different x. While current reference data

files, e.g. ENDF, are based on the spectra of ZrH2. This may induce unnegligible

errors in the simulations for TRIGA reactor. We, therefore, proposed parameterized

phonon spectra that can explore the effects of changing the spectra by varying the

parameters. For example, we can shift the phonon positions in the spectra. The ul-

timate goal of this type of work is to calibrate appropriate parameter sets to improve

the simulation accuracy via comparing the simulation results and experimental data.

In this thesis, a code has been developed to process the thermal scattering data for

transport codes to use. Inputs of the code is basically the proposed parameters. The

accuracy of the code processing Legendre moments of scatteirng were demonstrated.

NJOY and MCNP were used to carry out the data processing and neutronic

simulations, respectively. The phonon spectra were generated with the parameters

produced in Latin Hypercube sampling designs. Quantities, like reactivity (ρ), fission

rate density (FRD), neutron mean generation time (Λ), fuel temperature feedback

coefficient (αFuel
T ), effective delayed neutron fraction (βeff) and ex-core detector mate-

rial absorption rate (Rabs), were analyzed. Analyses indicate that ρ, Λ and αFuel
T are

sensitive to the variations of parameters. Explicit relationships were established for

those quantities and the parameters. However, FRD and Rabs is insensitive to any

parameters. βeff are sensitive to the parameterized models, however, no explicit

relationship could be built due to the unrecognized nonlinearities.

Ongoing work will perform these analyses for the state near critical. Furthermore,
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time-dependent behavior could be investigated and when combined with experimen-

tal data the reasonably accurate phonon spectrum models and therefore S(α, β)

tables for the TRIGA reactor at Texas A&M University would be produced.
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I. INTRODUCTION: THE IMPORTANCE OF THERMAL SCATTERING

FROM ZrHx

In TRIGA reactors, such as the Texas A&M University, Nuclear Science Cen-

ter reactor, U-ZrHx is used as the fuel material taking the advantage of the large

prompt negative temperature coefficient of reactivity and good moderation of the

hydrogenous solid.

In fast and epithermal ranges, the simple two-body scattering model is used for

hydrogen and zirconium. However, at thermal energy, things become complicated.

When the incident neutrons are thermal, energy of which is comparable with the

energy of bindings of the solid, the scattering is heavily affected by the binding

forces in the bound system of ZrHx , i.e. affected by the frequency distributions, also

called phonon spectra, of the solids.

For thermal neutrons, the double differential scattering cross section is given by

σ(E ′→E,Ω′ ·Ω) =
σb

4πkT

√

E

E ′
S(α, β), (1.1)

where E ′ and E are the incident and secondary neutron energies. The S(α, β) is

called the thermal scattering law. The definitions of α and β are:

α ≡ E + E ′ − 2µ
√
EE ′

AkT
and β ≡ E − E ′

kT
(1.2)

α and β are the momentum and energy transfer, respectively. A is the ratio of

scatterer mass to neutron mass. With the Gaussian approximation[2] the scattering
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law can be expressed as:

S(α, β) =
1

2π

∞
∫

−∞

eiβt̂e−γ(t̂)dt (1.3)

where t̂ is a non-dimensional time which is measured in the units of h̄/kT . γ(t̂) is

given by

γ(t̂) = α

∞
∫

−∞

ρ(β)

2β sinh(β/2)

[

1− e−iβt̂
]

e−β/2dβ (1.4)

where ρ(β) is the phonon spectrum of the bound system in terms of the energy

transfer. From Eq. 1 through Eq. 4, we notice that the phonon spectrum contains

all the information needed to calculate the scattering law, so as to calculate the

scattering cross sections. Therefore, specifying a phonon spectrum is, in some sense,

equivalent to specifying a scattering law, and then the scattering cross sections.

In practice, however, the phonon spectra cannot be exactly specificed due to the

uncertainty of solid structure.

Currently, the tabulated scattering law data of both H and Zr in ZrHx in ENDF

are calculated by using the phonon spectra developed by Slaggie (1968) based on the

central force model (CF) for ZrH2 [4]. In this model, ZrH2 is assumed to have the

face centred cubic (fcc) lattice structure (δ-phase), while for x around 2 the solid is

actually the pure face centred tetrangonal (fct) lattice structure (ǫ-phase) [8]. And

the lattice structure changes when x changes. One example is ZrH (x = 1) is a

mixture of α, δ and γ phase lattice. In a word, the lattice structure appears to

be dependent on the H concentration. Total cross section measurements reported

by Podewils, et al. lend support to this statement [7]. Double differential scattering

cross section measurements for multiple x values done by Couch, et al. also appears

to indicate the dependency. The phonon spectrum is said to be affected by the lattice
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structure type [4]. Therefore, for a real TRIGA reactor, with arbitrary x (less than

2), the phonon spectra must be different from the one from ENDF.

On one hand, the scattering law can be specified by specific phonon spectrum; on

the other hand, the thermal scattering cross sections, which would affect neutronic

simulations, is related directly with the scattering law. Hence the criticality should

be affected by varying the phonon spectra.

The facts above inspires one to develop parameterized phonon spectrum models

such that corresponding scattering laws could be applied in the simulations and the

explicit relationships between the parameters and quantities of interest (QOIs) in the

simulations could be establised such that uncertainties of QOIs due to the uncertainty

of the spectra would be quantified. This uncertainty quantification (UQ) research is

expected to help improve the accuracy of NSC reactor simulations.

Specifically, this thesis will illustrate the following work in this UQ study

1. The developed code to process the scattering cross sections with the parame-

terized phonon spectrum models and its verification;

2. The UQ study on the variations of QOIs due to the variations of the parameters

of the parameterized models based on semi-infinite lattice model of TRIGA

reactor;

3. The UQ study on the variations of QOIs due to the variations of the parameters

of the parameterized models based on full-core model of TRIGA reactor.

1.1 Parameterized Models of Phonon Spectra

Previous work studied the details of the phonon spectra of ZrHx. Here we give

a brief summary of the works on modeling spectra: Slaggie assumed a fcc model for

ZrH2 and derived phonon spectra, which are applied in ENDF, with the solid physics
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code GASKET [12, 6]. Mattes, et al. did new evaluations with the derivation of

Debye-plus-Gaussian phenominalogical model (DG) for H in ZrHx with the free-gas

treatment for Zr in ZrHx [8]. Malik, et al. derived a three-Gaussian model for the

optical part of the H spectrum for ZrH1.58 [7]. Evans, et al. derived the optical part

of the H spectrum in a reverse way by deriving from the measured scattering law [3].

The parameterized models in this thesis rose from Mattes, et al’s. work on tabu-

lating the scattering law with the DG model. The DG model, similar with CF model,

is based on the assumption that the molecule has a fixed phonon state. Nevertheless,

the DG model still has benefit of agreeing well with experiments despite its simple

form consisting of Debye and Gaussian distributions. This fact inspired us to develop

a similar parameterized mathematical model for the H part of the spectrum and use

simple parameterized curves that have similar shapes with the Zr spectrum in CF

model to represent our model for Zr in ZrHx. Eventually, a four-parameter model

for H and a three-parameter model for Zr in ZrHxwere developed.

1.2 Code-to-code Comparisons for the Code

There were two ways of carrying out the simulations: one way was to use our

code to generate multigroup Legendre moments of thermal scattering of ZrHx and

use PDT, the SN code developed at Texas A&M University, to take the neutronic

simulations; the other was to process data with NJOY and run the simulations

with MCNP. Though the latter one was eventually selected, the code generating

PDT-compatible data has already been developed. Therefore, we still presents its

verification in this thesis.

A key point of calculating the scattering law is how the integration in Eq. 3 is

resolved. Thus the phonon expansion was introduced [2]. The original intention of

developing the code was such that it could process multigroup thermal scattering
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data for transport code, to carry out the criticality calculations. Verification of the

code was performed by taking code-to-code comparisons with the THERMR module

of NJOY. Quantities, such as µ̄ and σ(E ′→E)were calculated with some common set

of parameters. The parameterized models demonstrate good agrement with NJOY

calculations.

1.3 Neutronics Simulations for Lattice Model

We eventually determined to use NJOY with MCNP to do the UQ research.

NJOY is capable of processing thermal scattering data compatible with MCNP. In

this thesis, several modules were invoked such that once the phonon spectra were pre-

pared for the LEAPR module in NJOY, continuous-energy (CE) thermal scattering

cross section data compatible with MCNP can be generated.

Parameters are given in some specific ranges. Some were suggested by previous

work [12], while some ranges were determined by numerical limitations. More de-

tails are discussed in Chapter. 3. The Latin Hypercube sampling was enagaged for

sampling the parameter sets. Each parameter was uniformly distributed in the cor-

responding interval. And then NJOY took those parameters and MCNP thereafter

archived CE data.

QOIs extracted from the lattice simulation was believed to tell one about the

efficacies of the methods and the sensivity of the QOIs to the parameters. In the

lattice simulations, the reactivity (ρ) of the lattice and the fission rate density (FRD)

were selected as QOIs.

We aimed to find the main factors based on our parameterized models. There

are several ways to archive the goals [11]. The analysis of variance (ANOVA) is

one of them. We used the ANOVA to determine the significance of each parameter

and regressions to establish simple explicit relatioinships between the QOIs and the
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pricipal factors indicated by the ANOVA. Cross validations were used to test if the

regression model were reasonable. Results from ANOVA show reactivity is sensitive

to two of the seven parameters while FRD is insensitive to any of the parameters;

cross validations show good agreement between the predictions from linear regression

and the simulation results for reactivity. While FRD behaves as a constants with

random noise.

The work in the lattice model simulations indicate the peasibility of the ANOVA-

regression-cross validation chain and inspired one to find more QOIs sensitivity to

the parameters in the full-core analyses.

1.4 Neutronics Simulations for Full-core Model

In Slaggie’s paper, the lattice dynamics simulations for ZrH2 show three peaks in

the optical part around 130 meV, 137 meV and 150 meV, respectively [12]. While

for our parameterized model, the optical peak position is centered at 137 meV with

a range of 5 meV. This indicate we would need to extend the range of the optical

peak position. Moreover, Badea shifted the optical part of CF model by ±10 meV

and observed large effects on the keff and dkeff
dT

[1]. Therefore we did the extension for

the optical peak position to [127, 147] meV.

We took over 5000 MCNP simulations for the full-core TRIGA model to archive

the QOIs: reactivity ρ, neutron mean generation time Λ, fuel temperature coefficient

αFuel
T and delayed neutron fraction β. Analyses show that ρ and Λ are sensitive to

some factors while the other two are insensitive to any parameter, even though β

varies from 0.0060 to about 0.01.

Moreover, 100 MCNP simulations were taken for tallying the absorption rate ex-

core detectors. Results did not indicate sensitivities to the parameterized phonon

spectra.
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1.5 Synopsis

This thesis begins with theory and algorithms to calculate the thermal scattering

cross section and the scattering law in Chapter 2. Chapter 3 presents the verification

for the code developed for processing thermal scattering cross section of ZrHx based

on the theory and algorithms provided in Chapter 2. Chapter 3 is the verification

for the developed code to process thermal scattering data of ZrHx. In Chapter 4 and

5 the analyses for the relationship between parameters and QOIs for lattice and full-

core TRIGA reactor model. Chapter 6 is the conclusions and indications for future

work.
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II. THEORY AND ALGORITHMS

In the bound system of ZrHx, two types of scattering are concerned at thermal

energies: incoherent inelastic scattering and incoherent elastic scattering. Coherent

scattering, an important phenomenon in crystalline solids (e.g. graphite) but not in

hydrogenous solids, e.g. ZrHx [6], is not included in this study.

2.1 Incoherent Inelastic Scattering

In Chapter 2, the connexion between the scattering law and the phonon spectrum

has been given. Define an intermediate function P (β).

P (β) =
ρ(β)

2β sinh(β/2)
, (2.1)

then Eq. 1.4 can be rewritten as:

γ(t) = α

∞
∫

−∞

dβ P (β)
[

1− e−iβt
]

e−β/2 (2.2)

Actually, there are some constraints for the spectrum:

∞
∫

0

ρ(β)dβ = 1, ρ(β) = ρ(−β), and lim
β→0

ρ(β) = βζ, (2.3)

with ζ = 2 [8]. The first constraint is to keep the spectrum normalised; the last

constraint is made to guarantee the existence of the limit lim
β→0

P (β) such that the

integral in Eq. 1.4 holds. In this work an extention has been made such that ζ can

be larger than 2 for Zr part. In Mattes’s evaluation, Zr in ZrHx is treated as free

8



gas [8], the free-gas approximation is given by:

S(α, β) =
1√
4πα

exp

[

−(α + β)2

4α

]

(2.4)

In order to simplify the Fourier transform in Eq. 4, the “Phonon expansion” is

introduced as illustrated in Eq. 2.5. The key is to expand the exponential term with:

eγ(t) = e−αλ
∞
∑

n=0

1

n!
[γ(t)]n, (2.5)

where λ is the Debye-Waller integral and is presented as:

λ =

∞
∫

−∞

P (β)dβ. (2.6)

Then the scattering law can be rewritten as:

S(α, β) = e−αλ
∞
∑

n=0

1

n!
αn 1

2π

∞
∫

−∞

eiβtγ(t)ndt (2.7)

Define the Fourier transform term to be λnTn(β) and rewrite the equation above as:

S(α, β) = e−αλ

∞
∑

n=0

1

n!
αnλnTn(β) (2.8)

where

T0(β) =
1

2π

∞
∫

−∞

eiβtdt = δ(β) (2.9)

and

T1(β) =

∞
∫

−∞

eiβt
γ(t)

λ
dβ =

ρ(β)e−β/2

2λβ sinh(β/2)
=

P (β)e−β/2

λ
(2.10)
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In order to calculate higher-order Tn(β), the convolution is used:

Tn(β) = T1(β) ∗ Tn−1(β) =

∞
∫

−∞

T1(β
′)Tn−1(β − β ′)dβ ′. (2.11)

Given β grids, the Tn(β) functions are computed for n up to a maximum number,

typically 100 [6]. And when tabulating the scattering law, the zero-phonon term, the

delta function, should be carried out seperately. Physically, this term is accounting

for the incoherent elastic scattering, which will be introduced in the following section.

For thermal neutrons with relatively high energy, e.g. several eV, thermal effects

would not be ignored. However, for neutrons with such high energy, the maximum

order truncating the series in Eq. 2.5 needs to be large to keep the accuracy [6]. In

the LEAPR module in NJOY, the short-collision-time approximation (SCT) is used

instead. It is given by

S(α, β) =
1

4παT̄/T
exp

[

−(α + β)2

αT̄/T

]

(2.12)

where T̄ is the effective temperature and is given by

T̄ =
T

2π

∞
∫

−∞

β2P (β)e−βdβ (2.13)

2.2 Incoherent Elastic Scattering

With the zero-phonon term in the phonon expansion, the double differential scat-

tering cross section of the incoherent elastic scattering can be expressed as:

σ(E ′→E,Ω′ ·Ω) =
σb

4πkT

√

E

E ′
δ(β) (2.14)
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And then it is straightforward to derive the differential scattering cross section

σiel(E ′,Ω′ ·Ω) =
σb

4π
e−2WE′(1−µ), (2.15)

where W is the Debye-Waller coefficient and is given by

W =
λ

AkT
(2.16)

And the total scattering cross section would be

σiel(E) =
σb

2

1− e−4WE

2WE
. (2.17)

2.3 Quantities for Verifications

In the following chapter, some quantities are calculated by our code and used to

compare with NJOY. They include σ(E ′→E) (with units of b/meV), µ̄, S(α, β), etc.

It is direct to calculate σ(E ′→E) from σ(E ′→E,Ω′ ·Ω) via integrating over

directions.

σ(E ′→E) =

2π
∫

0

dγ

1
∫

−1

dµ σ(E ′→E,Ω′ ·Ω) (2.18)

In the calculation of µ̄, the scattering cross sections are used as weighting func-

tions as follow:

µ̄ =

Eth
∫

0

dE
1
∫

−1

dµ µσ(E ′→E,Ω′ ·Ω)

Eth
∫

0

dE
1
∫

−1

dµ σ(E ′→E,Ω′ ·Ω)

(2.19)

The multigroup Legendre moments are also used in the code-to-code comparisons.
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The moments are given by:

σl,g′→g =

∫

g′
dE ′fl(E

′)
∫

g

dE σl(E
′ → E)

∫

g′
dE ′fl(E ′)

∫

g

dE
, (2.20)

where

σl(E
′ → E) =

2π
∫

0

dγ

1
∫

−1

dµPl(µ)σ(E
′→E,Ω′ ·Ω). (2.21)

l is the order of the moment, fl(E) is the weighting function, g′ and g are the

group numbers of incident and outgoing neutrons, respectively, and Pl(µ) is the

zonal Legendre polynomial. Actually, for TRIGA reactors, the weighting function

can simply be Maxwellian spectrum and this should not introduce much error if

subgroups are fine enough when doing the group collapse:

fl(E) =
E

(kT )2
exp

(

− E

kT

)

. (2.22)

With this simple weighting function, fortunately, an analytical benchmark for testing

the code could be generated.

2.4 Phonon Spectra

In this thesis, parameterized phonon spectra were constructed by some simple

math functions with seven adjustable parameters.

The fact that the DG model agreeing well with experiments inspired us to build

the parameterized model for H in ZrHx based on it.

For H, we modified the acoustic part of the DG model of H such that the shape

of that part is more like the one from CF model. In this tiny bit modification,

the magnitude of the acoustic Debye distribution is lowered to the half and mirrored
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about the Debye temperature such that it looks more like the CF model, from lattice

dynamics calculation, and simulataneously keeps the same branching ratio of the

acoustic part as the value suggested by Mattes [8]. And that is the reason of the

existence of two quadratic equations in Eq. 2.23.

For Zr, Slaggies suggested a Debye distribution with the Debye temperature of

20 meV as the simplification of the CF model [12]. Mattes, et al. proposed to use the

free-gas treatment [8]. In order to make the new spectrum flexible, wo use neither

the free-gas model, nor the Debye distribution. Instead, some modifications were

done to Slaggie’s Debye distribution. We still keep the power function shape on the

left of the Debye temperature, while the power is changed from 2 to a variable larger

than 2. This does not break the constraint mentioned in Eq. 2.3. On the right part,

we expected a function attenuating with a limit of zero when the energy transfer, β,

increases. Then we came up with the exponential function, shown in Eq. 2.24, due

to its fast attenuation and integrability.

Figure 2.1 shows the reference phonon spectra for H and Zr[8, 6]. Note that, in

this thesis, IKE and ENDF stand for different libraries. When they appear in this

thesis, they represent the DG model and CF model, respectively.
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Figure 2.1: Reference spectra for Zr and H in ZrHx.
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For H, the model is:

ρ(ω)H =























































3b

2T 3
DH

ω2 ω < TDH

3b

2T 3
DH

(ω − 2TDH)
2 TDH ≤ ω ≤ 2TDH

c(b)√
2πσ

exp

[

−(ω − p)2

2σ2

]

2TDH ≤ ω ≤ ωmax,H.

(2.23)

For Zr, the spectrum is given by:

ρ(ω)Zr =































r(1 + c)

T 1+c
DZr

ωc ω < TDZr

(1 + c)r

TDZr
exp

[

(1 + c)r

1− r

(

1− ω

TDZr

)]

TDZr ≤ ω ≤ ωmax,Zr.

(2.24)

In Eq. 2.23, b is the branching ratio of the acoustic part; TDH is the Debye

temperature of H in ZrHx; p is the peak position of the optical part of the spectrum,

which is also the mean of the Gaussian distribution, the optical part; σ, which

is calculated from the given FWHM of the optical part, is the standard deviation

of the Gaussian distribution. Figure 2.2 and Figure 2.3 are examples of how the

parameterized models of H and Zr in ZrHx behave by varying parameters. In these

figures, the “Case” numbers are the ordering numbers in the 3000-set LHS design.
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In Eq. 2.24, TDZr is the peak position of the Zr spectrum; c is the power of ω

for the left side of the peak; r is the ratio of the left part of the peak to the whole

spectrum. Overall, in the parameterized model of spectra of ZrHx ,there are seven

parameters: b, TDH, p, FWHM, TDZr, c and r.

For the H part, in the DGmodel, Mattes suggested that b, TDH, p and FWHM take

1/241, 20 meV, 137 meV and 28 meV, respectively. Supported by Evans, et al.’s work

that for different type of ZrHx solids the spectra change, ranges of [16, 24]meV and

[25, 31]meV were set for TDH and FWHM, respectively. Slaggie’s lattice dynamics

simulation results for ZrH2 suggested a range of [1/361, 1/91] for b. The range of
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p was originally set as [132, 142] meV for the TRIGA fuel lattice simulations, and

was enlarged to [127, 147] meV inspired by Slaggie’s and Badea’s work [1, 12].

For the Zr part, the ranges of r, c and TDZr were set as [0.4, 0.8], [2, 2.8] and

[16, 24]meV, respectively. Theoretically, the limit of r, which is 1, is the situation

suggested by Slaggie’s simple Debye distribution, whatever c is if the Debye temper-

ature is set as 20 meV. However, when implementing the model on MATLAB, there

are numerical limitations around 0.8 for r and 2.8 for c such that the Debye-Waller

integral in Eq. 2.6 could not be resolved if corresponding parameters are beyond

those limitations. And the lower bound of c is simply the constraint mentioned in

Eq. 2.3. Figure 2.4 presents ρ(β) vs. β and P (β) vs. β when c = 2.8 and r = 0.8. It

can be seen that the right part of the Debye temperature is sharp. Actually, it was

sharp enough to make the integrators fail. Moreover, these two parameters were

proposed not because there are some physical bases behind them, but we aimed

to make the spectrum resonably flexible and able to mimic the spectrum of Zr in

ZrHx in some senses.
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III. CODE TO CODE COMPARISON

We have developed a code to process thermal scattering cross sections for ZrHx, as

a function of the parametersmentioned in the previous chapter. This will be used in

simulations of time dependent behavior of the core using PDT in the future.

3.1 The Code and Choice of the Parameters

The code is currently built on MATLAB platform with parallel capability (using

matlabpool). As originally expected, it was built such that only seven parameters

are needed to take the cross section processing. The code consists of several modules

accounting from generating phonon spectra through calculating thermal multigroup

scattering Legendre moments.

For H, with a common set of parameters, some quantities were calculated using

our code for testing purposes. The parameters for H are from the values based on

Mattes, et al. [8]. The parameters for Zr, unfortunately, do not have such reference.

In this chapter, the Zr parameters were selected randomly from a LHS design based

on the ranges for c, r and TDZr. This selection has the c of 2.014, r of 0.646 and TDZr

of 17 meV.

Simultaneously, NJOY was used to carry out the same tasks with ENDF scatter-

ing law data generated from Slaggie’s CF model as comparisons.

3.2 Testing Quantities and Results

3.2.1 Testing Quantities

For the purpose of testing both the parameterized models and the code itself,

some quantities were selected and calculated by both the code and NJOY.

Since the topic of the thesis is about the scattering law, it is necessary to see how
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the S(α, β) behaves compared with the reference, i.e. ENDF-VII. The scattering law

could directly indicate if the code works well and the spectra model is reasonable

since one could notice the one-to-one correspondence between the S(α, β) and the

phonon spectrum.

One might be interested in checking the cross sections. They seems more obvi-

ous and easier than the scattering law for us to compare with the reference. The

THERMR module in NJOY can generate differential inelastic scattering cross sec-

tions, σ(E ′→E). Both the Zr and H cross sections were then investigated.

We also checked the average cosine of the scattering angle, µ̄, which is a measure

of anisotropy of scattering. Since the µ̄ is calculated with the weighting function of

σ(E ′, Ω′ ·Ω), i.e. µ̄ depends on σ(E ′, Ω′ ·Ω), as illustrated in Eq. 2.19, it became

a testing case for the scattering cross section.

Continuos energy cross sections are comparable with the reference. A natural

question, thereafter, is how about multigroup cross section? The set of parameters

given at the beginning of this chapter was used to take the comparisons. More-

over, the cross sections of the ZrHx, in NSC reactor at TAMU, were calculated with

parameters sampled in an LHS design and the ENDF data.

3.2.2 Results and Discussions

S(α, β), the scattering law

The tabulated scattering laws for some specific α are compared in Figure 3.1

for H in ZrHx. The results between the parameterized model and ENDF model

are comparable. Note that the “symmetric” in the figure labels means S(α, β) is

symmetric about α axis on the α-β plane.
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Figure 3.1: S(α, β) for specific β for H in ZrHx
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For Zr, the scattering laws are shown in Figure 3.2. The laws are also compara-

ble when β is not very large, while they have several orders of differences when β

increases.

However, we observe that S(α, β) of Zr in ZrHx is almost negligible, where large

difference appears between the reference and the code results, compared with S(α, β)

of H with the same (α,β). The scattering law is weighted by the bound cross sections,

σb, of Zr and H in ZrHx the σH
b is more than 10 times larger than σZr

b , thus the

difference would not cause noticeable errors if we combine the scattering laws to

formulate the law for molecule ZrHx as shown in Eq. 3.3:

S(α, β)ZrHx =
σZr
b

σZrHx

b

S(α, β)Zr +
xσH

b

σZrHx

b

S(α, β)H, (3.1)

where the σZrHx

b is given by:

σZrHx

b = σZr
b + xσH

b . (3.2)

For H-1, σH
b is around 80 b, while σZr

b is around 6.5 b. Take an example for ZrH

( x = 1 ), the combined scattering law for the molecule is:

S(α, β)ZrH = 0.075S(α, β)Zr + 0.925S(α, β)H, (3.3)

where the weight for H law is more than 0.9. Moreover, with the increase of the H

ratio, the weight of H will increase accordingly until 0.96 for ZrH2. Thus the Zr law

would not bring much error for the combined scattering law and equivalently the

molecular scattering cross sections.
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Figure 3.2: S(α, β) for specific β for Zr in ZrHx
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σ(E ′→E), the differential scattering cross section

The σ(E ′→E) with incident energy values of 10−5, 0.62493 eV and 0.9507 eV

for H and Zr are shown in Figure 3.3. and Figure 3.4, respectively. The selected

energy points stand for extremely small energy1, median energy and large energy,

respectively. Note that for median and large incident energy, the code with our

model presents similar results with NJOY for both H and Zr. Some differences

still occur to the “main peaks” referred to peaks with largest magnitudes. The

code gives smooth cross section curves while curves from NJOY are serrated around

the main peaks. There are some subpeaks around 137meV in CF model while

our parameterized models are composed of smooth curves. This may explain this

difference of smoothness. Another difference is the “phase-shifting”. Though the

curves have similar shapes, the peak positions are different. Actually, the shifting

could be offset by adjusting the optical peak position to 138.5meV.

For the very small incident energy, 10−5 eV, however, the parameterized model

results differ much from the ENDF results. Observations are the large magnitude

difference of the first peak for H as illustrated in Figure 3.3 and the absence of the

peak around 0.03 eV for Zr as shown in Figure 3.4. For the H case, the first peak is

the main peak accounted by the optical phonon. We simplified the optical part to

a single Gaussian distribution with skipping the fine structures in CF model. This

might explain this difference. For the Zr case, we ignored the optical phonon of Zr

in ZrHx for simplicity. Slaggie even proposed a Debye distribution with the peak

locating at 20 meV. This simplification totally abandon the details for spectrum

beyond the Debye temperature and results show that this simplification would not

cause noticable errors [12].

110−5 eV is the lower bound of the thermal range in this thesis.
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µ̄, the average cosine of scattering angle

µ̄ is calculated with the weighting function of the scattering cross sections, as

illustrated by Eq. 2.19. Therefore, the µ̄ should be a good indicator of the weighting

functions, σ(E ′,Ω′ ·Ω). If the weighting function is not close to the reference results,

i.e. ENDF-VII, the µ̄ should not be similar with what NJOY presents with CF model.

An example of ZrH1.84 was taken referred to the testing cases used by Mattes [8].

Both the cases without and with elastic scattering cross section were investigated as

illustrated in Figure 3.5 and Figure 3.6, respectively. The dots in the figures stand

for ENDF data processed by NJOY. Good agreement is shown the parameterized

model processed by our code and ENDF data processed by NJOY.
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Figure 3.5: µ̄ for ZrH1.84, weighted with the inelastic scattering only
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Figure 3.6: µ̄ for ZrH1.84, weighted with both the inelastic and elastic scattering

Multigroup Legendre moments of thermal scattering

One purpose of implementing group collapse is such that deterministic transport

codes could use it with suitable formats. Via comparing the multigroup constants

calculated from the code with the references, on one hand, one could know if the

parameterized phonon spectra work; on the other hand, one can know if the integrals

involved in the group collapse are correctly done.

The group structure is listed in Table 3.1. For energy lower than 1.13 eV, the

Maxwell distribution shown in Eq. 2.22; beyond this energy, the weighting function

changes to the 1/E spectrum.
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Table 3.1: Thermal group stucture used in multigroup constants processing, with
forward ordering. The lower boundary of Group 1 is 10−5 eV

Group No. 1 2 3 4

Group upper boundaries (eV) 0.0071453 0.029299 0.047302 0.089797

Group No. 5 6 7 8

Group upper boundaries (eV) 0.20961 0.30501 0.39 0.72

Group No. 9 10 11 12

Group upper boundaries (eV) 1.13 1.293 1.6689 2.884

Figure 3.7 and Figure 3.8 are the comparisons for group constants. The results

of H from the parameterized model is almost the same as ENDF-VII, while the

differences for the Zr constants are noticeble, but they are still within 10%.

Figure 3.9 shows the ZrH1.5229, referred to the composition of ZrHx of NSC reactor

at TAMU [10]. We did an LHS design for sampling the parameters within the ranges

described previously. The number of the parameter sets are 3000. The numbers

in the legend in Figure 3.9 are the number of ordering of the parameter sets. And

the multiple lines are generated with parameter sets listed in the legend. One can

observe that the data from the parameterized model data vary around the reference.

This demonstrates the validity of the parameterized models.
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Figure 3.7: Multigroup thermal scattering constants for H in ZrHx.

31



10
−4

10
−2

10
0

0

2

4

6

E
i
 / eV

σ s,
 g

in
el

as
tic

 / 
ba

rn
s

 

 
Parameterized model w/ MATLAB
CF model w/ NJOY

10
−4

10
−2

10
0

0

2

4

6

8

E
i
 / eV

σ s,
 g

el
as

tic
 / 

ba
rn

s

10
−4

10
−2

10
0

5.5

6

6.5

7

E
i
 / eV

σ s,
 g

to
ta

l  / 
ba

rn
s

Figure 3.8: Multigroup thermal scattering constants for Zr in ZrHx.
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Figure 3.9: Multigroup thermal scattering constants2 for ZrH1.5229

Above all, the multigroup constants match the reference well.

Analytical benchmark for the 0th and 1st Legendre moments of elastic scattering

Fortunately, we are able to find analytical benchmarks in some special cases.

With the weighting function of the Maxwell spectrum, as given by Eq. 2.22, and

given Debye-Waller coefficient, as illustrated by Eq. 2.16, one would be able to solve

for the 0th and 1st Legendre moments of elastic scattering, σiel
0, g→g, analytically with

equations from Eq. 2.17 through Eq. 2.21.

In this test, we aimed to see the accuracy of the integrators employed to do the

group collapse in our code. The Debye-Waller coefficients W , given in Eq. 2.16, of

both Zr and H in ZrH (i.e. ZrHx with x = 1),from ENDF-VII were used in the test.
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The Maxwell spectrum was used as the weighting function for energy lower than

1.13 eV, i.e. Group 1 through 9. And NJOY was involved with the same W as a

comparison. Results and corresponding numerical errors for 0th and 1st are listed in

Table 3.2 and Table 3.3, respectively.

Table 3.2: Analytical benchmark tests for σiel
0, g→g

0th order Legendre moments

Group No. Analytic/b Our code/b errors / % NJOY/b errors / %

1 80.0461 80.0431 0.0037 79.741 0.3812

2 65.4224 65.4126 0.0149 64.6717 1.1475

3 50.8769 50.8704 0.0129 50.331 1.073

4 36.868 36.8472 0.0564 35.3481 4.1227

5 23.1116 23.086 0.1107 20.0264 13.3491

6 12.513 12.507 0.0479 11.57 7.536

7 9.151 9.1487 0.0251 8.7832 4.0196

8 7.5042 7.5074 0.0431 5.7816 22.9553

9 3.8984 3.8983 0.0017 3.5992 7.6759

It can be observed that our code agrees better to the analytical solutions than NJOY

does for both the 0th and 1st orders.
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Table 3.3: Analytical benchmark tests for σiel
1, g→g

1st order Legendre moments

Group No. Analytic/b Our code/b errors / % NJOY/b errors / %

1 2.6989 2.6997 0.0283 2.7436 1.654

2 6.8087 6.8111 0.0354 6.9598 2.2189

3 10.0231 10.0242 0.0114 10.0898 0.6655

4 11.6673 11.6683 0.0089 11.7201 0.4531

5 11.1728 11.1682 0.0408 10.5212 5.832

6 8.2819 8.2793 0.0304 7.8643 5.0422

7 6.6869 6.6857 0.0177 6.4935 2.8929

8 5.7721 5.775 0.0511 4.688 18.7813

9 3.3994 3.3995 0.0014 3.1723 6.6813
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IV. SIMULATIONS AND ANALYSES FOR SINGLE LATTICE

We chose the NJOY-MCNP chain for the UQ study. Though MCNP can be

time-consuming and suffer from slow convergence and computational expensiveness,

it has been demonstrated to model neutron transport accurately and realistically.

Additionally, NJOY is able to process MCNP-compatible scattering cross sections,

given phonon spectra, for both Zr and H within minutes.

The objective of the thesis is to quantify the uncertainties of the QOIs in TRIGA

reactor simulations due to the uncertainty of the phonon spectra of the ZrHx characterized

by seven parameters. Before simulating the full-core TRIGA model, a single lattice

model was investigated. The single lattice simulation has the advantage of structural

simplicity and relatively short time per simulation. The purpose of simulating the

single lattice model in this thesis are as follows

1. Test the feasibility of the methods as planned for this UQ study.

2. Find possible QOIs sensitive to the variation of the phonon spectra.

3. Determine which parameters these QOIs are sensitive to.

Techniques involved in the analysis part are LHS, ANOVA and regression. LHS

samples parameters uniformly in corresponding intervals of parameters; the ANOVA

is able to give the relative importance of factors to the QOIs; according to the

ANOVA results, important factors are engaged in the regressions. The input pa-

rameters for the regressions are in standardized forms such that the absolute values

of the coefficients also indicate the importance of parameters as the ANOVA does,

i.e. it provides the comparability of different parameters on a dimensionless scale.
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The reactivity, ρ and the fission rate density, FRD, were selected as QOIs in the

lattice model simulations. It is reasonable to hypothesize these two quantities are

sensitive to the phonon spectrum variations. Since the phonon spectrum variations

induce the variation of the thermal scattering cross section, as shown in Figure 3.9,

the moderation, upscattering, etc. would change, which would affect and reactivity

and the FRD.

4.1 Calculation Flow and Simulation Model Description

4.1.1 Calculation Flow

The calculation process shown in Table 4.1 involves several modules of NJOY:

LEAPR, RECONR, BROADR, THERMR and ACER. If we skip the intermediate

steps, the process is like a black-box process: given input, output QOIs. And the

flow table is exactly the same for the full-core case except the different MCNP decks.
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Table 4.1: Calculations flow

Step No. Codes/techniques and corresponding

work

1. Sample the parameters by the LHS

technique;

2. Generate the parameterized phonon

spectra with the sampled parameter

sets;

3. Invoke the LEAPR module of NJOY to

tabulate the scattering law;

4. Invoke the RECONR and BROADR

modules of NJOY to prepare the Point-

wise ENDF data (PENDF);

5. Invoke the THERMR module of NJOY

to process thermal scattering cross sec-

tions;

6. Invoke the ACER module of NJOY

to transfer the data to the MCNP-

compatible ACE format; reinvoke

ACER to check the fatal errors, such

as nagative probability;

7. Run MCNP with thermal treatment us-

ing the data generated in Step 6;

8. Extract and process the QOIs and do

the analyses.
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4.1.2 Lattice Model Description

The MCNP deck for single lattice of TRIGA reactor was built. On the top of

the fuel pin, there is the moderator, light water, with a depth of 110.95cm. Instead

of full-pin model, the 1/16-lattice model was used as illustrated in Figure 4.1. The

three vertical surfaces and the axial cross section are set to be reflective such that

the model is actually an semi-infinite model.

Figure 4.1: TRIGA lattice model

The fuel material is U-ZrHxwith the x of 1.5229 and U-235 enrichment of 19.75 [10]. The

central part of the fuel rod is made of zirconium. The axial reflector is made of

graphite.

In the control cards of the MCNP deck, the kcode card is filled as:

kcode 50000 1 30 260
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50000 means the total number of neutrons tracked in a cycle is 50000; 1 is the initial

guess for keff ; 30 is the number of cycles which are ignored at the beginning; 260 is

the total number of cycles run in the criticality calculations. Thus, there are 1.3×107

neutrons in total, which lead to the standard deviations of keff around 21 pcm1 for

each simulation.

The LHS design function in MATLAB ( Function lhsdesign) was induced to gen-

erate 3000 sets of parameters, within the ranges discussed previously, to produce

correponding parameterized phonon spectra for H and Zr ZrHx. No option was spec-

ified for the MATLAB function. We determined to choose the sample size of 3000

is because we expected a large size of the simulations to make the statistical models

based on the simulation results more accurate and simultaneously these simulations

could be done in limited time.

4.2 Results, Observations and Analyses

4.2.1 Standardized Parameters

Denote FWHM, b, p, TDH, TDZr, r and c by P1 through P7, respectively. And

the means and standard deviations for corresponding parameters generated in LHS

process by µi and σi (i = 1, · · · , 7). And denote the standardized forms of Pi by Xi,

i = 1, · · · , 7. Then the standardized parameters can be given by

Xi =
Pi − µi

σi

. (4.1)

4.2.2 N-way ANOVA

ANOVA is the abbreviation of “Analysis of Variance”, which is a collection of

statistical tests for heterogeneity of means of experiment outcomes by analysis of

11 pcm= 1× 10−5.
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group variance [14]. It attempts to analyzes the variations of the responses to each

variable in a set of independent variables [13]. Through the ANOVA procedure, one

would archive information such as: degree of freedom of each variable (DF), sum of

squares (SS), mean squares, F-test statistic and p-value. [5] The objective is to use

the information above to identify the important variables and corresponding effects

to the responses [13].

N-way ANOVA is the ANOVA for testing the effects of multiple factors on the

mean of the experiment outcomes [15]. In the outcome of n-way anova, one could

discriminate the important factors (may include interactions) from unimportant

ones[11]. The ANOVA tables for ρ and FRD in this chapter are given and put

in Appendix A. The criteria choosing the principal factors, including interactions

and high order terms are based on the ANOVA table. The MeanSq is the mean

sum of squares (MS). It measures the importance of the factors to the experiment

outcomes[11]. And the F value is the ratio of explainable variances (theory) to un-

explainable variance (error). It tells if the factors and the QOIs are correlated. And

p-value is also an important criteria especially when the mean squared sum (MSS) do

not dominate over the mean squared errors (MSE) much. In this thesis, we rejected

the null-hypothesis with p-value of 0.05. The ANOVA tables in Appendix A show

that X2 (standardized branching ration, b, of the acoustic phonon for H in ZrHx) and

X3 (the standardized peak position, p, of the optical phonon for H in ZrHx) might

be the most important two parameters for QOIs in this chapter.

4.2.3 Cross Validations with Regressions

Based on our findings from ANOVA, we built regression models and then per-

formed cross validations to confirm the validity of the models. In corss-validations,

we separate the set of input samples and their corresponding outputs into a training
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and a test sets. The training set is used to create regression models, and then using

these models we predict outputs for the test set. Using the error between the outputs

predicted from the model and the actual outputs in the test set, we can select models

based on accuracy and parsimony.

We trained the data for both reactivity and FRD. And there is the test part

corresponding to the training part. In this thesis, the ratios of the numbers of

samples in the training sets to the test sets in cross-validations are set to be 0.8.

Therefore, for the study based on the TRIGA lattice geometry, there are 2400 cases

for the training set and 600 cases for the test set.

One fact is that ANOVA though indicates the significance of each factor, including

interactive terms and high order terms, may not truly reveal whether the QOIs are

sensitive to the factors. This is the reason that we made the cross validations follow

the ANOVA. We aimed to test the sensitivities of QOIs indicated by ANOVA via

using cross validations.

Basically, those QOIs, e.g. reactivity, Λ ( which will be introduced in the next

chapter ), etc., which pass the sensitivity tests with cross validations, will be des-

ignated to calibrate the proposed parameters, especially to calibrate the principal

parameters
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Figure 4.2: Cross validations for ρ

For ρ , the testing plot are shown in Figure 4.2. The upper figure regressed with
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all the the significant factors indicated by the ANOVA table Table A.1. The lower

plot regressed with only the factors containing X2 and X3. The regression coefficients

are listed in Tables in Appendix A. For the simple model, which we called main-factor

model (recall that X2 (standardized branching ratio of H acoustic phonon) and X3

(standardized H optical phonon peak position) are the main factors in this thesis.).

The main-factor model is shown in Eq. 4.2.

ρ =32.564 + 2.5339× 10−2X2 − 2.1105× 10−2X3

− 1.8799× 10−3X2X3 + 5.2404× 10−3X2
3 − 4.3131× 10−3X2

3

(4.2)

The R2 is 0.687. The regression coefficients have different magnitudes. One might

find that the factors having coefficients with larger magnitudes in the regression

also have higher significance indicated in ANOVA tables. Actually, this observation

demonstrates that regressions for standardized factors is an alternative effective way

to determine the importance of factors [11].

For FRD, the testing plot is shown in Figure 4.3. The important factors indicated

by Table A.5 are only X2 and X3, which are also the main factors. The main-factor

model is given by

FRD = 4.2117 + 4.2499× 10−4X2 − 4.4680× 10−4. (4.3)

The R2 is 0.0944.
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Figure 4.3: Cross validations for FRD

4.2.4 Comparisons of Parameterized Spectra with IKE and ENDF Models

Chapter 3 presents some comparisons between the phonon spectra hypothesized

in this thesis and other published results. The results show the hypothesis for the

parameterized models are reasonable. Ultimately, we would like to compare our

model to published models on real QOIs.

The parameterized spectra are expected to give results close to the references for

some values of the parameters. In other words, we expect the reference results will

be surrounded by QOIs from the parameterized models within the ρ-FRD plane.

QOIs are ρ and FRD for the lattice model. Scatterplots for QOIs from the

parameterized models postulated in this thesis and the references, i.e. IKE with the

DG and ENDF with the CF models, are shown in Figure 4.4. The reference points
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are within the QOIs from our models. This lends support to the parameterized

phonon spectrum models.
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Figure 4.4: Scatterplots on the QOI plane

One would have observed that the locations of the two references are different.

The scatterplot indicate distinct ρ and FRD for them. Since different points are

generated with different sets of parameters, this might indicate that if one want to

archive similar results to the two references with the parameterized models, ethe

parameter choices must be different.

4.2.5 Score Estimation and Parameter Dependency

We developped the parameterized models and we aim to calibrate proper param-

eter sets for the TRIGA reactor at TAMU. For the calibration, we “score” how close

a particular QOI is to the target or reference QOI.
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Results from MCNP simulations are given in distribution forms: mean values

with standard deviations. Thus we defined the score to refer to the overlapped area

between the QOI distributions from the parameterized models and the reference

results. These reference results are the examples of calibrations. These references

play the role of experimental results. The aim is to test the feasibility of implementing

calibrations once we have some experimental QOIs.

And the derivation for the calculation of the score is attached in Appendix C. The

original expectation was that the high scores distribute in some specific regions in

the seven dimensional parameter space. And the preference of the parameter ranges

are the calibrated results for specific QOIs. Once several calibrations for different

sensitive QOIs are done, the high score region is expected to narrow down.

Based on cross validation results, the branching ratio of acoustic mode to optical

mode in H and optical peak position in H spectrum are the most important two

factors. We then plotted the score for each QOI on the main-factor plane, i.e. the

X2-X3 plane (X2 and X3 are the standardized forms of the two factors mentioned

above, respectively.), such that the “spatial” distributions would indicate what the

dependencies of each QOI on the main factors are, as shown in Figure 4.5 and

Figure 4.6.
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Figure 4.5: Score distributions for ρ on main-factor plane
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One may have noticed that, for ρ, the scores in the two reference cases have

different distributions on the main-factor plane, which is somewhat consistent with

the situation shown in Figure 4.4. And it also reflects the sensitivity of ρ to the main

factors: reactivity varies when main factors vary.

Another observation is that for scores of ρ in different cases, the high score regions

forms bands within different different ranges of the main factors. This would indicate

for specific QOIs, the scores for the references, e.g. QOIs from experiments, could be

specify if the QOI investigated is sensitive to the parameters. More importantly, if

several different QOIs are sensitive to the parameters, the overlapped high score re-

gions for different QOIs would be very fine such that one might be able to specify the

choice of parameters to generate parameterized phonon spectra, or equivalently the

scattering laws, which make the reactor simulation results close to the reference(s).

If the reference is accurate, the parameterized models would be close to the realistic

ones. This is also known as calibration mentioned in previous sections, where one

uses measured QOIs to constrain uncertain parameters.
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Figure 4.6: Score distributions for FRD on main-factor plane
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The scores for FRD in both IKE and ENDF cases indicates the insensitivity of

FRD to the main factors. The scores are high everywhere in both cases, which can be

interpreted as FRD stays as a constant whatever factor values are. This observation

is consistent with what we have noticed from the cross-validations.

4.3 Directions for Full-core Model Analyses

Methods used in this chapter, including ANOVA, cross validation, score estima-

tion reveals the sensitivity of ρ to the parameters. This would indicate the feasibility

of the analysis methods in the following full-core analyses. The insensitivity of the

FRD implies that some QOIs may not be sensitive to the thermal scattering law, or

equivalently, the phonon spectrum.
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V. SIMULATIONS AND ANALYSES FOR FULL-CORE TRIGA MODEL

As implied by the results for the lattice model, the ANOVA-cross validation

strategy with estimating score distributions is effective in this UQ study. In this

chapter, these techniques are extended to apply in the full-core model analyses. The

calculation flow is still shown in Table 4.1, propagated from the LHS for parameters

to data processing and finally to QOIs. Moreover, we considered more QOIs than

we used previously. Similar to the lattice-model results, some QOIs show sensitivity

while some do not.

An extension of optical phonon peak position of H in ZrHx p from [132, 142]meV

was implemented to the range of [137, 147] meV [12].

Moreover, ex-core detectors were added and the absorption rates were investi-

gated with 100 more MCNP simulations. The results indicate that the absorption

rate would not be insensitive to the parameters.

5.1 Simulation Model and QOIs Description

5.1.1 MCNP Settings

The full-core geometry used in our simulations is presented in Figure 5.1 [10]. There

are four regular control rods (dark orange), a transient rod (white) and a shim safety

rod (light pink). The blue rods are fuel rods. Around the core, there are graphite

blocks (yellow) and water (cyan). The position adjustment of the rod is based on

the a standard configuration for control rod worth measurement at NSC, TAMU.

The configuration for each control rod is such that the reactor stays subcritical. The

temperature is set at 300K. The fuel rods are the exactly the same as the one in

Chapter 4. In order to archive reasonably small errors, the total number of neutrons

was set to be large in the MCNP deck. The kcode card in the control cards is:
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kcode 90000 1 30 500,

which means we have 90000 tracked neutrons per cycle with a total cycle of 500, which

makes there be 4.5 × 107 neutrons in total per simulation. With this configuration,

the standard deviation of keff reduced to 13 pcm.

In the LHS design, we generated 2100 sets of parameters and produced 2100 data

files for each atom in ZrHx at 300 K and 400 K, respectively ( Thus it is 8400 thermal

neutron scattering data files in total.). And we then run 6300 MCNP cases in total

(2100 were for MCNP decks with delayed neutron accounted at 300 K, 2100 were for

decks without delayed neutrons accounted at 300 K and the rest 2100 cases were for

decks at 400 K with delayed neutrons accounted.). Unfortunately, about 10% decks

failed with misoperations. After all, we archived 1982 cases for ρ and Λ investigations,

1972 cases for βeff investigation and 1216 cases for αFuel
T .
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Figure 5.1: Full-core TRIGA Model for MCNP

5.1.2 QOI Descriptions

From the work for lattice model analyses, the sensitivity of the reactivity to the

parameters was revealed ( Equaivalently, keff is sensitive.). Therefore, a reasonable

hypothesis is that quantities correlated with the reactivity, or keff , might be sensitive
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to the phonon spectra. With this reasoning, reactivity ρ, neutron mean generation

time Λ, effective delayed neutron fraction βeff and fuel temperature feedback coef-

ficient were investigated. The expressions for these four QOIs are illustrated from

Eq. 5.1 through Eq. 5.4. Note that Eq. 5.8 is the way to obtain the βeff in MCNP.

ρ =
keff − 1

keff
(5.1)

Λ =
lp
keff

(5.2)

βeff = ρ− ρprompt (5.3)

αFuel
T =

dρ

dTFuel
≈ ρ(TFuel, 1)− ρ(TFuel, 2)

TFuel, 1 − TFuel, 2
(5.4)

Note that the reactivity and βeff is dimensionless.

5.2 Results and Analyses

5.2.1 ANOVA Results and Factor Selections

As a convention in this work, we present and discuss the ANOVA results, as

shown in Table B.1, B.5, B.9 and B.13, at the very beginning of the analyses. Those

tables present analyses for basic parameters, second order interactions and some high

order terms of the main parameters. The same critiria, as declared in Chapter 4, i.e.

large MeanSq and F values with p-value smaller than 0.05, were used to determine

factor significance.

For ρ, Λ, and αFuel
T , significant factors were selected and shown in the “Observa-

tions” in Table B.3, B.7 and B.14, respectively. For βeff , there might be two important

factors, i.e. X3 and the interaction term X3 : X7. However, previous trials for cross

validation for βeff with these two terms presents strange and unacceptable results.

Therefore only X3 ( the optical phonon peak position of H in ZrHx) is selected as
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the important factor for βeff .

5.2.2 Cross Validations

Cross validations were taken for all QOIs with all important parameters. The

regression coefficient tables are shown in Appendix B marked as “complex model”.

The coefficients in each coefficients table show the significance with p-values. Sim-

plifications using terms containing only X2 ( the standardized branching ratio of

acoustic phonon of H in ZrHx) and/or X3, i.e. X2, X3, X2X3, X
2
2 , X

2
3 , etc., are made

to models of ρ, Λ and αFuel
T and are marked as “main-factor model”.

Cross validations for ρ

For ρ, cross validation results are presented in Figure 5.2 and the main-factor

model is shown in Figure 5.2 on Page 57. For both models, the testing parts show

good agreement between the predictions and the MCNP simulations. One would

notice that the main-factor model probably gives better results in this case. In the

coefficient tables in the Appendices, the R2 are given in the titles. For ρ for the full-

core TRIGA model, R2 are 0.926 and 0.955 for the complex model and main-factor

model, respectively.

ρ =− 3.8793 + 3.9815× 10−2X2 − 1.0728× 10−1X3

+ 2.9019× 10−2X2
3 − 1.8434× 10−2X3

3

(5.5)
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Figure 5.2: Cross validations for ρ
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Cross validations for Λ

Since the reactivity shows sensitivity to the parameters, it is also reasonable to

expect such results for Λ, also. Both the complex and the main-factor models work

well, as shown in Figure 5.3. And the main-factor model is presented in Eq. 5.6. R2 for

the complex model and main-factor model are 0.918 and 0.907, respectively. This

might indicate that using main-factor model would not induce such large error. And

it would even give better predictions in some special cases.

Λ =7.8183× 10−5 − 3.7219× 10−8X2 + 8.7285× 10−8X3

− 2.7854× 10−2X2
3 + 1.9164× 10−8X3

3

(5.6)
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Figure 5.3: Cross validations for Λ
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Regression test for Λ using ρ regression models

Furthemore, since both the definitions of ρ and Λ are directly correlated to the

keff , Λ can be written as a functional of ρ as shown in Eq. 5.7.

Λ = lp(1− ρ · β) (5.7)

Where ρ is a function of the proposed parameters and in units of $. The com-

parison between Λ from the main-factor regression model and the functional of ρ is

performed and shown in Figure 5.4.
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Figure 5.4: Λ(ρ(X1, · · · , X7)) vs. Λ(X1, · · · , X7)

From Figure 5.4, one would observe that the predicted Λ from the functional
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is consistent with the Λ from regression models. This somewhat demonstrates the

reasonableness of the methodology. And it also shows that predictions are robust.

Cross validations for βeff

For βeff , only one model was concerned. However, the regression model, illustrated

in both Eq. 5.8 Table B.11, with an R2 of 0.00242 would be really poor in predicting,

as the cross validation shown in Figure 5.5.

βeff = 7.6169× 10−3 + 1.0998× 10−5X3 (5.8)
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Figure 5.5: Cross validations for βeff

From Figure 5.5, we noticed that outliers are not randomly distributed. The pre-
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dictions underestimate for the outliers in the left part of Figure 5.5 and overestimate

for the outliers. We thus hypothesized the exponential nonlinearity and performed

log-transformation for the βeff and analyzed the log-transformed βeff . ANOVA re-

sults indicate that ln βeff is sensitive to X2, X3, and X3
2 . Cross-validation for the

scaled βeff was performed, as shown in Figure 5.6 and the regression model is shown

in Eq. 5.9.

ln (βeff) =− 4.8878− 1.9967× 10−3X2 + 1.4436× 10−3X3

+ 8.784× 10−4X3
2

(5.9)
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Figure 5.6: Cross validations for ln βeff
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Results from the cross validation for ln (βeff) indicate that the nonlinearity is not

resolved by the logarithm transformation. We believe there must be some unrecog-

nized nonlnearity for βeff .

Cross validations for αFuel
T

Though Badea, et al. studied the effects on dkeff/dT from shifting the optical

phonon of H in ZrHx, no quantification of the effects was done [1].

We obtained the αFuel
T for fuel temperature of 300 K via 5.4 by setting the two fuel

temperature required in 5.4 at 300 K and 400 K, respectively. We regressed the αFuel
T

( equivalent to dkeff/dT ) with factors indicated by the ANOVA table in this thesis.

The regression coefficients in the training part for αFuel
T are listed in Table B.14 and

Table B.15, respectively. The main-factor model is shown in Eq. 5.10.And the testing

results for both models are illustrated in Figure 5.7. Results show that though the

R2 are not large, the predictions of αFuel
T still have the trend of fitting the simulation

results.

αFuel
T =− 7.1100× 10−3 − 3.8141× 10−5X2 + 1.9761× 10−4X3

− 3.7494× 10−5X2
3 + 3.4709× 10−5X3

3

(5.10)
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Figure 5.7: Cross validations for αFuel
T
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5.2.3 Score Estimations

With the score estimations, we would estimate the dependencies of each QOI on

the main factors. The difference from scores in Chapter 4 is that the simulation model

changes from a simple lattice to a complicated full-core such that the dependencies

might change.

Score for ρ

The score distributions for ρ on the main-factor plane are shown in Figure 5.8.

Recall the scores for ρ shown by 4.5 on Page 48. In Figure 4.5, scores for ρ in IKE

and ENDF cases have distinct distributions on the main-factor plane. While in

Figure 5.8, the high scores locate at similar regions in both IKE and ENDF cases.

A possible reason is the difference of system complexity. System complexity for the

single lattice model is much lower than the full-core model. Once the phonon spectra

change, e.g. from ENDF to IKE, noticable variations of sensitive QOIs, e.g. ρ would

be induced for the lattice model since there are not as many components as the

full-core model to provide resistance for sensitive QOIs, e.g. ρ, change.

One could exclude the reason of the accuracy of MCNP simulations for the lattice

model since the difference of keff from these two references is 67 pcm which has been

beyond the standard deviation of 23 pcm for each case.

Another observation for Figure 5.8 is that reactivity is more sensitive to X3 than

to X2. Actually, this phenomena is also indicated by the regressions in the cross-

validations. For ρ, the regression coefficient of X3 has a larger magnitude than that

of X2. Moreover, the existence of higher order terms X2
3 and X3

3 would also indicate

the higher sensitivity of X3.
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Figure 5.8: Score distribution on main-factor plane for ρ
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Score for Λ

Figure 5.9 illustrates the score distributions for Λ on the main-factor plane. The

dependencies of Λ on the main factors are similar to ρ. We found that the prompt

neutron lifetimes for all realizations from MCNP simulations behaves as constants

with noise. Therefore, from the definition of Λ shown in 5.2, one could easily point

out the similarities between Λ and ρ that they are both the hyperbolic functions of

keff ( if the prompt neutron lifetime is treated as a constant).

And this is consistent with results in the regression test on Page 60. Both of these

results show that simple mathematical treatments to the physical models propagat-

ing through data processing and simulations make different QOIs still numerically

correlated as implied by their physical correlations as illustrated in Eq. 5.7. This

fact demonstrates the reasonableness of the parameterized model one more time.

Results also indicate that not only the reactivity, but there might also be several

other QOIs are sensitive to the proposed parameters. This implies that we may

implement the calibrations based on several different QOI score results to narrow

the parameter ranges down.
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Figure 5.9: Score distribution on main-factor plane for Λ
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Score for βeff

Figure 5.10 illustrates the score distributions for βeff on the main-factor plane.

We noticed that the scores behave uniformly low on the main-factor plane in both

IKE and ENDF cases. Different from the high-score uniform distributions on the

main-factor plane, the low scores might indicate that the βeff varies a lot implying

the existence of some other unrecognized nonlinearities, which is consistent with the

observations from the cross-validations for both βeff and ln (βeff).

From the cross validation part, we observed that the βeff has non-physical values.

It means either there are some serious problems in the scattering kernel or the phonon

spectrum models, or some problems occur to the result calculations.

The possible way for the parameterized model affect the βeff is to affect the up-

scattering from thermal part to epithermal and fast neutrons. However, the expec-

tations for the βeff are values varying around the reference values. Therefore neither

the lower bound of 0.004 nor the upper bound of 0.011 are reasonable.

Suggestions for the future work for βeff are:

1. Increase the MCNP simulations accuracies, i.e. use more particles when running

MCNP;

2. Check all possible issues of current simulation output files, including the cases

indexing, etc.
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Figure 5.10: Score distribution on main-factor plane for βeff
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Score for αFuel
T

Figure 5.11 illustrates the score distributions for αFuel
T on the main-factor plane.

The scores in the ENDF case show some ranges of main factors that could make

this QOI from the parameterized models close to the one from ENDF. Similar phe-

nomena can be observed in the IKE case, though the score distributions for these

cases are distinct. Acutally, he IKE model presents a αFuel
T of −0.0082 $/K and the

ENDF model presents a αFuel
T of −0.0077 $/K. The parameterized model presents

αFuel
T ranging from [−8.5×10−3, −6×10−3] $/K. This could explain the distinction

of the score distributions.

The different high score regions indicate that the αFuel
T is appropriate for cali-

brations. An important phenomenon is that the high score regions for both cases

are different from the scores for reactivity. If the differences are not induced by the

criticality accuracy or the statistical errors from Monte Carlo simulations, the scores

for αFuel
T would probably help narrow down the parameter ranges.

Though the score estimations show different parameter preferences, one must

be cautious when using αFuel
T to carry out the calibration. Cross validation results

could only predict the trend of αFuel
T , and we also observe that the high score regions

are widely distributed on main-factor plane. These results indicate that the accu-

racy of the criticality calculations would not be enough to preserve the accuracy of

αFuel
T . More total numbers of neutrons must be used in MCNP simulations to get

accurate αFuel
T to do the calibrations in the future.
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Figure 5.11: Score distribution on main-factor plane for αFuel
T
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5.3 Ex-core Detectors Absorption Rate

5.3.1 MCNP Settings

Ex-core detectors are implemented outside the core as shown in Figure 5.12. The

structure of the detectors are basically cylinders with cetral void filled with thin

working gas. The height of the detectors are the same as the core. The thickness is

0.04 cm and the outer diameter is 2.54 cm. The detector material is 20 %enriched

boron coated on the inner wall. The thickness of the coating is 0.00005 cm. This

design is referred to an optimized design of GE boron lined detector by McKinny, et

al. [9].

Figure 5.12: MCNP geometry with ex-core detectors

The kcode card is:

kcode 70000 1 30 270.
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Which means 70000 neutrons are tracked in a cycle and there are 270 cycles in total.

Thus, 1.89 × 107 neutrons per simulation are tracked in total. This configuration

presented 21 pcm for the standard deviation of keff .

100 sets of parameters were generated via LHS design and the corresponding

thermal scattering cross sections were produced.

5.3.2 Analyses for Detector Material Absorption Rate

In this section, analyses for the detector material absorption rate Rabs are per-

formed. The analysis procedure is only applied to the detector on the topright part

of Figure5.12 as an example.

The ANOVA was performed and results are shown in Table 16. And as implied

by the ANOVA table, the important factors, X3, X1X3, X2X5, X
2
5 and X3

2 , were

selected to do the cross-validations.

In the cross-validations, 88 cases were used in the training set and 12 sets were

used in the test set. The results are shown in Figure 5.13 and the regression model

is presented by Eq. 5.11

Rabs =3.6246× 10−4 + 9.1332× 10−7X1X3 − 5.4516× 10−7X2X5

+ 7.2104× 10−7X2
5 + 1.4926× 10−7X3

2

(5.11)

The R2 is 0.173.
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Figure 5.13: Cross-validations for ex-core detector material absorption rate Rabs

5.3.3 Results Implications

From the cross validations, though there are three outliers, we still observe nine

predictions of Rabs have agreement with the simulation results. This might imply

the feasibility of regressions applied for the Rabs. We plan to run much more than

100 MCNP simulations and will do the regressions taking the factors into account

and expect good agreement between Rabs from the regressions and the ones from the

simulations.
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VI. CONCLUSION AND FUTURE WORK

In this study, seven parameters were proposed to construct the parameterized

phonon spectra for H and Zr in ZrHx.

6.1 Code Validity

We developed a code to process the multigroup thermal scattering cross sections

for ZrHx with the parameterized phonon spectra. The input of the code is only

the seven-parameter set, which characterizes the phonon spectra, by default. The

code-to-code comparisons show results from our code with a common set of param-

eters have good agreement with from NJOY in the testing cases. The analytical

benchmarks show higher accuracy than NJOY.

6.2 Methodology Validity

In the simulation part, the strategy of performing the research using NJOY-

MCNP with generated phonon spectra given parameters was proved to be feasible

and effective.

Through the analyses, the combination of ANOVA, regression and score esti-

mation is demonstrated to be appropriate for this UQ study. One can know the

importance of the parameters for the QOIs through ANOVA. Regression could be

applied with cross validation to provide reasonable explicit relationships between the

QOIs and the important parameters (interactions and high order terms included)

suggested by ANOVA. And score estimations would help one choose parameters to

fit for the reference thermal scattering data.

76



6.3 Sensitivities of QOIs

Several QOIs were investigated in this thesis. In the study of lattice model of the

TRIGA reactor, ρ is sensitive to the parameters, especially the main factors b, the

branching ratio of acoustic phonon of H in ZrHx, and p, the optical phonon peak

position of H in ZrHx. Score estimation also shows dependency of ρ on the main

factors. While FRD is insensitive to any proposed parameters.

In the investigation of full-core TRIGA reactor model, ρ, Λ and αFuel
T are sensitive

to the parameters. Explicit relationships were established for predicting QOIs if

parameters are given. Good agreement are shown with simulation results in the

testing part of the cross validations.

βeff varies a lot, and the appropriate explicit relationship between βeff and the

parameters cannot be established. The behavior of βeff is more random, instead

of constant as in the case of FRD. We did logarithm transformation to βeff , and

analyzed ln (βeff) and found that explicit parameters cannot be established, also. We

believe there being some unrecognized nonlinearities resulting in the variations of

βeff .

We investigated the absorption rate of the ex-core detector material. The results

might indicate some sensitivity of the absorption rate of ex-core detectors. However,

the sample size is small, which might not be enough to demonstrate the sensitivity.

More simulation results are needed to reveal the relationship between this QOI and

the proposed scattering model.

6.4 Directions for Future Work

One would be interested in the model applying in the near-critical states and su-

percritical states. QOIs like ρ, αFuel
T , etc. in the near-critical state will be investigated.

We will also include the in-core detector and absorption in the detector materials
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will be tallied. The sensitivity of the absorption rate of the in-core detectors to the

parameters will be investigated.

Those significant high order terms in the regression models might be overesti-

mated since there might be interdependencies between the high order factors e.g. X2
3

and the corresponding low order terms e.g. X3. Therefore, the orthogonalizations

will be performed in the analysis in the future to avoid the overestimations of the

significance of those high order terms.

The analyses of βeff indicate regression might be inappropriate for the analyses

for some sensitive QOIs. Emulators, e.g. Gaussian process, Bayesian multivariate

automatic regression splines (BMARS), etc., would be applied in the analysis of

QOIs.

Furthermore, as part of the current research plan, the time dependent behaviour

of a TRIGA reactor during pulses will be investigated by simulations with transport

codes coupled with thermal-hydraulics simulations.

We expect to find more QOIs sensitive to the parameters with the mothodology

that combines ANOVA and cross-validation based on regressions. The score estima-

tion developed in this thesis is expected to apply in calibrations with those sensitive

QOIs for the corresponding experimental data as references. Appropriate parameter

sets are thereafter expected to be calibrated to construct phonon spectra for Zr and

H in ZrHx in the TRIGA reactor at Texas A&M University. This would be expected

to improve the simulation accuracy of the TRIGA reactor.
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APPENDIX A

ANOVA TABLES AND REGRESSION COEFFICIENT TABLES FOR QOIS

FOR CHAPTER 4

This appendix is for the lists of ANOVA tables and regression models in Chap-

ter 4. For reactivity, ρ, there are an ANOVA table for all parameters, the first order

interactions and high order terms of the main factors and two regression coefficients

tables. Also, the µi and σi, i = 1, · · · , 7 are given for every QOI. For FRD, the only

difference is that there is only one regression table given.

Table A.1: ANOVA table for ρ

Observations SumSq DF MeanSq F pValue

X1 4.3157e-02 1 4.3157e-02 7.4067e+01 1.2053e-17

X2 1.8942e+00 1 1.8942e+00 3.2509e+03 0.0000e+00

X3 2.4572e+00 1 2.4572e+00 4.2171e+03 0.0000e+00

X4 1.1572e-02 1 1.1572e-02 1.9860e+01 8.6432e-06

X5 6.2433e-02 1 6.2433e-02 1.0715e+02 1.0826e-24

X6 1.2760e-02 1 1.2760e-02 2.1900e+01 3.0013e-06

X7 1.2812e-02 1 1.2812e-02 2.1989e+01 2.8661e-06

X1:X2 7.6809e-03 1 7.6809e-03 1.3182e+01 2.8740e-04

X1:X3 1.0444e-03 1 1.0444e-03 1.7925e+00 1.8073e-01

X2:X3 1.2723e-02 1 1.2723e-02 2.1835e+01 3.1036e-06

X1:X4 7.6349e-04 1 7.6349e-04 1.3103e+00 2.5243e-01

X2:X4 1.4403e-02 1 1.4403e-02 2.4718e+01 7.0132e-07
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X3:X4 1.9297e-05 1 1.9297e-05 3.3118e-02 8.5561e-01

X1:X5 2.2233e-04 1 2.2233e-04 3.8158e-01 5.3681e-01

X2:X5 1.9577e-04 1 1.9577e-04 3.3598e-01 5.6220e-01

X3:X5 9.6157e-04 1 9.6157e-04 1.6503e+00 1.9902e-01

X4:X5 1.0712e-04 1 1.0712e-04 1.8384e-01 6.6812e-01

X1:X6 1.2507e-04 1 1.2507e-04 2.1466e-01 6.4317e-01

X2:X6 8.2479e-08 1 8.2479e-08 1.4155e-04 9.9051e-01

X3:X6 2.9720e-03 1 2.9720e-03 5.1006e+00 2.3990e-02

X4:X6 6.7955e-03 1 6.7955e-03 1.1663e+01 6.4627e-04

X5:X6 3.6438e-05 1 3.6438e-05 6.2536e-02 8.0255e-01

X1:X7 7.9190e-04 1 7.9190e-04 1.3591e+00 2.4379e-01

X2:X7 1.4984e-05 1 1.4984e-05 2.5717e-02 8.7260e-01

X3:X7 1.2852e-04 1 1.2852e-04 2.2057e-01 6.3864e-01

X4:X7 5.5825e-04 1 5.5825e-04 9.5809e-01 3.2775e-01

X5:X7 2.0862e-04 1 2.0862e-04 3.5804e-01 5.4964e-01

X6:X7 1.3513e-03 1 1.3513e-03 2.3192e+00 1.2789e-01

X1ˆ2 2.4654e-04 1 2.4654e-04 4.2312e-01 5.1544e-01

X2ˆ2 2.5239e-03 1 2.5239e-03 4.3316e+00 3.7497e-02

X3ˆ2 6.4131e-02 1 6.4131e-02 1.1006e+02 2.6210e-25

X4ˆ2 2.2586e-04 1 2.2586e-04 3.8763e-01 5.3360e-01

X5ˆ2 5.1840e-06 1 5.1840e-06 8.8970e-03 9.2486e-01

X6ˆ2 4.2071e-05 1 4.2071e-05 7.2203e-02 7.8817e-01

X7ˆ2 5.6382e-05 1 5.6382e-05 9.6764e-02 7.5577e-01

X2ˆ3 4.3877e-04 1 4.3877e-04 7.5304e-01 3.8559e-01
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X3ˆ3 2.9596e-02 1 2.9596e-02 5.0794e+01 1.2831e-12

X3ˆ4 1.2236e-04 1 1.2236e-04 2.1000e-01 6.4680e-01

Error 1.7253e+00 2961 5.8267e-04 1.0000e+00 5.0000e-01

Table A.2: µi and σi of the parameters for ρ

P1 P2 P3 P4 P5 P6 P7

µi 28.0000 0.006880 137.0000 20.0000 20.0000 0.5750 2.4000

σi 1.7323 0.002373 2.8872 2.3098 2.3098 0.1011 0.2310
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Table A.3: The regression coefficients of the complex model for ρ, R2 = 0.714

Observations Estimate SE tStat pValue

(Intercept) 3.2565e+01 0.00093 3.4993e+04 0.0000e+00

X1 3.7932e-03 0.0005 7.5668e+00 5.4286e-14

X2 2.5036e-02 0.0005 4.9709e+01 0.0000e+00

X3 -2.1153e-02 0.00126 -1.6803e+01 5.7363e-60

X4 -1.6889e-03 0.00051 -3.3238e+00 9.0145e-04

X5 -4.5655e-03 0.0005 -9.1098e+00 1.6996e-19

X6 1.7922e-03 0.0005 3.5638e+00 3.7266e-04

X7 -1.9880e-03 0.0005 -3.9787e+00 7.1352e-05

X1:X2 1.4731e-03 0.0005 2.9541e+00 3.1670e-03

X2:X3 -1.8838e-03 0.0005 -3.7374e+00 1.9029e-04

X2:X4 -2.3263e-03 0.00051 -4.5682e+00 5.1703e-06

X4:X6 1.6992e-03 0.0005 3.3737e+00 7.5348e-04

X2ˆ2 -7.9164e-04 0.00056 -1.4042e+00 1.6038e-01

X3ˆ2 5.2777e-03 0.00056 9.3472e+00 2.0013e-20

X3ˆ3 -4.3281e-03 0.00065 -6.6932e+00 2.7129e-11
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Table A.4: The regression coefficients of the main-factor model for ρ, R2 = 0.687

Observations Estimate SE tStat pValue

(Intercept) 3.2564e+01 0.00078 4.1606e+04 0.0000e+00

X2 2.5229e-02 0.00052 4.8139e+01 0.0000e+00

X3 -2.1105e-02 0.00131 -1.6088e+01 2.2165e-55

X2:X3 -1.8799e-03 0.00052 -3.5945e+00 3.3157e-04

X3ˆ2 5.2404e-03 0.00059 8.9059e+00 1.0234e-18

X3ˆ3 -4.3131e-03 0.00067 -6.4064e+00 1.7874e-10

Table A.5: ANOVA table for FRD

Observations SumSq DF MeanSq F pValue

X1 3.8566e-08 1 3.8566e-08 1.1103e-02 9.1609e-01

X2 4.1069e-04 1 4.1069e-04 1.1823e+02 4.9639e-27

X3 4.2850e-04 1 4.2850e-04 1.2336e+02 4.1419e-28

X4 2.2559e-06 1 2.2559e-06 6.4945e-01 4.2037e-01

X5 1.2204e-05 1 1.2204e-05 3.5133e+00 6.0975e-02

X6 4.4256e-10 1 4.4256e-10 1.2741e-04 9.9099e-01

X7 5.5125e-06 1 5.5125e-06 1.5870e+00 2.0785e-01

X1:X2 2.2749e-06 1 2.2749e-06 6.5493e-01 4.1842e-01

X1:X3 8.8224e-06 1 8.8224e-06 2.5399e+00 1.1111e-01

X2:X3 4.9682e-06 1 4.9682e-06 1.4303e+00 2.3181e-01

X1:X4 6.3990e-07 1 6.3990e-07 1.8422e-01 6.6780e-01

X2:X4 1.8111e-06 1 1.8111e-06 5.2141e-01 4.7030e-01

X3:X4 6.0750e-07 1 6.0750e-07 1.7489e-01 6.7583e-01
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X1:X5 3.6508e-09 1 3.6508e-09 1.0510e-03 9.7414e-01

X2:X5 2.7816e-07 1 2.7816e-07 8.0079e-02 7.7721e-01

X3:X5 2.6575e-06 1 2.6575e-06 7.6506e-01 3.8182e-01

X4:X5 1.3803e-06 1 1.3803e-06 3.9736e-01 5.2850e-01

X1:X6 7.9263e-07 1 7.9263e-07 2.2819e-01 6.3290e-01

X2:X6 4.4713e-06 1 4.4713e-06 1.2873e+00 2.5665e-01

X3:X6 1.7269e-07 1 1.7269e-07 4.9716e-02 8.2357e-01

X4:X6 1.6087e-06 1 1.6087e-06 4.6312e-01 4.9622e-01

X5:X6 2.5791e-08 1 2.5791e-08 7.4251e-03 9.3134e-01

X1:X7 1.3271e-06 1 1.3271e-06 3.8205e-01 5.3655e-01

X2:X7 5.4699e-06 1 5.4699e-06 1.5747e+00 2.0962e-01

X3:X7 7.6469e-07 1 7.6469e-07 2.2015e-01 6.3896e-01

X4:X7 4.9664e-06 1 4.9664e-06 1.4298e+00 2.3189e-01

X5:X7 1.1925e-06 1 1.1925e-06 3.4330e-01 5.5798e-01

X6:X7 1.3589e-06 1 1.3589e-06 3.9122e-01 5.3171e-01

X1ˆ2 6.3977e-06 1 6.3977e-06 1.8418e+00 1.7484e-01

X2ˆ2 5.7556e-06 1 5.7556e-06 1.6570e+00 1.9811e-01

X3ˆ2 8.1474e-06 1 8.1474e-06 2.3456e+00 1.2575e-01

X4ˆ2 4.5605e-06 1 4.5605e-06 1.3129e+00 2.5196e-01

X5ˆ2 5.5621e-06 1 5.5621e-06 1.6013e+00 2.0582e-01

X6ˆ2 7.4002e-07 1 7.4002e-07 2.1305e-01 6.4442e-01

X7ˆ2 1.0106e-06 1 1.0106e-06 2.9093e-01 5.8966e-01

X2ˆ3 2.0798e-06 1 2.0798e-06 5.9876e-01 4.3911e-01

X3ˆ3 7.0318e-07 1 7.0318e-07 2.0244e-01 6.5279e-01
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X3ˆ4 3.7418e-06 1 3.7418e-06 1.0772e+00 2.9940e-01

Error 1.0285e-02 2961 3.4735e-06 1.0000e+00 5.0000e-01

Table A.6: µi and σi of the parameters for FRD

P1 P2 P3 P4 P5 P6 P7

µi 28.0000 0.006880 137.0000 20.0000 20.0000 0.5750 2.4000

σi 1.7323 0.002373 2.8872 2.3098 2.3098 0.1011 0.2310

Table A.7: The regression coefficients of the regression model for FRD, R2 = 0.0944

Observations Estimate SE tStat pValue

(Intercept) 4.2117e+00 4e-005 1.1018e+05 0.0000e+00

X2 4.2499e-04 4e-005 1.1085e+01 7.0113e-28

X3 -4.4680e-04 4e-005 -1.1639e+01 1.6927e-30
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APPENDIX B

ANOVA TABLES AND REGRESSION COEFFICIENT TABLES FOR QOIS

FOR CHAPTER 5

This appendix is for the lists of ANOVA tables and regression models in Chap-

ter 5. Except for the delayed neutron fraction, β, every QOI has an ANOVA table for

all parameters, the first order interactions and high order terms of the main factors

and two regression coefficients tables. Also the µi and σi, i = 1, · · · , 7 are given for

every QOI. For β, the only difference is that there is only one regression table given.

Table B.1: ANOVA table for ρ

Observations SumSq DF MeanSq F pValue

X1 3.9619e-02 1 3.9619e-02 2.7701e+01 1.5722e-07

X2 2.9535e+00 1 2.9535e+00 2.0650e+03 8.0972e-308

X3 3.8214e+01 1 3.8214e+01 2.6718e+04 0.0000e+00

X4 2.7398e-02 1 2.7398e-02 1.9156e+01 1.2682e-05

X5 1.8896e-01 1 1.8896e-01 1.3212e+02 1.2485e-29

X6 5.4276e-02 1 5.4276e-02 3.7949e+01 8.8032e-10

X7 2.0832e-02 1 2.0832e-02 1.4566e+01 1.3960e-04

X1:X2 5.4640e-03 1 5.4640e-03 3.8203e+00 5.0778e-02

X1:X3 3.9393e-04 1 3.9393e-04 2.7543e-01 5.9977e-01

X2:X3 1.8838e-03 1 1.8838e-03 1.3171e+00 2.5126e-01

X1:X4 1.1950e-04 1 1.1950e-04 8.3552e-02 7.7257e-01

X2:X4 7.8336e-04 1 7.8336e-04 5.4771e-01 4.5934e-01
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X3:X4 2.5937e-08 1 2.5937e-08 1.8134e-05 9.9660e-01

X1:X5 2.0296e-03 1 2.0296e-03 1.4190e+00 2.3371e-01

X2:X5 3.1527e-03 1 3.1527e-03 2.2043e+00 1.3779e-01

X3:X5 7.9574e-06 1 7.9574e-06 5.5637e-03 9.4055e-01

X4:X5 5.8533e-03 1 5.8533e-03 4.0925e+00 4.3210e-02

X1:X6 1.1841e-03 1 1.1841e-03 8.2789e-01 3.6300e-01

X2:X6 5.9762e-04 1 5.9762e-04 4.1784e-01 5.1809e-01

X3:X6 9.0792e-03 1 9.0792e-03 6.3480e+00 1.1831e-02

X4:X6 5.4654e-03 1 5.4654e-03 3.8213e+00 5.0748e-02

X5:X6 6.3573e-03 1 6.3573e-03 4.4449e+00 3.5134e-02

X1:X7 3.5198e-03 1 3.5198e-03 2.4610e+00 1.1687e-01

X2:X7 4.3302e-03 1 4.3302e-03 3.0276e+00 8.2019e-02

X3:X7 7.7875e-03 1 7.7875e-03 5.4449e+00 1.9728e-02

X4:X7 7.2958e-06 1 7.2958e-06 5.1011e-03 9.4307e-01

X5:X7 9.8721e-04 1 9.8721e-04 6.9024e-01 4.0619e-01

X6:X7 2.5576e-04 1 2.5576e-04 1.7882e-01 6.7243e-01

X1ˆ2 4.3505e-04 1 4.3505e-04 3.0418e-01 5.8134e-01

X2ˆ2 4.9143e-03 1 4.9143e-03 3.4360e+00 6.3942e-02

X3ˆ2 1.4400e+00 1 1.4400e+00 1.0068e+03 2.1510e-178

X4ˆ2 3.9641e-06 1 3.9641e-06 2.7716e-03 9.5802e-01

X5ˆ2 1.4628e-02 1 1.4628e-02 1.0228e+01 1.4056e-03

X6ˆ2 1.3602e-03 1 1.3602e-03 9.5100e-01 3.2959e-01

X7ˆ2 6.6418e-04 1 6.6418e-04 4.6438e-01 4.9566e-01

X2ˆ3 9.2273e-04 1 9.2273e-04 6.4515e-01 4.2195e-01
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X3ˆ3 3.5543e-01 1 3.5543e-01 2.4851e+02 8.8721e-53

X3ˆ4 5.4010e-06 1 5.4010e-06 3.7763e-03 9.5101e-01

Error 2.7790e+00 1943 1.4302e-03 1.0000e+00 5.0000e-01

Table B.2: µi and σi of the parameters for ρ

P1 P2 P3 P4 P5 P6 P7

µi 27.9995 0.006896 137.0060 19.9904 20.0180 0.5745 2.4027

σi 1.7253 0.002362 5.7685 2.3096 2.3080 0.1006 0.2317
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Table B.3: The regression coefficients of the complex model for ρ, R2 = 0.926

Observations Estimate SE tStat pValue

(Intercept) -3.8500e+00 0.00106 -3.6353e+03 0.0000e+00

X1 4.6048e-03 0.00105 4.3863e+00 1.2295e-05

X2 3.8782e-02 0.00105 3.6789e+01 2.6565e-214

X3 -1.4037e-01 0.00105 -1.3367e+02 0.0000e+00

X4 -4.4286e-03 0.00106 -4.1855e+00 3.0029e-05

X5 -9.6944e-03 0.00107 -9.0991e+00 2.6783e-19

X6 6.0522e-03 0.00106 5.7058e+00 1.3809e-08

X7 -4.5449e-03 0.00106 -4.2827e+00 1.9579e-05

X1:X2 1.7597e-03 0.00104 1.6879e+00 9.1636e-02

X3:X6 -1.4010e-03 0.00105 -1.3361e+00 1.8173e-01

X5:X6 -2.1443e-03 0.00107 -1.9986e+00 4.5824e-02

X5:X7 -1.2179e-03 0.00105 -1.1610e+00 2.4581e-01

Table B.4: The regression coefficients of the main-factor model for ρ, R2 = 0.955

Observations Estimate SE tStat pValue

(Intercept) -3.8793e+00 0.00124 -3.1230e+03 0.0000e+00

X2 3.9815e-02 0.00082 4.8634e+01 2.8226e-316

X3 -1.0728e-01 0.00204 -5.2557e+01 0.0000e+00

X3ˆ2 2.9019e-02 0.00091 3.1724e+01 2.5798e-171

X3ˆ3 -1.8434e-02 0.00103 -1.7857e+01 4.1610e-65

91



Table B.5: ANOVA tables for Λ

Observations SumSq DF MeanSq F pValue

X1 4.5210e-14 1 4.5210e-14 2.2708e+01 2.0262e-06

X2 2.6206e-12 1 2.6206e-12 1.3163e+03 1.6232e-220

X3 2.8916e-11 1 2.8916e-11 1.4524e+04 0.0000e+00

X4 5.5332e-15 1 5.5332e-15 2.7791e+00 9.5661e-02

X5 2.0735e-13 1 2.0735e-13 1.0415e+02 7.4188e-24

X6 8.8739e-14 1 8.8739e-14 4.4571e+01 3.1912e-11

X7 2.6681e-14 1 2.6681e-14 1.3401e+01 2.5818e-04

X1:X2 1.2510e-14 1 1.2510e-14 6.2834e+00 1.2268e-02

X1:X3 9.1081e-16 1 9.1081e-16 4.5747e-01 4.9889e-01

X2:X3 4.5619e-15 1 4.5619e-15 2.2913e+00 1.3026e-01

X1:X4 2.0754e-15 1 2.0754e-15 1.0424e+00 3.0739e-01

X2:X4 2.4024e-15 1 2.4024e-15 1.2066e+00 2.7213e-01

X3:X4 6.4688e-16 1 6.4688e-16 3.2490e-01 5.6874e-01

X1:X5 4.7199e-15 1 4.7199e-15 2.3706e+00 1.2380e-01

X2:X5 1.2987e-15 1 1.2987e-15 6.5229e-01 4.1939e-01

X3:X5 5.9046e-17 1 5.9046e-17 2.9657e-02 8.6329e-01

X4:X5 9.3172e-15 1 9.3172e-15 4.6797e+00 3.0642e-02

X1:X6 1.2275e-15 1 1.2275e-15 6.1655e-01 4.3243e-01

X2:X6 1.7289e-15 1 1.7289e-15 8.6835e-01 3.5153e-01

X3:X6 1.6301e-14 1 1.6301e-14 8.1873e+00 4.2636e-03

X4:X6 7.4708e-15 1 7.4708e-15 3.7524e+00 5.2878e-02

X5:X6 9.7256e-15 1 9.7256e-15 4.8849e+00 2.7210e-02
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X1:X7 1.6700e-15 1 1.6700e-15 8.3879e-01 3.5986e-01

X2:X7 3.2219e-15 1 3.2219e-15 1.6183e+00 2.0349e-01

X3:X7 1.0809e-14 1 1.0809e-14 5.4291e+00 1.9906e-02

X4:X7 8.5268e-17 1 8.5268e-17 4.2828e-02 8.3607e-01

X5:X7 1.5779e-15 1 1.5779e-15 7.9250e-01 3.7345e-01

X6:X7 5.9148e-16 1 5.9148e-16 2.9708e-01 5.8578e-01

X1ˆ2 1.6494e-17 1 1.6494e-17 8.2845e-03 9.2749e-01

X2ˆ2 2.7737e-15 1 2.7737e-15 1.3931e+00 2.3802e-01

X3ˆ2 1.3789e-12 1 1.3789e-12 6.9260e+02 8.2066e-131

X4ˆ2 9.4072e-16 1 9.4072e-16 4.7249e-01 4.9192e-01

X5ˆ2 2.2751e-14 1 2.2751e-14 1.1427e+01 7.3822e-04

X6ˆ2 3.2342e-16 1 3.2342e-16 1.6245e-01 6.8696e-01

X7ˆ2 6.7103e-17 1 6.7103e-17 3.3704e-02 8.5436e-01

X2ˆ3 1.4723e-17 1 1.4723e-17 7.3947e-03 9.3148e-01

X3ˆ3 3.5801e-13 1 3.5801e-13 1.7982e+02 2.7986e-39

X3ˆ4 7.4204e-15 1 7.4204e-15 3.7270e+00 5.3684e-02

Error 3.8685e-12 1943 1.9910e-15 1.0000e+00 5.0000e-01

Table B.6: µi and σi of the parameters for Λ

P1 P2 P3 P4 P5 P6 P7

µi 27.9995 0.006896 137.0060 19.9904 20.0180 0.5745 2.4027

σi 1.7253 0.002362 5.7685 2.3096 2.3080 0.1006 0.2317
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Table B.7: The regression coefficients of the complex model for Λ, R2 = 0.918

Observations Estimate SE tStat pValue

(Intercept) 7.8186e-05 2e-009 4.1149e+04 0.0000e+00

X1 -5.6817e-09 1e-009 -5.6973e+00 1.4508e-08

X2 -3.6687e-08 1e-009 -3.6616e+01 1.0206e-212

X3 8.8026e-08 2e-009 3.5223e+01 8.8944e-201

X5 9.8241e-09 1e-009 9.7096e+00 1.1016e-21

X6 -6.7186e-09 1e-009 -6.6654e+00 3.6432e-11

X7 4.5572e-09 1e-009 4.5179e+00 6.7132e-06

X1:X2 -2.8341e-09 1e-009 -2.8569e+00 4.3341e-03

X4:X5 -2.0703e-09 1e-009 -2.0397e+00 4.1545e-02

X3:X6 1.1844e-09 1e-009 1.1887e+00 2.3474e-01

X5:X6 1.6466e-09 1e-009 1.6077e+00 1.0810e-01

X3:X7 -1.1664e-09 1e-009 -1.1655e+00 2.4400e-01

X3ˆ2 -2.7859e-08 1e-009 -2.4912e+01 1.0438e-115

X5ˆ2 -3.1002e-09 1e-009 -2.7336e+00 6.3358e-03

X3ˆ3 1.8937e-08 1e-009 1.4967e+01 1.9148e-47
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Table B.8: The regression coefficients of the main-factor model for Λ, R2 = 0.907

Observations Estimate SE tStat pValue

(Intercept) 7.8183e-05 2e-009 4.8400e+04 0.0000e+00

X2 -3.7219e-08 1e-009 -3.4960e+01 7.8133e-199

X3 8.7285e-08 3e-009 3.2883e+01 4.0955e-181

X3ˆ2 -2.7854e-08 1e-009 -2.3415e+01 2.4733e-104

X3ˆ3 1.9164e-08 1e-009 1.4275e+01 1.4248e-43

Table B.9: ANOVA table for βeff

Observations SumSq DF MeanSq F pValue

X1 7.2932e-07 1 7.2932e-07 3.3831e+00 6.6021e-02

X2 7.4796e-07 1 7.4796e-07 3.4696e+00 6.2659e-02

X3 5.7652e-06 1 5.7652e-06 2.6743e+01 2.5638e-07

X4 1.8484e-08 1 1.8484e-08 8.5742e-02 7.6969e-01

X5 7.3251e-08 1 7.3251e-08 3.3979e-01 5.6002e-01

X6 1.7007e-08 1 1.7007e-08 7.8893e-02 7.7883e-01

X7 7.1664e-09 1 7.1664e-09 3.3243e-02 8.5535e-01

X1:X2 1.8929e-07 1 1.8929e-07 8.7808e-01 3.4884e-01

X1:X3 1.0086e-07 1 1.0086e-07 4.6784e-01 4.9406e-01

X2:X3 4.7086e-07 1 4.7086e-07 2.1842e+00 1.3960e-01

X1:X4 2.0301e-07 1 2.0301e-07 9.4172e-01 3.3196e-01

X2:X4 8.9771e-08 1 8.9771e-08 4.1642e-01 5.1880e-01

X3:X4 3.9755e-07 1 3.9755e-07 1.8441e+00 1.7462e-01

X1:X5 1.7115e-08 1 1.7115e-08 7.9391e-02 7.7815e-01
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X2:X5 2.7110e-08 1 2.7110e-08 1.2576e-01 7.2291e-01

X3:X5 1.9587e-08 1 1.9587e-08 9.0858e-02 7.6312e-01

X4:X5 6.3559e-07 1 6.3559e-07 2.9483e+00 8.6128e-02

X1:X6 2.6639e-10 1 2.6639e-10 1.2357e-03 9.7196e-01

X2:X6 3.1147e-09 1 3.1147e-09 1.4448e-02 9.0434e-01

X3:X6 7.9455e-08 1 7.9455e-08 3.6857e-01 5.4386e-01

X4:X6 1.0281e-07 1 1.0281e-07 4.7689e-01 4.8992e-01

X5:X6 3.5017e-07 1 3.5017e-07 1.6244e+00 2.0264e-01

X1:X7 1.8030e-07 1 1.8030e-07 8.3635e-01 3.6056e-01

X2:X7 7.7998e-08 1 7.7998e-08 3.6181e-01 5.4757e-01

X3:X7 1.0742e-06 1 1.0742e-06 4.9831e+00 2.5710e-02

X4:X7 3.8082e-07 1 3.8082e-07 1.7665e+00 1.8397e-01

X5:X7 2.1579e-09 1 2.1579e-09 1.0010e-02 9.2032e-01

X6:X7 2.4724e-07 1 2.4724e-07 1.1469e+00 2.8434e-01

X1ˆ2 1.3836e-08 1 1.3836e-08 6.4179e-02 8.0003e-01

X2ˆ2 2.4912e-09 1 2.4912e-09 1.1556e-02 9.1440e-01

X3ˆ2 3.0473e-07 1 3.0473e-07 1.4136e+00 2.3461e-01

X4ˆ2 6.6796e-07 1 6.6796e-07 3.0985e+00 7.8522e-02

X5ˆ2 1.0576e-06 1 1.0576e-06 4.9058e+00 2.6883e-02

X6ˆ2 1.0632e-07 1 1.0632e-07 4.9320e-01 4.8259e-01

X7ˆ2 1.8364e-07 1 1.8364e-07 8.5185e-01 3.5614e-01

X2ˆ3 1.2272e-06 1 1.2272e-06 5.6924e+00 1.7134e-02

X3ˆ3 3.2593e-09 1 3.2593e-09 1.5119e-02 9.0215e-01

X3ˆ4 4.9368e-08 1 4.9368e-08 2.2901e-01 6.3232e-01
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Error 4.1671e-04 1933 2.1558e-07 1.0000e+00 5.0000e-01

Table B.10: µi and σi of the parameters for βeff

P1 P2 P3 P4 P5 P6 P7

µi 27.9969 0.006889 137.0097 19.9961 20.0148 0.5746 2.4025

σi 1.7244 0.002362 5.7721 2.3072 2.3078 0.1005 0.2317

Table B.11: The regression coefficients of the regression model for βeff , R
2 = 0.00242

Observations Estimate SE tStat pValue

(Intercept) 7.6169e-03 6e-006 1.3418e+03 0.0000e+00

X3 1.0998e-05 6e-006 1.9564e+00 5.0597e-02

Table B.12: ANOVA table for αFuel
T

Observations SumSq DF MeanSq F pValue

X1 1.4983E-08 1 1.4983E-08 9.1474E-02 7.6236E-01

X2 1.5736E-06 1 1.5736E-06 9.6069E+00 1.9844E-03

X3 7.2338E-05 1 7.2338E-05 4.4163E+02 1.6422E-83

X4 1.1453E-09 1 1.1453E-09 6.9920E-03 9.3337E-01
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X5 1.4902E-06 1 1.4902E-06 9.0976E+00 2.6143E-03

X6 1.7586E-07 1 1.7586E-07 1.0736E+00 3.0034E-01

X7 6.7031E-07 1 6.7031E-07 4.0924E+00 4.3303E-02

X1:X2 2.8236E-07 1 2.8236E-07 1.7238E+00 1.8946E-01

X1:X3 1.4247E-08 1 1.4247E-08 8.6983E-02 7.6810E-01

X2:X3 2.4990E-08 1 2.4990E-08 1.5257E-01 6.9616E-01

X1:X4 1.6644E-09 1 1.6644E-09 1.0162E-02 9.1972E-01

X2:X4 1.2888E-08 1 1.2888E-08 7.8685E-02 7.7914E-01

X3:X4 1.5968E-08 1 1.5968E-08 9.7488E-02 7.5492E-01

X1:X5 8.9047E-09 1 8.9047E-09 5.4364E-02 8.1568E-01

X2:X5 1.8442E-07 1 1.8442E-07 1.1259E+00 2.8887E-01

X3:X5 1.9218E-07 1 1.9218E-07 1.1733E+00 2.7894E-01

X4:X5 4.4366E-07 1 4.4366E-07 2.7086E+00 1.0008E-01

X1:X6 8.7754E-10 1 8.7754E-10 5.3575E-03 9.4166E-01

X2:X6 2.7819E-07 1 2.7819E-07 1.6984E+00 1.9275E-01

X3:X6 3.8468E-07 1 3.8468E-07 2.3485E+00 1.2567E-01

X4:X6 2.6273E-07 1 2.6273E-07 1.6040E+00 2.0559E-01

X5:X6 2.1960E-07 1 2.1960E-07 1.3407E+00 2.4715E-01

X1:X7 3.9807E-07 1 3.9807E-07 2.4303E+00 1.1928E-01

X2:X7 3.7582E-07 1 3.7582E-07 2.2944E+00 1.3011E-01

X3:X7 1.3210E-07 1 1.3210E-07 8.0650E-01 3.6934E-01

X4:X7 1.7527E-07 1 1.7527E-07 1.0700E+00 3.0115E-01

X5:X7 7.8251E-08 1 7.8251E-08 4.7774E-01 4.8959E-01

X6:X7 3.8073E-07 1 3.8073E-07 2.3244E+00 1.2763E-01
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X1ˆ2 2.0332E-07 1 2.0332E-07 1.2413E+00 2.6545E-01

X2ˆ2 4.0465E-08 1 4.0465E-08 2.4705E-01 6.1926E-01

X3ˆ2 2.1709E-06 1 2.1709E-06 1.3254E+01 2.8382E-04

X4ˆ2 9.4277E-08 1 9.4277E-08 5.7558E-01 4.4820E-01

X5ˆ2 1.8829E-08 1 1.8829E-08 1.1496E-01 7.3463E-01

X6ˆ2 4.0004E-07 1 4.0004E-07 2.4423E+00 1.1837E-01

X7ˆ2 4.0972E-08 1 4.0972E-08 2.5014E-01 6.1707E-01

X2ˆ3 3.4262E-07 1 3.4262E-07 2.0918E+00 1.4836E-01

X3ˆ3 8.7175E-07 1 8.7175E-07 5.3222E+00 2.1229E-02

X3ˆ4 3.4820E-07 1 3.4820E-07 2.1258E+00 1.4510E-01

Error 1.9279E-04 1177 1.6380E-07 1.0000E+00 5.0000E-01

Table B.13: µi and σi of the parameters for αFuel
T

P1 P2 P3 P4 P5 P6 P7

µi 27.9569 0.006911 136.8930 19.9243 20.0225 0.5745 2.4077

σi 1.7033 0.002388 5.794 2.3121 2.3036 0.1013 0.2326
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Table B.14: The regression coefficients of the complex model for αFuel
T , R2 = 0.358

Observations Estimate SE tStat pValue

(Intercept) -7.1098E-03 1.7661E-05 -4.0258E+02 0.0000E+00

X2 -3.9322E-05 1.1609E-05 -3.3872E+00 7.3458E-04

X3 1.9418E-04 2.8944E-05 6.7088E+00 3.3400E-11

X5 -3.4500E-05 1.1753E-05 -2.9354E+00 3.4097E-03

X7 -6.3935E-06 1.1685E-05 -5.4716E-01 5.8439E-01

X3ˆ2 -3.7721E-05 1.3085E-05 -2.8826E+00 4.0312E-03

X3ˆ3 3.6113E-05 1.4718E-05 2.4536E+00 1.4321E-02

Table B.15: The regression coefficients of the main-factor model for αFuel
T , R2 = 0.352

Observations Estimate SE tStat pValue

(Intercept) -7.1100E-03 1.7723E-05 -4.0118e+02 0.0000e+00

X2 -3.8141E-05 1.1643E-05 -3.2759e+00 1.0906E-03

X3 1.9761E-04 2.9023E-05 6.8088e+00 1.7254E-11

X3ˆ2 -3.7494E-05 1.3131E-05 -2.8553e+00 4.3916E-03

X3ˆ3 3.4709E-05 1.4762E-05 2.3513e+00 1.8907E-02

Table B.16: ANOVA table for Rabs

Observations SumSq DF MeanSq F pValue

Observations SumSq DF MeanSq F pValue
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X1 5.3823e-12 1 5.3823e-12 6.1115e-01 4.3738e-01

X2 5.7282e-12 1 5.7282e-12 6.5043e-01 4.2309e-01

X3 7.5153e-11 1 7.5153e-11 8.5334e+00 4.8824e-03

X4 2.3469e-11 1 2.3469e-11 2.6648e+00 1.0774e-01

X5 2.4906e-12 1 2.4906e-12 2.8280e-01 5.9680e-01

X6 6.7848e-12 1 6.7848e-12 7.7040e-01 3.8354e-01

X7 1.1608e-11 1 1.1608e-11 1.3181e+00 2.5542e-01

X1:X2 5.5359e-12 1 5.5359e-12 6.2859e-01 4.3095e-01

X1:X3 4.0195e-11 1 4.0195e-11 4.5641e+00 3.6669e-02

X2:X3 2.5422e-12 1 2.5422e-12 2.8866e-01 5.9304e-01

X1:X4 5.5654e-12 1 5.5654e-12 6.3194e-01 4.2973e-01

X2:X4 1.5233e-11 1 1.5233e-11 1.7296e+00 1.9338e-01

X3:X4 2.5364e-12 1 2.5364e-12 2.8800e-01 5.9346e-01

X1:X5 1.8828e-12 1 1.8828e-12 2.1378e-01 6.4546e-01

X2:X5 3.1606e-11 1 3.1606e-11 3.5888e+00 6.2914e-02

X3:X5 6.1565e-14 1 6.1565e-14 6.9906e-03 9.3364e-01

X4:X5 3.5608e-12 1 3.5608e-12 4.0432e-01 5.2725e-01

X1:X6 1.5213e-12 1 1.5213e-12 1.7274e-01 6.7915e-01

X2:X6 5.6655e-14 1 5.6655e-14 6.4331e-03 9.3634e-01

X3:X6 5.5963e-12 1 5.5963e-12 6.3545e-01 4.2846e-01

X4:X6 7.3579e-15 1 7.3579e-15 8.3547e-04 9.7704e-01

X5:X6 2.0859e-12 1 2.0859e-12 2.3685e-01 6.2823e-01

X1:X7 6.0113e-12 1 6.0113e-12 6.8256e-01 4.1192e-01

X2:X7 8.8737e-13 1 8.8737e-13 1.0076e-01 7.5201e-01
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X3:X7 2.7675e-11 1 2.7675e-11 3.1425e+00 8.1272e-02

X4:X7 9.8893e-12 1 9.8893e-12 1.1229e+00 2.9347e-01

X5:X7 1.4272e-12 1 1.4272e-12 1.6205e-01 6.8868e-01

X6:X7 4.5922e-14 1 4.5922e-14 5.2144e-03 9.4267e-01

X1ˆ2 6.5999e-12 1 6.5999e-12 7.4940e-01 3.9006e-01

X2ˆ2 1.9904e-12 1 1.9904e-12 2.2600e-01 6.3620e-01

X3ˆ2 6.6064e-12 1 6.6064e-12 7.5014e-01 3.8983e-01

X4ˆ2 1.0720e-11 1 1.0720e-11 1.2172e+00 2.7424e-01

X5ˆ2 6.4917e-11 1 6.4917e-11 7.3712e+00 8.6078e-03

X6ˆ2 1.5661e-11 1 1.5661e-11 1.7783e+00 1.8732e-01

X7ˆ2 5.0348e-16 1 5.0348e-16 5.7169e-05 9.9399e-01

X2ˆ3 4.9436e-11 1 4.9436e-11 5.6133e+00 2.1005e-02

X3ˆ3 3.2414e-11 1 3.2414e-11 3.6805e+00 5.9735e-02

X3ˆ4 3.0388e-14 1 3.0388e-14 3.4505e-03 9.5335e-01

Error 5.3722e-10 61 8.8069e-12 1.0000e+00 5.0000e-01
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APPENDIX C

DERIVATIONS FOR THE “SCORE” USED IN CHAPTER 4 AND CHAPTER 5

In Chapter 4 and Chapter 5, we proposed a quantity named “score”, which is

the overlapped area between QOIs from the parameterized models and the reference

QOIs. Note that quantities fromMCNP simulations are given as normal distributions

with a mean value and a standard deviation.

Here are the notations for this derivation:

1. fi(x) / fref(x): Normal distributions for QOIs from parameterized models / ref-

erences

2. µi / µref : the means of QOIs from parameterized models / references.

3. σi / σref : the standard deviations of QOIs from parameterized models / refer-

ences.

With the notations above, the normal distributions can be given by:

fi(x) =
1√
2πσi

exp

[

−(x− µi)
2

2σ2
i

]

, (C.1)

and

fref(x) =
1√

2πσref

exp

[

−(x− µref)
2

2σ2
ref

]

. (C.2)

We aim to find the cross point(s) of the two distributions, i.e. to solve Eq. C.3, so

that we can calculate the overlapped area.

fi(x) = fref(x) or
1

σi

exp

[

−(x− µi)
2

2σ2
i

]

=
1

σref

exp

[

−(x− µref)
2

2σ2
ref

]

. (C.3)
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Rearrange Eq. C.4, one could get:

(σ2
ref − σ2

i )x
2 − 2(σ2

refµi − σ2
i µref)x+ σ2

refµ
2
i − σ2

i µ
2
ref − C0 = 0, (C.4)

where

C0 = 2σ2
i σ

2
ref log

σref

σi
. (C.5)

The symbolic solution of Eq. C.4 would be:

x =
(σ2

refµi − σ2
i µref)±

√

σ2
i σ

2
ref(µi − µref)2 + C0(σ2

ref − σ2
i )

σ2
ref − σ2

i

. (C.6)

That is,

x =

(σ2
refµi − σ2

i µref)± σiσref

√

(µi − µref)2 + 2 log
σref

σi
(σ2

ref − σ2
i )

σ2
ref − σ2

i

. (C.7)

Since log
σref

σi
and (σ2

ref − σ2
i ) will have the same sign, Eq. C.7 always has real

solutions.

C.1 If σi = σref :

In this case, C0 = 0 and the solution of Eq. C.4. will be:

x =
µi + µref

2
(C.8)

Denote x by xcp.

Since the solution is identical, there will be only one cross point for the two

distributions, as shown in Figure C.1.

Before calculating the score, one should determine which one of the fi(x) and fr
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Figure C.1: An example of overlapped area of two normal distributions with equal
σ.
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is f1(x) to the left. Then the score can be given by:

score = Φ(x̂cp
2) +

[

1− Φ(x̂cp
1)
]

, (C.9)

where Φ stands for cumulative standard normal distribution. x̂cp
i, i = 1, 2, is the

standardized value for xcp which is standardized with µi and σi, i = 1, 2. And the

standardization is given by:

x̂cp
i =

xcp − µi

σi
. (C.10)

The values of cumulative standard normal distribution at specific points can be given

by function cdf in MATLAB.

C.2 If σi 6= σref :

In this case, Eq. C.4 will have two solutions, denote the smaller one by xcp, 1 and

denote the larger one by xcp, 2. There will be two cross points as shown in Figure C.2.

As previously discussed, one should determine which one between fi(x) and fref(x)

is f1(x) to the left. Then the score can be calculated by:

score = Φ( ˆxcp, 1
1) +

[

Φ( ˆxcp, 2
2)− Φ( ˆxcp, 1

2)
]

+
[

1− Φ( ˆxcp, 2
1)
]

, (C.11)

where ˆxcp, j
i, i, j = 1, 2 is the standardized value of xcp, j, which is standardized by

µi and σi. And the standardization is given by:

ˆxcp, j
i =

xcp, j − µi

σi
. (C.12)
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Figure C.2: An example of overlapped area of two normal distributions with distinct
σ.
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